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ABSTRACT
Online discussion forums are a valuable means for users to resolve specific information needs,
both interactively for the participants and statically for users who search/browse over historical
thread data. However, the complex structure of forum threads can make it difficult for users
to extract relevant information. Automatically identifying whether the problem in a thread
has been solved or not can help direct users to threads where the original problem has been
solved, hence enhancing their prospects of solving their particular problem. In this paper, we
investigate the task of Solvedness classification by exploiting the discourse structure of forum
threads. Experimental results show that simple features derived from thread discourse structure
can greatly boost the accuracy of Solvedness classification, which has been shown to be very
difficult in previous research.
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1 Introduction

Web user forums (or simply “forums”) are online platforms for people to discuss information
and obtain information via a text-based threaded discourse, generally in a pre-determined
domain (e.g. IT support or DSLR cameras). With the advent of Web 2.0, there has been an
explosion of web authorship in this area, and forums are now widely used in various areas such
as customer support, community development, interactive reporting and online eduction. In
addition to providing the means to interactively participate in discussions or obtain/provide
answers to questions, the vast volumes of data contained in forums make them a valuable
resource for “support sharing”, i.e. looking over records of past user interactions to potentially
find an immediately applicable solution to a current problem. On the one hand, more and more
answers to questions over a wide range of domains are becoming available on forums; on the
other hand, it is becoming harder and harder to extract and access relevant information due to
the sheer scale and diversity of the data.

In the domain of troubleshooting-oriented forums, one potential way to enhance information
access and support sharing is to automatically identify threads where the original information
need has been resolved. By filtering out threads which do not contain a valid answer, we can
focus the attention of users on threads which have a greater chance of containing the required
solution. Baldwin et al. (2007) explore this task of Solvedness classification, and find that it is
an extremely difficult problem. Figure 1 shows an example thread, made up of 5 posts from
3 distinct participants, from the ILIAD (Improved Linux Information Access by Data Mining)
dataset of Baldwin et al. (2007). In this thread, Post1 and Post3 are both from the thread’s
initiator UserA. Post1 asks a question, and Post3 asks for more information about an answer
provided by UserB in Post2. In response to Post3, UserB adds more information to his/her
original answer, and Post5 provides another independent answer. In threads like this, it is
important to identify whether the problem is solved or not, and also where solution(s) are likely
to be found.

This research proposes to use information derived from thread discourse structure (Kim et al.,
2010b; Wang et al., 2011) to help predict Solvedness of threads, without validating the answers
provided in the threads. The discourse structure of the thread is modelled as a rooted Directed
Acyclic Graph (DAG), and each post in the thread is represented as a node in this DAG. The
reply-to relations between posts are then denoted as direct edges (Links) between nodes in the
DAG, and the type of a reply-to relation is defined as Dialogue Act (DA). The Link between
two connected posts (i.e. having a reply-to relation) is represented as the distance between
the two posts in their chronological ordering. In the annotated version of the example ILIAD
thread, as is shown in Figure 1, UserA initiates the thread with a question (Dialogue Act =
Question-question: (Kim et al., 2010b)) in the first post, by asking a question. In response,
UserB provides an answer (Dialogue Act = Answer-answer). Then, UserA confirms more
details about the answer provided (Dialogue Act = Answer-confirmation). UserB responds to
UserA to add more information about his/her previous answer (Dialogue Act = Answer-add).
Finally, UserC proposes an independent answer again to the original question (Dialogue Act =
Answer-answer).

Specifically, we explore features extracted from the thread discourse structure which can be
used to help classify the Solvedness of threads. We experiment with both gold-standard and
automatically predicted discourse structure, and find that thread discourse structure (which in
no way evaluates the correctness of each post) can, indeed, boost thread classification accuracy,
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UserB
Post2

UserA
Post3

UserC
Post5

Ive been using Red Hat for along time now ... But 

I hear a lot of fuss about Debian ... I like apt-get 

a lot ... which of those CDs do I need? ...

UserA
Post1

if you like apt-get, you only need disk 1, everything 

else you need, you can just apt-get it.

 ... Is that going to be an obvious option in the 

installer or do I have to just select the minimal stuff 

and then do a dist upgrade?

UserB
Post4

there is a spot where you choose ftp or http sites for 

downloading files ... At the end of the installer, there 

is ... After this you are left with ...

