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Abstract
We present a novel algorithm for surface realisation with lexicalist grammars. In this algorithm,
the structure of the input is used both top-down to constrainthe selection of applicable rules and
bottom-up to filter the initial search space associated withlocal input trees. In addition, parallelism
is used to recursively pursue the realisation of each daughter node in the input tree. We evaluate
the algorithm on the input data provided by the Generation Challenge Surface Realisation Task and
show that it drastically reduce processing time when compared with a simpler, top-down driven,
lexicalist approach.

Title and Abstract in Hindi

s\rcnA - þ�Ert шNd -sE>jt u(pAdn

hm шNd -sE>jt &yAкrZ кF mdd s� vAÈo\ к� sth s\pAdn к� Ely� eк nyF
tкnFк þ-t� t кr rh� h{\। is tкnFк m�\ aAgt s\rcnA кA upyog dono\ “Upr s� nFc� ”
upy� Ä Enymo\ к� cyn m� tTA “nFc� s� Upr ” aAgt s\rcnA m�\ mOj� d -TAnFy v� "o\ s�
j� w� þA\rEBк prF"Z "�/ кo EPSVr кrn� m�\ EкyA gyA h{। isк� sAT , smA\trvAd кA
upyog aAgt v� "o\ к� шAхo\ кF sth s\pAdn h�t� к� шl trFк� s� EкyA gyA h{। hm apn�
tкnFк кA m� SyA\кn “u(pAdn þEtyoEgtA : sth s\pAdn ” к� aA\кwo\ pr кrt� h{\ tTA hm
yh EdхAt�\ h{\ Eк þ-t� t trFкA d� sr� sADArZ “Upr s� nFc� ” þ�Ert шNd -sE>jt trFкo\
к� m� кAbl� u(pAdn smy кo a(yEDк GVA d�tA h{।
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1 Introduction
Depending on the type of semantic representation encoded bythe grammar, two main types of al-
gorithms have been proposed for generating sentences with bi-directional, unification-based gram-
mars such as CCG (Combinatory Categorial Grammar, (Espinosa et al., 2010)), HPSG (Head-
Driven Phrase Structure Grammar, (Carroll et al., 1999)) and TAG (Tree Adjoining Grammar,
(Gardent and Kow, 2005)).

For recursive semantic representations such as first-orderlogic formulae, head-driven algorithms
(Shieber et al., 1990) have been argued to be best because they restrict the combinatorics inherent
to bottom-up search; they avoid non termination by using lexical items to guide the search ; and
they allow for semantically nonmonotonic grammars (i.e., grammars where the semantics of a rule
at the left hand side need not be subsumed by the semantics of the rule at the right hand side). One
main issue with this approach however is the so-called logical form equivalence problem (Shieber,
1993). A logic formula may have several logically equivalent but syntactically distinct formulae.
For instancep∧q is logically equivalent toq∧ p. In general though, a grammar will associate with
natural language expressions only one of these logically equivalent formula. Hence a generator will
be able to produce the natural language expressionE only when given the formulaφ associated
by the grammar withE. For all other formulae logically equivalent toφ, it will fail. Since, the
problem of computing logical equivalence for first order logic is undecidable, the problem is quite
deep.

For flat semantic representations such as MRSs (Minimal Recursion Semantics, (Copestake et al.,
2001)) on the other hand, lexicalist approaches (Espinosa et al., 2010; Carroll and Oepen, 2005;
Gardent and Kow, 2005) have extensively been used because (i) they impose few constraints on
the grammar thereby making it easier to maintain bi-directional grammars that can be used both
for parsing and for generation; and (ii) the approach eschews the logical form equivalence problem
– Since the semantic representations are unstructured, there is no requirement on the generator
to mirror a semantic structure. One known drawback of lexicalist approaches however is that they
generally lack efficiency. Indeed, previous work has shown that the high combinatorics of lexicalist
approaches stem from (i) strong lexical ambiguity (each input element is usually associated with a
large number of grammatical structures thereby inducing a very large initial search space); (ii) the
lack of order information in the input (as opposed to parsingwhere the order of words in the input
string restricts the number of combinations to be explored); and (iii) intersective modifiers (given
n modifiers applying to the same constituent, there aren! ways to combine these together).

