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ABSTRACT

Feature selection methods are essential for learning to rank (LTR) approaches as the number
of features are directly proportional to computational cost and sometimes, might lead to the
over-fitting of the ranking model. We propose an expected divergence based approach to select
a subset of highly discriminating features over relevance categories. The proposed method is
evaluated in terms of performance of standard LTR algorithms when trained with reduced
features over a set of standard LTR datasets. The proposed method leads to not significantly
worse, and in some cases, significantly better performance compared to the baselines with as
few features as less than 10%. The proposed method is scalable and can easily be parallelised.
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1 Introduction

Ranking is one of the most important modules of Information Retrieval (IR) systems. Unsuper-
vised ranking models like BM25 okapi and language models have power to rank documents
with limited number of features such as term frequency (TF), inverse document frequency
(IDF), document length (DL). Although they can rank with speed and without the need of
labeled relevance information, they are quite restrictive for the incorporation of more features
such as age, link information in web graph, click information etcetera of the document. Elimi-
nation of such features from ranking might prove to be a big limitation in the rapidly increasing
and annotation rich Web. To overcome this limitation, the research community has posed the
ranking problem in machine learning framework and referred as learning to rank (LTR). LTR
is a supervised setting of ranking in the IR system where, each document for the given query
is represented as a feature vector to which, the ranking function assigns a score. The ranking
function is trained on a prelabelled training data.

Over the time, the number of features used in the learning to rank has increased drastically.
Although increasing number of features induces more information for the ranking algorithms,
it is directly related to the computational complexity and to some extent the over-fitting of
the ranking model in some cases. As a result, the attempts to reduce the dimensionality of
the feature vector subsequently started (Geng et al., 2007; Pan et al., 2009; Dang and Croft,
2010).

Among a few approaches of feature selection for LTR, Geng et al. (2007) proposed an effi-
cient greedy feature selection method for ranking that finds the features with maximum total
importance scores and minimum total similarity scores. The greedy search algorithm over
an undirected graph of features was employed to solve the optimization problem. In con-
trast, Dang and Croft (2010) used best first search to come up with subsets of features and
coordinate ascent to learn the weights for those features. This approach, feature selection -
best first search (FS-BFS), has recently shown to outperform the greedy approach, hence we
use it as one of the baselines to compare with. Pan et al. (2009) used boosting trees with ran-
domized and greedy approach, where th wrapper approach was taken with forward selection
and backward elimination.

In our approach, the subset of features are selected based on their expected divergence over
the relevance classes and the importance of features are estimated by the evaluation scores
produced individually by the features. We use Kullback-Leibler (KL) divergence to estimate
the divergence and adapt it to make it more suitable for the ranking. The results with the
proposed method are reported on a set of standard LTR datasets with three state-of-the-art
LTR algorithms RankSVM (Herbrich et al., 2000), RankBoost (Freund et al., 2003) and Lam-
daMart (Wu et al., 2010). We use the performance of LTR algorithms when learnt with all
features (WAF) as another baseline. The performance achieved with the proposed feature se-
lection method is statistically similar to the baselines and in some cases the performance is
significantly improved with very few features as 10%. Moreover, the proposed algorithm can
easily be parallelised.

We describe the details of the proposed method in Section 2. In Section 3 we describe the

experimental setup and the results with analyses are presented subsequently in Section 4.
Finally, we end the discussion with concluding remarks in Section 5.
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2 Method

The feature selection methods of type filter, as defined in Guyon and Elisseeff (2003), com-
putes the score of each feature as a preprocessing step and the subset of features are selected
based on the scores assigned. In contrast to filter methods, wrapper methods use the learning
algorithms to assign scores to the features. We opt for a filter approach and refer it as feature
selection - expected divergence (FS-ED), while FS-BFS is a wrapper approach.

The proposed method has two components: (i) the importance of the features defined as s(f;)
and, (i) the expected divergence of the features defined as d(f;). The goal of the method is to
score each feature f; € F, where F is the set of all features and |F| = n. We pose the feature
selection method as a maximization problem of selecting top k features from F where, the
score of a feature v(-) is calculated as shown in Eq. 1. For the simplicity, we combine the two
objective functions linearly.

Y(fi) =s(fi) +d(f) (€]

As reported in Geng et al. (2007), the feature importance s(f;) derived from evaluation scores
and learning algorithms lead to statistically similar results. Hence, we opt for the evaluation
measure, NDCG@10, to estimate the importance of an individual feature. The evaluation
score for the queries in the training data using a particular feature value individually to rank
documents is considered as the importance score s(f;).