I mostly use a minimal boot CD (based on bf2.4) to 

install Debian ... Use it to install the base system, 

then apt-get or dselect to get whatever you need ...

Debian VS. Red Hat 0+Question-question

Ø

1+Answer-answer

1+Answer-confirmation

1+Answer-add

4+Answer-answer

Figure 1: A snippeted ILIAD thread with annotated discourse structure.

achieving state-of-the-art results over the task. We also investigate the correlation between
thread discourse structure prediction F-score and thread Solvedness classification accuracy, and
demonstrate a positive correlation. Finally, we show that focusing on improving the F-score
over certain dialogue acts is able to boost Solvedness classification.

2 Related Work

As far as we are aware, there is very little NLP work that is specifically targeted at the thread-
level analysis of web user forum data. The most closely-related work is that performed by
Baldwin et al. (2007), on which this work is directly based. Baldwin et al. (2007) focused on
three specific characteristics detected from forum threads, namely Task orientation (i.e. whether
a thread focuses on solving a problem), Completeness (i.e. whether the initial post provides
enough information of the problem) and Solvedness (i.e. whether the problem is solved). Three
classification tasks were identified base on these three characteristics, and experiments were
carried out using a range of classification and regression methods. Baldwin et al. (2007)
explored not only bag-of-words features, but also another 18 lexical and contextual features
from distinct partitions of the thread, namely initial posts, first response post, all responses
posts and final post from the initiator. 250 threads with various topics from a Linux-related
forum and mailing list were annotated for use in the experiments in the paper. While the
experimental results illustrated the difficulties in performing the three tasks automatically, the
experiments also implied that their approach could be employed to rank threads based on their
characteristics.

Research on thread discourse structure analysis and classification over user forums has gained
in momentum in recent years. Fortuna et al. (2007) defined 5 post-level dialogue acts to
describe the levels of agreement (i.e. agreement, disagreement, insult) and identify questions
and answers (i.e. question and answer) in forum posts. Xi et al. (2004) defined 5 prevalent
types of post-level dialogue acts in forum threads. This set of dialogue acts was then adapted
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and extended by Kim et al. (2010b) to describe possible types of posts in troubleshooting-
oriented online forums. Specifically, Kim et al. (2010b) devised a post-level dialogue act set and
annotated a set of threads taken from CNET.1 In this work, they proposed a set of novel features,
which they applied to the separate tasks of post link classification and dialogue act classification.
They later applied the same basic methodology to dialogue act classification over one-on-one
live chat data with provided message dependencies (Kim et al., 2010a), demonstrating the
generalisability of the original method. In both cases, however, they tackled only a single task,
either link classification (optionally given dialogue act tags) or dialogue act classification, but
never the two together.

Wang et al. (2011) delved into the task of thread discourse structure parsing further. They used
the same features as Kim et al. (2010b), but different parsing approaches. Specifically, Wang
et al. (2011) approached thread discourse structure parsing as a joint link and dialogue act
classification task, by using CRFSGD (Bottou, 2011) and MaltParser (Nivre et al., 2007). They
also demonstrated that the methods they use for thread discourse structure parsing are able to
perform equally well over partial threads as complete threads, by experimenting with “in situ”
classification of evolving threads.

There is also research focusing on particular types of dialogue acts, such as question–answer
pairs in emails (Shrestha and McKeown, 2004) and forum threads (Cong et al., 2008), question–
context–answer in forum threads (Cong et al., 2008; Ding et al., 2008; Cao et al., 2009),
initiation–response pairs (e.g. question–answer, assessment–agreement, and blame–denial) in
forum threads (Wang and Rosé, 2010), as well as request and commitment in emails (Lampert
et al., 2007, 2008a,b, 2010).

Thread discourse structure can be used to facilitate different tasks in web user forums. For
example, threading information has been shown to enhance retrieval effectiveness for post-level
retrieval (Xi et al., 2004; Seo et al., 2009), thread-level retrieval (Seo et al., 2009; Elsas and
Carbonell, 2009), sentence-level shallow information extraction (Sondhi et al., 2010), and
near-duplicate thread detection (Muthmann et al., 2009). Moreover Wang and Rosé (2010)
demonstrated that initiation–response pairs (e.g. question–answer, assessment–agreement,
and blame–denial) from online forums have the potential to enhance thread summarisation and
automatically generate knowledge bases for Community Question Answering (cQA) services
such as Yahoo! Answers. Furthermore, Kim et al. (2006) showed that dialogue acts can be used
to classify student online discussions in web-enhanced courses. Specifically, they use dialogue
acts to identify discussion threads that may have unanswered questions and need the attention
of an instructor.