In this paper, we present an algorithm for surface realisation that combines techniques and ideas
from the head-driven and the lexicalist approach. On the onehand, rule selection is guided, as in
the lexicalist approach, by the elementary units present inthe input rather than by its structure –
In this way, the logical form equivalence issue is avoided. On the other hand, the structure of the
input is used to provide top-down guidance for the search andthereby restrict the combinatorics.

To further improve efficiency, the algorithm integrates three additional optimisation techniques.
From the lexicalist approach, it adapts two techniques designed to prune the search space, namely a
so-called polarity filter on local input trees (Bonfante et al., 2004); and the use of a language model
to prune competing intermediate substructures. In addition, the algorithm is parallelised to explore
the possible completions of the top-down predictions simultaneously rather than sequentially.

The algorithm was implemented using a Feature-Based Lexicalised Tree Adjoining Grammar for
English and tested on the Generation Challenge Surface Realisation task data (Belz et al., 2011).
We compare our algorithm with a baseline lexicalist approach which processes the input tree top
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down. The results show that the algorithm we propose drastically improves on the baseline, reduc-
ing generation time for sentences longer than 6 words w.r.t.this baseline.

This paper is structured as follows. Section 2 situates our approach with respect to related work.
Section 3 introduces the input data provided by the Generation Challenge Surface Realisation task
and used for the evaluation. Section 4 introduces the tree adjoining grammar used by the algo-
rithm. Section 5 presents the surface realisation algorithm we developed. Section 6 describes the
evaluation setup and the results obtained. Section 7 concludes with pointers for further research.

2 Related Work

Most of the recent proposals on optimising surface realisation with unification grammars focuses
on lexicalist approaches, they place minimal requirementson the grammar and eschew the logical
form equivalence problem. We now review the optimisation techniques used in these approaches.
We also briefly review recent work on statistical approachesto surface realisation.

For HPSG, (Carroll and Oepen, 2005) present a bottom-up, lexicalist, surface realiser which uses
a chart based strategy, subsumption-based local ambiguityfactoring and a procedure to selectively
unpack the generation forest according to a probability distribution given by a conditional, discrim-
inative model. The algorithm is evaluated on thehike treebank, a collection of 330 sentences of
instructional text taken from Norwegian tourism brochureswith an average length of 12.8 words.
Practical generation times average below or around one second for outputs of 15 words.

For TAG, (Gardent and Kow, 2007) propose a three step surfacerealisation algorithm for FB-LTAG
(Feature-Based Lexicalised Tree-Adjoining Grammar) where first, a so-called polarity filter is used
to prune the initial search space second, substitution is applied to combine trees together and third,
adjunction is applied.

In essence, polarity filtering filters out combinations of FB-LTAG elementary trees which cover the
input semantics but cannot yield a valid parse tree either because a syntactic requirement cannot
be satisfied or because a syntactic resource cannot be used. In this way, the exponential impact
of lexical ambiguity can be reduced. Furthermore applying substitution before adjunction means
that first a skeleton sentence is built before modifiers are adjoined. This permits reducing the
combinatorics introduced by intersective modifiers as the multiple intermediate structures they may
license do not propagate to the rest of the sentence tree. In practice however, evaluation is restricted
to short input and the algorithm fails to scale up (Gardent and Perez-Beltrachini, 2010).

(Koller and Striegnitz, 2002) present a surface realisation algorithm where (i) the XTAG FB-LTAG
grammar (The XTAG Research Group, 2001) is converted to a dependency grammar capturing the
derivation trees of XTAG and (ii) a constraint-based dependency parser is used to construct deriva-
tion trees from semantic representations. The parser used was specifically developed for the ef-
ficient parsing of free word order languages and is shown to efficiently handle both the lexical
ambiguity and the lack of order information in the input thatare characteristic of surface realisa-
tion from a flat semantics. The evaluation however is restricted to a few hand constructed example
inputs; and the grammar conversion ignores feature structure information.

To address these shortcomings, (Gardent and Perez-Beltrachini, 2010) present an approach which
makes use of the procedure for converting an FB-LTAG to a Feature-Based Regular Tree Grammar
(FB-RTG) described in (Schmitz and Roux, 2008). Like in (Koller and Striegnitz, 2002), the initial
FB-LTAG is converted to a grammar of its derivation trees. However in this case, the grammar
conversion and the resulting feature-based RTGs accurately translates the full range of unification

2029



mechanisms employed in the initial FB-LTAG. An Earley, bottom-up algorithm is developed and
the approach is tested on a large benchmark of artificially constructed examples illustrating dif-
ferent levels of linguistic complexity (different input lengths, different numbers of clauses and of
modifiers). The approach is shown to outperform the algorithm presented in (Gardent and Kow,
2007) in terms of space. Speed is not evaluated however and the algorithm is not evaluated on the
real life data.