Usually, the features which can not better discriminate between relevance classes do not add
more knowledge for the learning algorithm. This discrimination can be better captured by
measuring the divergence of the feature on relevance classes. In order to estimate the di-
vergence of a feature over the relevance classes, we use KL divergence. KL divergence has
successfully been used for the feature selection methods for classification problems (Coetzee,
2005; Schneider, 2004). Because of the intuitive differences between the classification and
ranking, we adapt and call it as expected divergence which, to the best of our knowledge, is
novel. Classes in ranking are ordinal relevance levels, while they are unordered categories
in case of classification. Hence, we boost the divergence of a feature over distant relevance
classes by the expected divergence. For example, consider a 5-scale relevance system with
relevance classes r; € R where i € {0, 1,..,4}, the divergence of a feature over r, and r, is far
more important than that over r, and r,. The expected divergence of a feature is calculated as
shown in Eq. 2. RI-1 [RI-1

d(fi) = Z Z (n—m) «div(f,™, f™) @
m=0 n=m+1
where, 1 - ) o
div(f™, £7) = Sdie (FIF) + 5 (FIFS) 3)

Eq. 3 is the Jensen-Shannon divergence where, fir"’ is the estimated probability density func-
tion (PDF) using kernel density estimation (KDE) of ith feature over relevance class rn learnt
from the training data and estimated on the validation data as shown in Eq. 4, fiav‘g is an
average over both relevance classes and di; is KL divergence.

. 1 ¥ X —X;
fi= ¢>(7}) @
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where, M is the total number of samples in the training data, x; and x refers to the value of ith
feature in the training and validation data respectively , h is the bandwidth which is estimated
using Silverman’s rule of thumb (Bernard, 1986) and the kernel is chosen as standard normal
distribution (¢). The complete feature selection method is described in Fig. 1.

T = training data
V = validation data
QI; = weight vector of features
F, F = feature sets, all and top-k respectively
for each f; € F
Y(f;)=0 /* Initialise the weights */
end for
for each f;
s(f;) = evaluation score over T
for each r; €R
estimate PDF(f;) over r; from T using KDE
end for
fori=0to |R|—1
forj=i+1to|Rl—1
estimate JS div. of f; over r; and r; from V
end for
end for
calculate d(f;) as show in Eq. 2
Y(f) =s(f)+d(f)
end for
sort i
fori=1tok
add f; in Fy.
end for
RETURN F

Figure 1: Feature selection procedure.
3 Experimental Setup

In order to compare the proposed method with the baselines, we use the performance evalua-
tion of three state-of-the-art LTR algorithms when trained with selected features on four stan-
dard LTR datasets. We use NDCG@10 as metric and five-fold cross valiadation. NDGC@10
estimates the quality of ranking especially in the graded multi-scale relevance level set-
ting (Jarvelin and Kekalainen, 2002). Each ranking method is trained over training set and
the model that performs best on validation set is used for testing in each fold.

3.1 Ranking Methods

3.1.1 RankSVM

RankSVM is a widely used pairwise LTR algorithm proposed in Herbrich et al. (2000). At
first, the training data is transformed to make the pairs of correctly and incorrectly ranked
documents, then an SVM model is trained to learn the weight vector w. We used the publicly
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available implementation of RankSVM ! to train the model on training data and choose the
parameters which maximizes the performance on the validation data. We use linear kernel,
epsilon = 0.001 and loop over [0.00001, 10] with step of x2 to estimate C.

3.1.2 RankBoost

RankBoost (Freund et al., 2003) is another popular pairwise LTR algorithm based on boosting
technique. The boosting algorithm uses weak rankings to update the weights of the pairs.
The weights of the correctly ranked instances are decreased and that of incorrectly ranked are
increased to give them more importance in the next round. Finally, a linear combination of
weak rankers is produced. We used a publicly available implementation of RankBoost?> and
train the model until no performance change is observed for 100 iterations.

3.1.3 LambdaMART

LambdaMART (Wu et al., 2010) uses gradient boosting, to optimize a ranking cost function,
which produces an ensemble of regression trees. The final model can be seen as a weighted
combination of such trees as shown in Eq. 5 where, N is the total number of regression trees
and q; is the weight associated with i" tree.

N
Fy(x) = Z a; % fi(x) (5)

More details, about LambdaMART can be found in Burges (2010). We used a publicly available
implementation of LambdaMART? with following mentioned parameters, # of trees = 1000,
learning rate = 0.1 and # of tree leaves = 10.

3.2 Datasets

We conduct the experiments on three standard LTR datasets: (i) OHSUMED, (ii) Letor 4.0
and (iii) Yahoo!. OHSUMED (Hersh et al., 1994) is a part of Letor 3.0 and contains documents
from the MEDLINE, a corpus of medical publications. This corpus contains 106 queries, 3 levels
and 45 features. The Letor 4.0 dataset is created from the Gov-2 document collection which
contains roughly 25 million Web pages. It contains two query-sets MQ2007 and MQ2008
corresponding to years 2007 and 2008 editions of TREC Million Query track®. The Letor 4.0
has in total 2476 queries, 3 relevance levels and 46 features. We used Yahoo! SET 2 query-
set which contains the LTR data of the commercial search engine and has 6330 queries, 5
relevance levels and 699 features.

Although the dimensionality of features in OHSUMED and Letor 4.0 is less than 50, we con-
sider necessary to report results on these datasets. Based on the feature analysis presented
in Geng et al. (2007), features importance in OHSUMED and .Gov datasets are highly differ-
ent. Moreover, Information Gain and CHI based filter approaches perform quite differently
on them, hence we opt to investigate the stability of the proposed method on these datasets
too.