These previous research efforts suggest that the thread structural representation used in Wang
et al. (2011), which includes both linking structure and the dialogue act associated with each
link, could potentially provide even greater leverage in these tasks. We specifically target the
thread-level task of Solvedness classification as it is conceptually the most difficult of the three
classification tasks proposed by Baldwin et al. (2007), and intuitively, it is the task which stands
to gain the most from discourse parsing.

1http://www.csse.unimelb.edu.au/research/lt/resources/conll2010-thread/
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3 Data Description

We use ILIAD (Improved Linux Information Access by Data Mining) data set created by Baldwin
et al. (2007), which contains threads crawled from Linuxquestions2 and Debian mailing lists.3

The ILIAD dataset is made up of 250 threads, which are annotated with three Boolean thread-
level labels, namely Task Orientation, Completeness and Solvedness. This paper only explores
the classification task of Solvedness, which addresses the question of “is there a documented
solution to the original problem described by the thread initiator in the thread (including the
possibility of URLs pointing off to solutions elsewhere on that same forum or generally on the
web)?” A detailed description of the other tasks and the dataset is presented in Baldwin et al.
(2007).

To explore the task of using discourse structure to predict the Solvedness of a thread, we
annotated the ILIAD threads for discourse structure based on the dialogue act set proposed by
Kim et al. (2010b). The dialogue act set is made up of 5 super-categories: Question, Answer,
Resolution, Reproduction and Other. The Question category contains 4 sub-classes: question,
add, confirmation and correction. Similarly, the Answer category contains 5 sub-classes: answer,
add, confirmation, correction and objection. For example, the label Question-add signifies the
Question superclass and add subclass, i.e. addition of extra information to a question. For full
details of the original dialogue act tagset, see Kim et al. (2010b).

The original dialogue act set was developed primarily over troubleshooting-oriented threads
(i.e. the CNET dataset described in Section 2), however there are non-troubleshooting threads
present in the ILIAD dataset (hence the Task Orientation thread classification task is addressed
in Baldwin et al. (2007)). After manual analysis of the ILIAD data, we identified that the
dialogue act tagset was largely transferable in its original state, but needed the addition of the
information sub-class to the Question super-category (i.e. Question-information). Question-
information is used on posts in threads which are not troubleshooting-oriented and only provide
information (e.g. on developer mailing lists to report on a bug fix). We also relaxed the
definition of Resolution slightly to accommodate non-troubleshooting threads. For example, in
one thread the initiator requests an update to a wiki page, and this update is confirmed later by
a non-initiator. In this case, this non-initiator’s post is labelled as Resolution. In the original
definition, Resolution can only be used on posts from the initiator of the thread.

The modified dialogue acts (DAs) used to annotate the ILIAD dataset for discourse structure
are described in Table 1. The annotation was performed by two annotators. The main annotator
annotated all 250 threads (containing 1158 posts), and the secondary annotator independently
annotated 26 randomly-selected threads (containing 113 posts) for quality assurance purposes.
During annotation, annotators first annotate the Links between posts in a thread, and then
identify the type of each link (DA). The κ values for agreement between the two annotators
are 0.64 for combined Link and DA tagging, 0.79 for just the Links and 0.68 for just the DAs.

While both the ILIAD and CNET datasets are mainly troubleshooting-oriented and technical,
they come from different domains. Therefore, we expect the DA and Link distributions of
them to be different. However, to our surprise, the distributions of both DAs and Links in
the two datasets are remarkably similar, supporting the suggestion that the DA label set has
cross-domain applicability.

2http://www.linuxquestions.org
3http://lists.debian.org/completeindex.html
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Super-category Sub-class Description
Question question the post contains a new and independent question.

add the post provides additional information or asks a
follow-up question, regarding a previous question.

confirmation the post confirms details or errors in a question.
correction the post corrects errors in a question.
information* the post is in a non-troubleshooting thread, and only

provides information.
Answer answer the post proposes an answer to a question.

add the post provides additional information to an answer.
confirmation the post confirms details or errors in an answer.
correction the post corrects errors in an answer.
objection the post objects to an answer.