Probabilistic techniques have also been proposed to improve e.g., lexical selection, the handling of
intersective modifiers and the selection of the best output.For instance, (Bangalore and Rambow,
2000) uses a tree model to produce a single most probable lexical selection while in CCG based
White’s system (White, 2004), the best paraphrase is determined on the basis of n-gram scores.
To address the fact that there aren! ways to combine anyn modifiers with a single constituent,
(White, 2004) proposes to use a language model to prune the chart of identical edges repre-
senting different modifier permutations, e.g., to choose betweenfierce black catand black fierce cat.
Similarly, (Bangalore and Rambow, 2000) assumes a single derivation tree that encodes a word
lattice (a {fierce black, black fierce} cat), and uses statistical knowledge to select the best linearisa-
tion. Recently, (Espinosa et al., 2008) adapted the supertagging techniques first proposed for pars-
ing (Bangalore and Joshi, 1999) to surface realisation. Given a treebank in the appropriate format,
this technique permits filtering the initial search space byusing a model trained on that treebank.
Supertagging was shown to improve the performance of symbolic parsers and generators signif-
icantly. However, it requires the existence of a treebank ina format appropriate to generate the
supertagging model.

In sum, various symbolic and statistical techniques have been developed to improve the effi-
ciency of grammar-based surface realisation. However, statistical systems using supertagging
require the existence of a treebank in an appropriate formatwhile the purely symbolic sys-
tems described in (Carroll and Oepen, 2005; Gardent and Kow,2005; Koller and Striegnitz, 2002;
Gardent and Perez-Beltrachini, 2010) have not been evaluated on large corpora of arbitrarily long
sentences such as provided by the surface realisation (SR) task (Belz et al., 2011).

Recently, (Guo et al., 2011; Bohnet et al., 2011; Stent, 2011) have developed statistical dependency
realisers that do not make use of an explicit grammar but use cascaded classifiers and n-gram
models to map in SR input data to sentences. They obtain the best results in the SR task partly
because, for grammar based systems, converting the provided input into the format expected by the
grammar proved to be extremely difficult.

The algorithm we propose departs from these approaches in that it is a grammar-based approach;
it is optimised by combining parallel processing, top-downprediction and local bottom-up polar-
ity filtering; and it was evaluated on a large scale using the input data provided by Generation
Challenge SR Task.

3 Input Representations

Recently, the Generation Challenge has promoted a Surface Realisation (SR) task (Belz et al.,
2011) where the input provided to test and compare surface realisers are (deep or shallow) depen-
dency structures. Here we assume as input to surface realisation, the shallow dependency structures
provided by this task namely, unordered trees whose edges are labelled with syntactic functions
and whose nodes are labelled with lemmas, part of speech tags, partial morphosyntactic informa-
tion such as tense and number and, in some cases, a sense tag identifier. All words of the original
sentence are represented by a node in the tree. An example of the shallow dependency trees used
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for the SR task is given in Figure 1.
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Figure 1: Input shallow dependency tree from the GenerationChallenge Surface Realisation Task
for the sentence “The most troublesome report may be the August merchandise trade deficit due out tomorrow .”

Note that contrary to the flat semantic representations often used by surface realisers, the SR data
has a clear tree structure. Thus the combinatorics induced by the lack of order in flat semantic
representations is less in this task. Indeed, the algorithmwe present exploits this structure to
minimize the combinatorics. Similarly, (White, 2006) applies chunking constraints to the graph
structure of flat semantic representation to constrain the generation of coordinate structures and
address the issue of semantically incomplete phrases.

4 Grammar

Following (Gardent and Perez-Beltrachini, 2010), we perform surface realisation using a Feature-
Based Regular Tree Grammar (FB-RTG) describing the derivation trees of a Feature-Based Lexi-
calised Tree Adjoining Grammar (FB-LTAG, (Joshi and Schabes, 1996)) rather than the FB-LTAG
itself. In what follows, we briefly introduce FB-LTAG and thederived FB-RTG used for generation.