Thttp://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
2RankLib-v2.0 http://people.cs.umass.edu/ vdang/ranklib.html
Shttp://ciir.cs.umass.edu/research/million/
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3.3 FS-BFS

The FS-BFS is a wrapper based approach of feature selection for ranking (Dang and Croft,
2010). The method partitions the F into non-overlapping k subsets and learns a ranking model
which maximizes the performance over that subset of features. Best first search is used on the
undirected graph of features to extract subsets and the weights of the features are learnt using
coordinate ascent. Each best subset will be a weighted combination of the original features
in the subset and will represent a completely new feature. We use the parameters as defined
in (Dang and Croft, 2010).

4 Results and Discussion

Fig. 2 represents the performance evaluation of RankSVM, RankBoost and LamdaMART when
trained with FS-ED, FS-BFS and WAF. We did the significance TTest of the results where we
consider the p-value < 0.05 for statistical significance. As can be noticed from the figures,
FS-ED performs statistically similar to the baselines in all the cases and in some cases it signif-
icantly outperforms the baselines. FS-BFS is a very computation intensive model and it was
impractical to optimize the best first search over 699 features graph of a large dataset on our
server. Therefore, the the results on Yahoo! dataset are not available with FS-BFS*. Here, we
would like to mention that, in FS-ED, the scoring of a feature does not depend on the other
features’ scores so it can easily be parallelised for individual features as can be noticed from
Fig. 1. On the contrary, FS-BFS can not be parallelised as the optimization of the consecutive
subset depends on the prior best subset. Just to mention, running FS-ED on our server with
parallelisation on 8 processors produced results for Yahoo! dataset in ~1.5 hours under nor-
mal CPU load. We would also like to mention, the selection method of features presented in
Geng et al. (2007) also depend on other features similarity with it, hence making it much com-
putation intensive when running for large datasets like Yahoo!. Table 1 reflects the number of
features used to produce the best results. It is noticeable that in some cases FS-ED was able
to produce the best results using less than 10% of total features on all datasets.

[FSMethod O M7 M8 Y |[R.Method |

15 3 3 50 | RankSVM
FS-ED 4 15 15 75 RankBoost
20 10 20 75 LambdaMART
6 9 12 - RankSVM
FS-BFS 12 7 7 - RankBoost
14 10 7 - LambdaMART
[ WAF [45 46 46 699 | ALL ]

Table 1: The number of features used to obtain the results reported in Fig. 2 with different feature selection
strategies. O, M7, M8 and Y refer to OHSUMED, MQ2007, MQ2008 and Yahoo! respectively.

The proposed method exhibit similar behaviour on datasets like OHSUMED, MQ2007 and
MQ2008 while, an interesting behaviour is noticed on Yahoo! dataset. FS-ED achieved more
than 5 point gain in NDCG@10 for RankSVM with only 50 features while performed relatively
worse with RankBoost and LambdaMART. To understand this phenomenon better, we anal-
ysed the distribution of the top and last features obtained using FS-ED over the relevance

“We used Intel Xeon CPU E5520 @ 2.27GHz with 4 cores, 8 processors and 12GiB memory. We ran FS-BFS for
around 7 days but did not notice any progress.
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Figure 2: Performance evaluation of feature selection schemes on different datasets with RankSVM, RankBoost and
LambdaMART. + and « indicate statistical significance with WAF and the other FS strategy respectively.

classes. The analysis is presented in Fig. 3. It is noticeable that, the top features better dis-
criminate between the relevance classes and exhibit high divergence over distant relevance
levels. Moreover, the expected divergence component minimizes the weight of those features
which are least discriminative and in turn, might prove to be ambiguous for some of the rank-
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ing models. We consider this as the main reason where FS-ED performs better compared
to WAF. Because of this characteristic, the large margin classifier based ranking models like
RankSVM are benefited more compared to the weak learner based models like RankBoost and
LambdaMART. The weak learner based models can easily minimise the importance of the less
discriminative features by assigning less weight and hence the performance does not rapidly
deteriorate as compared to large margin classifiers based models. This phenomenon makes the
proposed method much efficient and important for the large-margin classifier based rankers
which can clearly be noticed from statistical significance of FS-ED over WAF across the datasets
for RankSVM. The method is quite robust, as the feature importance component captures the
linearity of features over relevance classes while the expected divergence component enables
the method to capture the non-linearity. Eventhough the experiments are carried for the doc-
ument retrieval task of information retrieval, the observations remain intact when the feature
selection is performed for a task where classes are ordinal.
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Figure 3: The estimated density of the top and last features according to FS-ED over relevance classes (r) on Yahoo!
and OHSUMED. X-axis denote values a feature can take. The features having constant or zero value for all the queries
are excluded.

5 Remarks

We proposed an expected divergence based feature selection method for learning to rank. The
method is very efficient and can be parallelised. The proposed method leads to not significantly
worse, and in some cases, significantly better performance compared to the baselines with as
few features as less than 10% on a set of standard datasets and state-of-the-art LTR algorithms.
We analysed the selected features over the relevance classes and exhibit that large margin
classifier based ranking models can greatly benefit from the selection method.
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