Resolution — a user confirms that an answer works.*
Reproduction — a non-initiator asks a similar question, or confirms that

an answer should work.
Other — the post does not belong to any of the above classes.

Table 1: The Dialogue Act (DA) set used for annotating ILIAD dataset. (“*” signifies a difference
over the original DA proposed by Kim et al. (2010b))

Regarding the Solvedness label for ILIAD dataset, the original thread-level annotations were
done by three annotators are on a five-point scale, with 1 indicating high confidence in
Solvedness for a given thread and 5 indicating low confidence (Baldwin et al., 2007). These
annotations were aggregated by taking the simple mean across the three annotators and
discretising into binary classes, with 2.5 as the breakpoint. Out of the 250 threads in the ILIAD
dataset, 28 threads had a score of 2.5 and were discarded in the original paper. In the interests
of comparability with the original research, we experiment over this reduced dataset (denoted
ILIAD222), but question the theoretical soundness of removing these threads from the dataset,
so additionally experiment with the full dataset (denoted ILIAD).

4 Discourse Structure Parsing for Thread Solvedness Classification

Baldwin et al. (2007) showed that the task of automatic Solvedness classification on ILIAD222
is extremely hard. This is because the annotation was often based on expert knowledge of
Linux, and a great deal of information not explicitly mentioned in the thread. Take the thread
in Figure 1 for example: although two independent answers are provided in Post2 and Post5, it
is almost impossible to identify whether there is a correct solution unless the whole thread is
understood at a technical level.

Although predicting Solvedness is challenging, we believe that the use of thread discourse
structure should assist in the task. As a first step, we need to do thread discourse structure
parsing, which includes predicting both the linkings (Links) between posts and the type (DA)
of each link.

Discourse structure parsing, as discussed in Wang et al. (2011), can be addressed in several
ways. If a structured classification approach, such as Conditional Random Fields (CRFs: Lafferty
et al. (2001)), is used, we can either classify the Link and DA separately and compose them
afterwards (denoted as Composition), or we can classify the combined Link and DA (e.g. treat
0+Question-question as a single label) directly (denoted as Combine). Another approach is
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Feature Category Feature Name Description
DA-only LastPostDA The DA of the last post in the thread.

LastNonInitDA The DA of the last post from a non-initiator in
the thread.

HasResolution Whether the thread contains a Resolution post.
LinkDA-based LastPairDA The DA pair for the deepest post pair in the

thread tree. In the case of ties, the pair contain-
ing the latest post is chosen.

LastSubthreadDA The sequence of DAs in the longest subthread
in the thread tree. In case of ties, the sequence
containing the latest post is chosen.

Table 2: Thread discourse structure features used for Solvedness classification.

to treat discourse structure parsing as a dependency parsing problem. Dependency parsing
(Kübler et al., 2009) is the task of automatically predicting the dependency structure of a token
sequence, in the form of binary asymmetric dependency relations with dependency types. The
joint classification task of Link and DA is a natural fit for dependency parsing, in that the task
is intrinsically one of inferring labelled dependencies between posts.

For discourse structure parsing, all experiments were carried out based on 10-fold cross-
validation, stratifying at the thread level to ensure that all posts from a given thread occur in
a single fold. The results are evaluated using post-level micro-averaged F-score (β = 1). All
three discourse structure parsing methods were tested in our experiments, by using CRFSGD
(Bottou, 2011) and MaltParser (Nivre et al., 2007). As for features, we experimented with all
the features proposed by Wang et al. (2011), including Initiator, Position, TitSim, PostSim,
Punct and UserProf, as well as many of our own features. We found that using CRFSGD with
a simple Initiator (i.e. whether a post’s author is the initiator of the thread) feature and the
Combine approach achieves the highest Link and DA joint (LinkDA) classification F-score of
0.626. This is significantly better4 than a strong heuristic baseline which classifies all first posts
as 0+Question-question and all subsequent posts as 1+Answer-answer, which achieves a joint
classification F-score of 0.420.

We also explored the possibility of domain adaptation, by using threads from the CNET dataset
of Kim et al. (2010b) to augment the ILIAD thread discourse structure parsing. However, we
were unable to achieve any significant improvements.