4.1 FB-LTAG

The grammar underlying the surface realisation algorithm presented in the next section is
an FB-LTAG for English consisting of roughly 1000 trees and whose coverage is similar to
XTAG (The XTAG Research Group, 2001).

Figure 2 shows an example FB-LTAG. Briefly, an FB-LTAG consists of a set of elementary trees
which can be either initial or auxiliary. Initial trees are trees whose leaves are labeled with substi-
tution nodes (marked with a down-arrow) or terminal categories. Auxiliary trees are distinguished
by a foot node (marked with a star) whose category must be the same as that of the root node. In
addition, in an FB-LTAG, each elementary tree is anchored bya lexical item (lexicalisation) and
the nodes in the elementary trees are decorated with two feature structures calledtop andbottom
which are unified during derivation. Two tree-composition operations are used to combine trees:
substitution and adjunction. Substitution inserts a tree onto a substitution node of some other tree
while adjunction inserts an auxiliary tree into a tree. Derivation in an FB-LTAG yields two trees: a
derived treewhich is, like for context free grammars, the tree produced by combining the grammar
rules (here, the elementary trees) licensed by the input; and aderivation treewhich indicates how
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the derived tree was built i.e., which elementary trees wereused and how they were combined. Fig-
ure 3 show the derived and derivation trees associated by thegrammar shown in Figure 2 with the
sentence “Which fruit has John eaten?”. For a detailed presentation of the FB-LTAG formalism,
the reader is referred to (Vijay-Shanker and Joshi, 1988).

4.2 FB-RTG

As shown in (Koller and Striegnitz, 2002; Gardent and Perez-Beltrachini, 2010), processing the
derivation trees of a given FB-LTAG rather than its derived trees is more efficient. Following
(Gardent and Perez-Beltrachini, 2010), we therefore use not the initial FB-LTAG described in the
previous section, but the FB-RTG grammar of derivation trees that can be derived from it. That
is, the surface realisation algorithm first builds a derivation tree. The generated sentence is then
extracted from the derived tree1 which can be reconstructed from this derivation tree using the
original FB-LTAG.

Figure 2 shows an example FB-LTAG and the corresponding FB-RTG. The conversion from FB-
LTAG to FB-RTG is described in detail in (Schmitz and Roux, 2008). Intuitively, the FB-RTG
representation of an FB-LTAG elementary treet, is a rule whose left hand side (LHS) describes the
syntactic requirement satisfied byt (e.g.,SS for an initial tree rooted inS andV PA for an auxiliary
tree rooted inV P) and whose right hand side (RHS) describes its requirements. Adjunction is
handled as an optional requirement which can be satisfied by the adjunction of an empty string and
subscripts indicates the nature of the requirement (S for a substitution andA for adjunction). For
instance, the ruler8 in Figure 2 repeated below for convenience, describes the contribution of the
elementary treet8 lexicalised with the lemmaeat to a derivation tree as follows:t8 can satisfy a
requirement for a substitution on a node labelled with the S category (LHS with the categorySS)
and requires one substitution on a node labelled with the NP category (N PS on the RHS) and two
optional adjunctions of category S and VP respectively (SA, V PA on the RHS).

S[t :T,b:B]
S → eat(S[t :T,b:B]

A N P[t :[wh:−]]
S V PA)

The derivation process in FB-RTG produces trees that are almost identical to the FB-LTAG deriva-
tion trees. Figure 3 shows the FB-LTAG derived, FB-LTAG derivation and FB-RTG derived tree
for the sentence “Which fruit has John eaten?”. When abstracting away from the categorial nodes,
the FB-RTG derivation tree mirrors the derivation tree of the original FB-LTAG. TheA andS sub-
scripts indicate which operation was used for combining; and the nodes at which each FB-LTAG
elementary tree adjoins or substitutes is encoded by features in these trees: for instance, the sub-
ject node oft9 will have the featuresubjectwhile its object node will have the featureobject. By
comparing the dependency relations present in the input tree with the feature values given by the
grammar, it is thus possible to determine on which nodes of the mother tree in the derivation tree,
its daughter trees should combine.

Note that the FB-RTG tree is unordered. During generation, the appropriate linearisation of the
lexical items is obtained by constructing the FB-LTAG derived tree from the FB-RTG derivation
tree. Morphological realisation is carried out in a post-processing step from the list of lemmas and
feature structures decorating the yield of the FB-LTAG derived tree.

1in FB-LTAG, the mapping from derivation tree to derived treeis one-to-one.
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r1 N P[t :T ]
A → which(N P[t :T,b:[wh:+]]

A )
r2 N P[t :T ]

A → the(N P[t :T,b:[wh:−]]
A )

r3 N P[t :T ]
S → fruit(N P[t :T ]

A )
r4 N P[t :T ]

S → John(N P[t :T ]
A )

r5 S[t :T ]
A → have(S[t :T ]

A )
r6 V P[t :T ]

A → have(V P[t :T ]
A )

r7 S[t :T,b:B]
S → have(S[t :T,b:B]

A N P[t :[wh:−]]
S V PA N PS)

r8 S[t :T,b:B]
S → eat(S[t :T,b:B]

A N P[t :[wh:−]]
S V PA)

r9 S[t :T,b:B]
S → eat(S[t :T,b:B]

A N P[t :[wh:−]]
S V PA N PS)

r10 S[t :T,b:B]
S → eat(S[t :T,b:B]

A N P[t :[wh:+]]
S SA N PS V PA)

r11 X [t :T,b:T ]
A → ε

Figure 2: A toy FB-LTAG and the corresponding FB-RTG. For thesake of clarity, feature structures
are abbreviated.r11 (not present in the original FB-LTAG) implements optional adjunction for
arbitrary categories withX , a variable ranging over all syntactic categories.
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SS
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SA N P t :[wh:+]
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ε fruit-t3 have-t5 John-t4 ε
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which-t1 ε ε
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Figure 3: The FB-RTG derivation for “Which fruit has John eaten” and the corresponding FB-
LTAG derived and derivation trees. In the derivation tree, the nodes are labelled with a lemma/FB-
LTAG tree name pair; dashed lines indicate adjunction and solid lines substitution. Adjunction and
substitution sites have been omitted.
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5 The Surface Realisation Algorithm

Surface realisation starts from the root node of the input tree and processes all children nodes in
parallel by spreading the lexical selection constraints top-down and completing the FB-RTG rules
bottom-up. Figure 4 shows the architecture of the surface realiser. The controller provides the
interface to our surface realization system. It takes a shallow dependency tree as input and produces
a ranked list of sentences as output. More specifically, the controller defines a process pool such
that each process present in this pool represents a node (a lemma) in the input dependency tree and
the communication scheme among processes reflects the dependency relations among nodes in the
input dependency tree. In this way, generation is guided by the structure of the input dependency
tree.

C
o

n
t
r
o

ll
e
r

Figure 4: A Parallel Architecture for Surface Realisation

The algorithm proceeds in five major steps as follows.

Top-Down Rule selection and Filtering. Starting from the root node, the input dependency tree
is traversed top-down to associate each node in the input tree with a set of grammar rules (from the
FB-RTG). This step corresponds to the lexical lookup phase of lexicalist approaches whereby each
literal in the input selects the grammar rules whose semantics subsumes this literal. Our approach
differs from existing lexicalist approaches however in that it uses the top-down information given
by the structure of the input to filter out some possibilitiesthat cannot possibly lead to a valid
output. More precisely, for each input noden with lemmaw, only those rules are selected which
are associated withw in the lexicon. In addition, the left-hand side (LHS) category of each selected
rule must occur at least once in the right-hand side (RHS) of the rules selected by the parent node.

For instance, given the input dependency tree shown in Figure 5 for the sentence “Which fruit has
John eaten?”, and the grammar given in Figure 2, all rulesr8, r9 and r10 associated with the
lemma ‘eat’ will be selected because all of them corresponds to theS2 rooted initial trees3.

2The controller triggers the root process “eat” with the initial lexical selection constraint (SS , S rooted initial trees) to
generate complete sentences.

3The grammar is lexicalised with lemmas rather than forms. The appropriate forms are generated at the end of the gen-
eration process based on the lemmas and on the feature structures decorating the yield of the trees output by the generator.
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Figure 5: Dependency Tree for “Which fruit has John eaten”

p
r8 S[t :T,b:B]

S → eat(S[t :T,b:B]
A N P[t :[wh:−]]

S V PA)p
r9 S[t :T,b:B]

S → eat(S[t :T,b:B]
A N P[t :[wh:−]]

S V PA N PS)p
r10 S[t :T,b:B]

S → eat(S[t :T,b:B]
A N P[t :[wh:+]]

S SA N PS V PA)

The parent process creates a new lexical selection constraint message consisting of its RHS re-
quirements in selected RTG rules and passes it to its children processes. In Figure 5, the process
associated with the node ‘eat’ will send a message consisting ofSA, N PS andV PA (RHS require-
ments of rulesr8, r9 andr10) to its children processes associated with ‘fruit’, ‘ John’ and ‘have’.