When using the thread discourse structure (i.e. Link and DA) for Solvedness prediction, one
natural question is “could we simply use Resolution to identify solved thread?” While Resolution
is a clear identifier of solved threads with 100% precision, only 8% of the threads contain
Resolution posts, and yet 80.4% of the threads are labelled as solved. Therefore, by only using
Resolution, a classifier could not do better than a majority class baseline. Instead, we propose
to use a combination of discourse structure features to address the Solvedness classification
problem. Table 2 displays all the discourse structure features5 used in this paper, which can be
grouped into two categories: (1) those based on only the DAs (DA-only); and (2) those based

4All statistical significance results in the paper are based on randomised estimation (Yeh, 2000), at a significance
level of p < 0.05.

5We have experimented with many “discourse structure” features and non-“discourse structure” features, and these
are particularly useful and interesting.

2745



Post1

Ø

Post2

Post3

Post5

Post4

Post1

Ø

Post2

Post3

Post5

Post4

An example pair An example subthread

Figure 2: Examples of a pair and a subthread in a thread.

on Link and DA (LinkDA-based). When using the Link information, we rely on the notions of
“pairing” and “subthreading”. A pair is defined to be the combination of a post with the parent
post it links to (noting that a given post can participate as child in multiple “pairs” as it can
link to multiple posts), and a subthread contains all posts in a given path from a leaf node
to the root node following the link structure. Figure 2 shows an example of each, based on
the sample thread from Figure 1. As the LastPostDA is Answer-answer from Post5 (the final
post), the LastNonInitDA for the thread is Answer-answer, HasResolution is 0 (as there
are no Resolution posts), LastPairDA is Answer-add/Answer-confirmation from the pairing
of Post4 and Post3, and LastSubthreadDA is Answer-add/Answer-confirmation/Answer-
answer/Question-question from the subthread Post4/Post3/Post2/Post1.

5 Solvedness Classification

Baldwin et al. (2007) experimented with various learners from three machine learning software
packages, namely LIBSVM (Chang and Lin, 2011), TiMBL (Daelemans et al., 2010) and Weka
(Hall et al., 2009), and found that LIBSVM performs superiorly on the Solvedness classification
task. Therefore, LIBSVM is used for Solvedness classification in this research.

In our initial experiments, we experimented with different kernel functions for LIBSVM,
including linear, polynomial, radial basis function (RBF) and sigmoid kernels, and found the
linear kernel to outperform other kernels. Therefore, LIBSVM with linear kernel is used
throughout our experiments. We approach the Solvedness classification task by firstly following
the procedure of Baldwin et al. (2007), where ILIAD222 is used. Subsequently, we carry out
experiments over the full 250-thread ILIAD dataset. In both cases, various combinations of the
features introduced in Section 4 are used. To generate these features, both the gold-standard
LinkDAs and the automatically predicted ones are used.

All our Solvedness classification experiments were carried out based on stratified 10-fold cross-
validation. The results are evaluated using classification accuracy (ACC). As our baselines,
we use a majority classifier (ZeroR), as well as the best Solvedness classifier provided by
Baldwin et al. (2007) (ADCS). As mentioned earlier, randomised estimation (Yeh, 2000) (at a
significance level of p < 0.05) is used throughout the paper for statistical significance testing.
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Feature Category System/feature(s) ACCgold ACCauto

Baseline ZeroR .779
ADCS .788

DA-only LastPostDA .833∗ .775
LastNonInitDA .766 .792
HasResolution .779 .779
LastPostDA +LastNonInitDA .834∗ .779
LastPostDA +HasResolution .883∗ .775
LastNonInitDA +HasResolution .874∗ .792
AllDAFeat .883∗ .779

LinkDA-based LastPairDA .851∗ .792
LastSubthreadDA .833∗ .779
AllLinkDAFeat .833∗ .792
AllDAFeat +AllLinkDAFeat .865∗ .792

Table 3: Results over ILIAD222, using discourse structure features from the gold-standard and
also the discourse parsing model (“∗” signifies a significantly better result than both baselines;
the best result in each column is indicated in boldface).

5.1 Experiments over ILIAD222

Table 3 presents the results from experiments over ILIAD222, using the thread discourse
structure features generated from both the gold-standard (ACCgold) LinkDAs, and automatically
predicted ones (ACCauto). The automatically predicted discourse structure of the whole ILIAD222
dataset is obtained by aggregating the discourse structure predictions from each fold of the
10-fold cross-validation experiments described in Section 4. The combination of all DA-only
features (i.e. LastPostDA, LastNonInitDA and HasResolution) is denoted AllDAFeat,
and the combination of all LinkDA-based features (i.e. LastPairDA and LastSubthreadDA)
is denoted AllLinkDAFeat. Results which are significantly better than both baseline results
are signified by “∗”, and the best result(s) in each column are presented in boldface.