Starting from the trigger initiated by thecontroller, the process of message spreading happens in
recursive and parallel manner throughout the process pool reflecting the input dependency tree in
a top-down fashion. It eliminates all RTG rules which cannotpossibly lead to a valid output well
before carrying out any substitution and adjoining operation on the RTG rules.

For instance, the ruler7 for ‘have’ will not be selected because its left-hand side isSS which does
not satisfy the lexical selection constraints (SA, N PS andV PA) sent by its parent ‘eat’.

p
r5 S[t :T ]

A → have(S[t :T ]
A )p

r6 V P[t :T ]
A → have(V P[t :T ]

A )
× r7 S[t :T,b:B]

S → have(S[t :T,b:B]
A N P[t :[wh:−]]

S V PA N PS)

Leaf closure. When reaching the leaf nodes of the input tree, the top and bottom feature structures
of the rules selected by these leaf nodes are unified. The completed rules of a leaf node are sent
back to its parent.

Local Polarity filtering. As mentioned in Section 2, polarity filtering (Gardent and Kow, 2005)
eliminates from the search space those sets of rules which cover the input but cannot possibly lead
to a valid derivation either because a substitution node cannot be filled or because a root node fails
to have a matching substitution site4 While (Gardent and Kow, 2005) applies polarity filtering to the
initial search space (the set of rules selected by all literals in the input), we apply polarity filtering
to each local tree while going up the input tree. Thus, this filtering will weed out all combinations

4Since it only eliminates combinations that cannot possiblylead to a valid parse, polarity filtering does not affect com-
pleteness. Nor does it place any particular constraint in the grammar. All that is required is that the grammar encodes a
notion of resources and requirements i.e., of items that cancel each other out. Typically, grammar rules support this con-
straint in that e.g., the left-hand side of a rule and one category in the right-hand side of another rule can be viewed as
canceling each other out if they match.
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of mother rules and completed immediate daughter rules which cannot possibly yield a complete
tree either because some daughter rule cannot be used or because some requirement of the mother
rule cannot be satisfied. For instance, after processing thedaughters of the ‘eat’ node in the input
dependency tree shown in Figure 5, all combinations ofr8 (intransitive ‘eat’) with the daughter
trees will be excluded. This is because at this stage of processing, the trees built bottom up for
‘which fruit’, ’ John’ and ’have’ includes two NPs with LHS categoryN PS (Figure 6) while ther8
rule only requires one such NP. That is, for this rule, the completed daughter rule forwhich fruit
will show up as a superfluous syntactic resource.

× r8 S[t :T,b:B]
S → eat(S[t :T,b:B]

A N P[t :[wh:−]]
S V PA)p

r9 S[t :T,b:B]
S → eat(S[t :T,b:B]

A N P[t :[wh:−]]
S V PA N PS)p

r10 S[t :T,b:B]
S → eat(S[t :T,b:B]

A N P[t :[wh:+]]
S SA N PS V PA)

× N P t :[wh:+],b:[wh:+]
S SA N PS V PA

SS fruit-t3 have-t5 John-t4 have-t6

eat-t8 N P t :[wh:+],b:[wh:+]
A SA N PA V PA

SA N P t :[wh:−]
S V PA which-t1 ε ε ε

N P t :[wh:+],b:[wh:+]
A

ε

Figure 6: Polarity Filtering will filter out ther8 rule for ‘eat’ since one of trees ‘which fruit’ or
‘John’ would then appear as a superfluous syntactic resource as illustrated by the above derivation.

By restricting polarity filtering to local input trees, we avoid the computation of the very large
automaton required when filtering the global initial searchspace as done in (Gardent and Kow,
2005).

As noted by one of our reviewers, supertagging models can probably approximate local polarity
filtering. For instance, a supertagger model might learn that an intransitive category is very unlikely
whenever the input dependency tree contains one or more corearguments.

The combined effect of top-down filtering and local polarityfiltering avoids considering most
of RTG rules which can never lead to valid output well before carrying out any substitution
and adjoining operation on the RTG rules to try to complete them. The Earley, bottom-up al-
gorithm (Gardent and Perez-Beltrachini, 2010) also achieves some amount of top-down filtering
during its prediction stage but the lexical selection constraint is limited to the top of the RHS re-
quirements of the RTG rule being processed, hence it may try completing the RTG rules which
cannot possibly lead to a valid output whereas in our proposed approach all RHS requirements
of the selected RTG rules are available as the lexical selection constraint information during both
top-down filtering and local polarity filtering steps.

Bottom-Up generation. For each local tree in the input, the rule sets passing the local polarity
filter are tried out for combination. The completed daughterRTG rules are combined to the local
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initialized RTG rule using substitution and adjoining operations. The local initialized RTG rule
fails to complete if any feature conflicts are found.

Note that for each rule set let through by polarity filtering,the category and the number of daughter
trees exactly match the requirement of the associated mother rule. For instance, as explained above,
the ruler8 representing an intransitive use of the verb ‘eat’ is ruled out by polarity filtering since
it does not permit “consuming” theN PS resource provided by one of NPs ‘which fruit’ or ‘ John’.
Conversely, given an input tree of the formeat(john, has), the rulesr9 andr10 representing a
transitive use of the verb ‘eat’ would be filtered out by polarity filtering. As a result, the interme-
diate structure shown below will not be computed. That is, while the global polarity filtering used
in (Gardent and Kow, 2005) permits weeding out global combination of trees that are invalid, local
polarity filtering additionally permits reducing the number of intermediate structures built first, be-
cause there is no need for prediction i.e., for active chart items and second, because intermediate
structures that cannot possibly lead to a valid derivation are not built.

SS

eat

SA N P t :[wh:+]
S SA N PS V PA

ε × John have

N PA V PA

ε ε

Figure 7: Given the input treeeat(john, has), local polarity filtering filters out this intermediate
structure because it cannot be completed given the input

N-gram filtering using a Language Model. To further prune the search space and to appropri-
ately handle word order, the SR algorithm also integrates a language model and can be parametrized
for the number of best scoring n-grams let through after eachbottom-up generation step. In this
way, not all possible orderings of intersective modifiers are produced, only those that are most
probable according to the language model.

6 Empirical Evaluation

We now report on the results obtained when running the algorithm and the grammar described
above on the shallow input data provided by the Generation Challenge Surface Realisation Task.
Because we are presenting an algorithm for surface realisation rather than a surface realiser, the
main focus of the evaluation is on speed (not coverage or accuracy). Nevertheless, we also re-
port coverage and BLEU score as an indication of the capabilities of the surface realiser i.e., the
algorithm combined with the grammar and the lexicon.

6.1 Runtimes

The SR data on which we evaluate our surface realisation algorithm are the shallow dependency
trees described in Section 3.
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We use as a baseline the FB-RTG based lexicalist approach (BASELINE) described in (Narayan,
2011). In this approach, FB-RTG rules are selected top-downfollowing the structure of the input
dependency tree and all FB-RTG rules selected for a given local input tree are tried out for combi-
nation using a chart-based approach. This baseline thus permits observing the impact of the various
optimisations described below. In future work, it would be interesting to obtain time information
from the systems participating in the SR challenge and to compare them with those of our system.

TDBU-PAR (top-down, bottom-up and parallelised) is the algorithm presented here running on
a 4 core system. To evaluate the impact of parallelism on runtimes, we also computed runtimes
for a sequential version of the same algorithm (TDBU-SEQ). InTDBU-SEQ, daughter subtrees
(processes) of the input dependency tree are processed sequentially.

Table 1 shows the runtimes for the three surface realisationalgorithmsBASELINE, TDBU-SEQ
andTDBU-PAR with varying sizes of sentences. For the TDBU algorithms, the n-gram filtering is
set to 10 that is, for each local input tree, the 10 best n-grams are passed on. We split the data into
4 sets according to the input length where the input length isthe number of nodes (or words) in the
input dependency tree. The average number of words in a sentence in the first setS(0− 5) is 4, in
the second setS(6− 10), 7, in the third setS(11− 20), 15, and in the final setS(All) (all lengths),
17. The maximum length of a sentence in the final setS(All) is 74. To make comparisons between
BASELINE, TDBU-SEQ andTDBU-PAR possible, the maximum arity of words present in the
input dependency trees is set to 3 (because BASELINE mostly fails on input containing nodes with
higher arity).