Looking first at the ACCgold results in Table 3 we can see that, not surprisingly, HasResolution
by itself does not have any effect on the prediction (see our comments in Section 4). Moreover,
while LastPostDA leads to a significant improvement, LastNonInitDA does not have a
significant effect. More interestingly, the combination of LastPostDA or LastNonInitDA
with HasResolution leads to further improvements. This is because the classifiers trained
on LastPostDA or LastNonInitDA are aggressive and misclassify many solved threads as
unsolved, which HasResolution can correct.

The ACCgold column also shows both the potential and shortcomings of LinkDA-based features
— i.e. while both LastPairDA and LastSubthreadDA lead to significantly better results in
isolation, combining them does not lead to further improvements. Moreover, combining all
the features (i.e. AllDAFeat +AllLinkDAFeat) leads to a drop in results compared to just
using AllDAFeat. We hypothesise that there are a number of reasons for this. Firstly, the
LastPairDA, LastSubthreadDA and DA-based features have dependencies between each
other, in that they all draw on the same set of DAs. While they are closely related, the classifiers
do not have any access into the internals of the features to leverage them, causing the learner
to overfit the training data. Secondly, while LastPairDA and LastSubthreadDA lead to low
results in isolation, this is almost certainly because of the sparse nature (LastPairDA and
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Feature Category System/feature(s) ACCgold ACCauto

Baseline ZeroR .804
ADCS .804

DA-only LastPostDA .784 .780
LastNonInitDA .792 .788
HasResolution .804 .804
LastPostDA +LastNonInitDA .848∗ .776
LastPostDA +HasResolution .864∗ .780
LastNonInitDA +HasResolution .872∗ .788
AllDAFeat .884∗ .776

LinkDA-based LastPairDA .832 .816
LastSubthreadDA .832 .792
AllLinkDAFeat .824 .792
AllDAFeat +AllLinkDAFeat .852∗ .792

Table 4: Results over ILIAD, using discourse structure features from the gold-standard and also
the discourse parsing model (“∗” signifies a significantly better result than both baselines; the
best result in each column is indicated in boldface).

LastSubthreadDA have 72 and 135 distinct values, respectively), much moreso than the
DA-based features. When combined with the other features, however, some of these features
are found to have utility.

Looking next to the ACCauto results in Table 3, we can see that we surpass the two baselines,
delivering on the promise of discourse parsing aiding in Solvedness classification. The results
drop appreciably relative to those achieved with the gold-standard labels, and in fact the
improvements over the baselines aren’t statistically significant. This is perhaps not surprising,
however, given than the F-score for discourse parsing was a modest 0.626, meaning that errors
will propagate through to the thread-level classification.

While these results are certainly encouraging, and were worthwhile in terms of establishing the
superiority of our method when discourse parsing features are used, we always had reservations
about the ILIAD222 dataset, due to the most contentious instances having been removed from
the dataset. In introducing these instances back into the dataset and labelling them as solved,
the task becomes both more realistic and more challenging, including the ZeroR baseline rising
up further. In the next section, we reapply our methods to the ILIAD dataset.

5.2 Experiments over ILIAD

We carry out the same experiments done in Section 5.1 over the whole ILIAD dataset, and
present the results in Table 4. Again, the results which are significantly better than both baseline
results are signified by “∗”, and the best result in each column is presented in boldface.

From Table 4 we can see a similar trend to that in Section 5.1, with our method improving
over both baselines when we use either gold-standard or automatically-predicted features.
However, there are some notable differences. Looking first at the ACCgold column, firstly,
none of LastPostDA, LastNonInitDA and HasResolution led to any improvement in
isolation. However, the combination of these three features led to results that are significantly
better than the baselines, with AllDAFeat achieving the best result of 0.883. Secondly, neither
LastPairDA nor LastSubthreadDA has a significant impact on results, and their combination
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DA LastPostDA LastNonInitDA HasResolution AllDAFeat
Question-add 0.999 0.811 — 0.999
Question-confirmation 0.881 0.991 — 0.961
Question-information 0.918 — — 0.918
Answer-answer 0.500 0.513 — 0.498
Answer-add 0.461 0.550 — 0.489
Answer-confirmation 0.918 — — 0.918
Answer-objection 0.918 1.000 — 0.954
Reproduction 1.000 1.000 — 1.000
Resolution 0.332 0.918 0.229 0.237
Other 0.971 0.934 — 0.952

Table 5: Entropy of each DA against the Solvedness class distribution for every DA-only feature
and AllDAFeat features.