Algorithm

Sentences (Length L)
S(0− 5) S(6− 10) S(11− 20) S(All)

Total Succ Total Succ Total Succ Total Succ
1084 985 2232 1477 5705 520 13661 2744

BASELINE 0.85 0.87 10.90 10.76 110.07 97.52 − −
TDBU-SEQ 1.49 1.63 2.84 3.64 4.36 6.03 4.52 3.18
TDBU-PAR 1.53 1.66 2.56 3.28 2.66 4.14 2.57 2.78

Table 1: Comparison between generation times (seconds)

BASELINE turns out to be faster thanTDBU-PAR andTDBU-SEQ for sentences of smaller length
(≤ 5). It can be explained because of the parallelism and the multiprocessing overhead. ButTDBU-
PAR andTDBU-SEQ leaves behindBASELINE for longer sentences. For input longer than 10, the
simpleBASELINE algorithm times out whereasTDBU-PAR remains stable. ForS(All), TDBU-
PAR achieves a reasonable average of 2.57 seconds for all sentences (Total) and 2.78 seconds for
successful sentences (Succ).

Table 1 does not show a big difference in performance betweenTDBU-PAR andTDBU-SEQ
because the maximum arity of the input dependency trees is kept low (maximum 3). In Table 2, we
split the data by arity whereby the datasetS(i) consists of input dependency trees with maximum
arity i. As can be seen, the difference between the two algorithms steadily increases with the arity
of the input thereby demonstrating the impact of parallelism.

6.2 Coverage and Accuracy

The grammar and lexicon used to test the surface realisationalgorithm presented in this paper are
under development so that coverage and accuracy are still low. Table 3 shows the coverage and

2039



Algorithm

Sentences (Arity)
S(1) S(2) S(3) S(4) S(5) S(6)

Total Succ Total Succ Total Succ Total Succ Total Succ Total Succ
190 178 1218 964 3619 1039 5320 605 2910 137 1093 18

TDBU-SEQ 0.89 0.94 2.52 2.63 3.65 3.39 5.07 4.54 5.24 4.62 8.20 7.29
TDBU-PAR 0.97 1.03 2.35 2.50 2.63 3.10 2.91 3.77 2.86 3.88 3.09 4.76

Table 2: Comparison between generation times (seconds) with varying arities.

accuracy (on the covered sentences) results obtained for sentences of size 6 (S-6), 8 (S-8) and all
(S-All). The dataset S-All differs from the datasetS(All) discussed in previous section. S-All
considers all sentences without any restriction over the maximum arity in the input dependency
trees. S-All consists of26725 sentences with the average length of22 and the maximum length of
134. The maximum arity in these sentences varies from1 to 18 with an average of4.

Data Type Total
Coverage (#)

Coverage (%) BLEU Score
Covered Uncovered

S-6 3877 3506 371 90.43 0.835
S-8 3583 3038 545 84.79 0.800
S-All 26725 10351 16374 38.73 0.675

Table 3: Coverage and Bleu Scores for covered sentences.

As can be seen coverage markedly decreases for longer sentences. Error mining on this data indi-
cates that failure to generate is due mostly to complex sentence coordinations (e.g., verb coordi-
nation, gapping phenomenon) (Sarkar and Joshi, 1996) whichcould be very common in sentences
of average length22 in S-All. Other failure causes are inadequate treatments ofmultiword expres-
sions and foreign words.

7 Conclusion

We presented a novel algorithm for surface realisation withlexicalised grammar which takes ad-
vantage of the input structure (a tree) to filter the initial search space both top-down and bottom
up; and to parallelise processes. We evaluated this algorithm on large scale data and showed that
it drastically reduces runtimes on this data when compared to a simple lexicalist approach which
explores the whole search space.

As mentioned in section 3, the input data provided by the SR task differs from the flat semantic
representations assumed by most existing surface realisers in that it displays a clear tree structure.
The algorithm presented here makes use of that structure to optimize performance. In future work,
we plan to investigate whether the hybrid top-down, bottom-up approach we developed to guide
the SR search can be generalised to the graph structure of semantic representations.
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