(i.e. AllLinkDAFeat) also does not outperform the baselines significantly. Looking next to
ACCauto, we achieve the best results with LastPairDA once again, surpassing the baselines
but not at a level of statistical significance. Overall, while it is clear that the Solvedness
classification task becomes harder when we experiment with the full ILIAD dataset, we were
able to reproduce the overall results from Section 5.1.

6 Results Analysis and Simulation

Examining the differences between the results for ACCgold and ACCauto in Section 5.1 and
Section 5.2 leads us to suspect that if the F-score of the thread discourse parsing could be
boosted, we would be able to achieve better Solvedness classification accuracy. Furthermore,
because the most effective discourse structure features, i.e. LastPostDA, LastNonInitDA
and HasResolution, only make use of a subset of the DAs, we anticipate that if we can
improve the F-score over certain DAs, we will be able to significantly boost our Solvedness
classification accuracy.

To test these hypotheses, firstly, we examine the entropy (presented in Table 5) of every
DA against the Solvedness class distribution for each DA-only feature (i.e. LastPostDA,
LastNonInitDA and HasResolution) and the combination of all DA-only features (i.e.
AllDAFeat). From Table 5, we can see that Answer-answer, Answer-add and Resolution have
relatively low entropy compared to the rest of the DAs. Therefore, it seems that these three
DAs can contribute more in Solvedness classification.6

Secondly, we conducted simulation experiments to examine the potential relation between DA
classification and Solvedness classification. The simulation starts with a seed DA classification
result (SeedResults), based on CRFSGD and the Initiator feature. This seed DA classification
achieves a F-score of 0.651, significantly better than a strong heuristic baseline (i.e. 0.515) which
classifies all first posts as Question-question and all subsequent posts as Answer-answer. Then,
an arbitrary higher goal (e.g. 0.8) is set and an artificial classification result (ArtificialResults)
is created by randomly correcting errors in the output of the discourse parsing model. The
corrections are made evenly across all DA labels, relative to the original error rates for each DA.
Next, a simulator is used to predict the labels of each instance, by randomly selecting from the

6Note that this entropy analysis can only capture the association between a single DA and the Solvedness class,
and we are not able to capture more subtle feature interactions.
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Figure 3: Simulation over all DAs (AllDA).
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Figure 4: Simulation over automatically-
generated DA groups (PositiveDAauto and
OtherDAauto).

labels returned by SeedResults and ArtificialResults with equal chance. In order to generate
enough simulated results, we pick 20 goal F-score figures between 0.651 and 1.0, and run the
simulator 100 times for each of these figures. Finally, we use these 2000 simulated discourse
structure predictions to classify Solvedness using AllDAFeat features, and plot each pair of
discourse structure F-score and Solvedness accuracy in a scatter plot. We also try to fit a series
of simple polynomial models of the form y = axn + b (n ∈ {1, 2, 3, 4, 5})7 to the plot. We find
that the model for y = ax5 + b provides the best fit with the data, although the differences in
the range n ∈ {2, 3, 4, 5} are negligible. Figure 3 shows the graph, along with the curve of best
fit for the function y = ax5 + b.

From Figure 3 we can see that there is a clear correlation between the F-score of DA classification
and the accuracy of Solvedness classification, and that the impact of DA classification on
Solvedness classification is, in fact, accentuated for higher F-scores. Theoretically, therefore,
by improving the DA classification F-score, the Solvedness classification accuracy will increase
accordingly.

The entropy analysis showed that not all DAs have the same utility for the task of Solvedness
classification — i.e. some DAs are more important (lower entropy) than others. We select
the three DAs (i.e. Answer-answer, Answer-add and Resolution) with lowest entropy values
from Table 5, because these DAs seem to be the most effective across the three feature types
(i.e. LastPostDA, LastNonInitDA and HasResolution). Then, we carry out an analogous
simulation over this set of automatically-selected DAs (PositiveDAauto). Additionally, we
conducted a simulation over the 8 non-selected DAs (OtherDAauto).8 Once again, a line of best
fit for y = ax5 + b is generated for the resulting simulations. The curves of best fit are shown
in Figure 4, along with the original curve of best fit for all DAs (AllDA) from Figure 3.

7Choosing n> 5 does not result in better fit with the data.
8Question-correction and Answer-correction are never used in annotating the discourse structure of ILIAD

dataset.
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DA Group DA F-score
PositiveDAauto Answer-answer 0.782

Answer-add 0.641
Resolution 0.514

OtherDAauto Question-question 0.992
Question-add 0.678
Question-confirmation 0
Question-information 0
Answer-confirmation 0
Answer-objection 0
Reproduction 0
Other 0

Table 6: Micro-averaged DA classification F-scores per DA over ILIAD

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.75

0.8

0.85

0.9

DA F−score

DA Groups Comparison

S
ol

ve
dn

es
s 

A
cc

ur
ac

y

 

 

AllDA
PositiveDA (manual)
OtherDA (manual)

Figure 5: Simulation over manually-created DA groups (PositiveDAmanual and OtherDAmanual).

From Figure 4 we can see that, as suspected, the PositiveDAauto group is much more important
than the OtherDAauto group for Solvedness classification. Therefore, to improve Solvedness
classification, we should focus our attention on improving the DA classification F-score for
DAs such as Answer-answer, Answer-add and Resolution. Table 6 shows the micro-averaged
F-scores of DA classification, calculated per DA. When we do a breakdown of the results for
the discourse parsing model, we can see that there is definitely room for improvement with
Answer-answer, Answer-add and Resolution. Moreover, Answer-answer and Answer-add are
the most-frequent and third most-frequent DAs in the ILIAD dataset, respectively, appearing
354 and 147 times. Therefore, there appears to be considerable scope for improvement.

While the identification of the more important DAs can be done automatically as shown above,
we also attempted to select them in a more ad hoc way, based on our understanding and
analysis of the data set. Intuitively, if a thread’s last post or the last post from a non-initiator
is Question-confirmation, Question-information, Answer-confirmation or Answer-objection,
this thread is more likely to be unresolved. At the same time, we can observe that the micro-
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average F-scores for all these DAs are 0, that is the model never predicts a post to be one
of these DA types correctly. To explore the utility of these additional DAs, we conducted
an additional simulation experiment including Question-confirmation, Question-information,
Answer-confirmation, Answer-objection and Resolution in PositiveDAmanual , and relegating
the other 6 DAs to OtherDAmanual . The results for these manually-created groupings are shown
in Figure 5.

From Figure 5 we can see that the improvements in discourse parsing over the manually-chosen
PositiveDAmanual will lead to even greater improvements over Solvedness prediction than
before, if only we can get the models to make predictions using them. Perhaps even more
surprising is that our simulations predict that improvements over OtherDAmanual stand to
degrade Solvedness classification. These findings set the direction for future work on improving
the F-score of the discourse parser.

7 Conclusions and Future Work

In this research, we explore the task of Solvedness classification, that is the automatic prediction
of whether the information need on the part of the initiator of a thread has been resolved or
not, by parsing thread discourse structure in the form of a rooted directed acyclic graph over
posts, with edges labelled with dialogue acts. While Solvedness classification has been shown
to be very difficult in previous research (Baldwin et al., 2007), we achieve significantly better
results using gold-standard discourse structure. We are also able to attain improvements in
Solvedness classification accuracy using automatically-predicted thread discourse structure,
although not at a level of statistical significance. However, simulations suggest that as we
improve the F-score of thread discourse structure parsing, the Solvedness classification accuracy
will increase disproportionately. Additionally, we showed that a particular subset of DAs is
crucial to Solvedness classification accuracy, and that if we can improve the F-score of our
discourse structure predictions over these DAs, we stand to make large gains in Solvedness
classification accuracy.

In future work, we plan to firstly investigate ways to improve the discourse parser F-score
over the PositiveDAauto and PositiveDAmanual sets of DAs. Moreover, we plan to delve further
into feature engineering, looking at other means of capturing thread discourse structure.
Additionally, although our preliminary experiments on using CNET annotated threads to help
ILIAD discourse structure parsing were not positive, it would be interesting to investigate the
effect of using CNET threads in predicting specific DAs for the ILIAD dataset.
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