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ABSTRACT
This paper applies sentence compression models for the task of query-focused multi-document
summarization in order to investigate if sentence compression improves the overall summariza-
tion performance. Both compression and summarization are considered as global optimization
problems and solved using integer linear programming (ILP). Three different models are built
depending on the order in which compression and summarization are performed: 1) ComFirst
(where compression is performed first), 2) SumFirst (where important sentence extraction is
performed first), and 3) Combined (where compression and extraction are performed jointly
via optimizing a combined objective function). Sentence compression models include lexical,
syntactic and semantic constraints while summarization models include relevance, redundancy
and length constraints. A comprehensive set of query-related and importance-oriented measures
are used to define the relevance constraint whereas four alternative redundancy constraints are
employed based on different sentence similarity measures using a) cosine similarity, b) syntactic
similarity, c) semantic similarity, and d) extended string subsequence kernel (ESSK). Empirical
evaluation on the DUC benchmark datasets demonstrates that the overall summary quality can
be improved significantly using global optimization with semantically motivated models.

KEYWORDS: Sentence compression, query-focused multi-document summarization, integer
linear programming (ILP).
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1 Introduction and Related Work

Text summarization is a good way to compress large amount of information into a concise form
by selecting the most important information and discarding redundant information (Mani and
Maybury, 1999). Query-focused multi-document summarization aims to create a summary from
the available source documents that can answer the requested information need (Chali and
Hasan, 2012). Extraction-based automatic summarization has been a common practice over the
years for its simplicity (Edmundson, 1969; Kupiec et al., 1995; Carbonell and Goldstein, 1998;
Lin, 2003; Martins and Smith, 2009; Berg-Kirkpatrick et al., 2011). Extraction of the most
important sentences to form a summary can degrade the summary quality if there exists a longer
sentence with partly relevant information to prevent inclusion of other important sentences (due
to summary length constraint) (Martins and Smith, 2009). Sentence compression can be a good
remedy for this problem where the task can be viewed as a single-sentence summarization (Jing,
2000; Clarke and Lapata, 2008). Sentence compression1 aims to retain the most important
information of a sentence in the shortest form whilst being grammatical at the same time (Knight
and Marcu, 2000, 2002; Lin, 2003). Previous researches have shown that sentence compression
can be used effectively in automatic summarization systems to produce more informative
summaries by reducing the redundancy in the summary sentences (Jing, 2000; Knight and
Marcu, 2002; Lin, 2003; Daumé III and Marcu, 2005; Zajic et al., 2007; Madnani et al., 2007;
Martins and Smith, 2009; Berg-Kirkpatrick et al., 2011). However, most of these researches
either focused on the task of single document summarization and generic summarization or
did not consider global properties of the sentence compression problem (Clarke and Lapata,
2008). Due to the vast increase in both the amount of online data and the demand for access
to different types of information in recent years, attention has shifted from single document
and generic summarization2 toward query-based multi-document summarization. On the
other hand, sentence compression can achieve superior performance if it can be treated as
an optimization problem and solved using integer linear programming (ILP) to infer globally
optimal compressions (Gillick and Favre, 2009; Clarke and Lapata, 2008). ILP has recently
attracted much attention in the natural language processing (NLP) community (Roth and Yih,
2004; Clarke and Lapata, 2008; Punyakanok et al., 2004; Riedel and Clarke, 2006; Denis and
Baldridge, 2007). Gillick and Favre (2009) proposed to extend their ILP formulation for a
concept-based model of summarization by incorporating additional constraints for sentence
compression. However, to the best of our knowledge, there has not been a single research that
deeply investigates the potential of using ILP-based sentence compression models for the task
of query-focused multi-document summarization. In this paper, we accomplish this task by
considering both compression and summarization as global optimization problems.

The sentence compression models used in the existing automatic summarization systems mostly
exploit various lexical and syntactic properties of the sentences (Knight and Marcu, 2002;
Mcdonald, 2006; Clarke and Lapata, 2008; Cohn and Lapata, 2008; Galanis and Androutsopou-
los, 2010). A recent work has shown that discourse segmentation could be incorporated in a
sentence compression system which can aid automatic summarization (Molina et al., 2011).

1Although most of the works on sentence compression are mainly related to the English language, researchers have
also worked on sentence compression related to languages other than English (Molina et al., 2011; Filippova, 2010;
Bouayad-Agha et al., 2006). Our work is applied to the English language. However, we believe that the proposed
techniques can be applicable to other languages provided that the lexical, syntactical and semantic properties of the
corresponding language are considered.

2A generic summary includes information which is central to the source documents whereas a query-oriented
summary should formulate an answer to the user query (Goldstein et al., 1999).
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Lin (2003) showed that pure syntactic-based compression does not improve a generic summa-
rization system. A most recent work has shown that sentence compression can achieve better
performance if semantic role information can be incorporated into the model (Yoshikawa et al.,
2012). Inspired by their work, we recast their formulation as an ILP for sentence compression
with semantic role constraints. We build three different ILP-based sentence compression models:
1) a bigram language model with lexical and syntactic constraints (derived from Clarke and
Lapata (2008)), 2) the bigram language model with a topic signature modeling function (Lin
and Hovy, 2000), and 3) the bigram language model with semantic role constraints (Yoshikawa
et al., 2012). We choose to build them since the variation of these models were shown to
achieve better results comparable to the state-of-the-art techniques (Clarke and Lapata, 2008;
Yoshikawa et al., 2012). We perform a rigorous study to analyze the effectiveness of using these
sentence compression models to generate query-focused summaries. For this study, we compose
three different models depending on the order to perform sentence compression and extraction:
1) ComFirst, 2) SumFirst, and 3) Combined. The main motivation behind building these models
is that we intend to study if the order of performing compression and extraction can affect the
overall performance of the query-focused multi-document summarization. Martins and Smith
(2009) argued that the two-step “pipeline” approaches such as ComFirst and SumFirst might
often fail to select global optimal summaries.

Query-focused extractive multi-document summarization generally needs three essential criteria
to be satisfied (McDonald, 2007): 1) Relevance: to contain informative sentences relevant
to the given query, 2) Redundancy: to not contain multiple similar sentences, and 3) Length:
should follow a fixed length constraint. We define a global optimization model that uses ILP
to infer optimal summaries. The existing ILP formulations to the summarization task mostly
rely on relevance and redundancy functions (such as word-level cosine similarity measure,
word bigrams) that are primitive in nature (McDonald, 2007; Gillick and Favre, 2009; Martins
and Smith, 2009). The major limitation of these approaches is that they do not consider the
sequence of words (i.e. word ordering). They ignore the syntactic and semantic structure
of the sentences and thus, cannot distinguish between “The police shot the gunman” and
“The gunman shot the police”. The researchers speculate that the better the relevance and
redundancy functions could be, the more the solutions would be efficient (Gillick and Favre,
2009). In the proposed optimization framework, we incorporate a comprehensive set of
query-related and importance-oriented measures to define the relevance function. We employ
four alternative redundancy constraints based on different sentence similarity measures using
a) cosine similarity, b) syntactic similarity, c) semantic similarity, and d) extended string
subsequence kernel (ESSK). We propose the use of syntactic tree kernel (Moschitti and Basili,
2006), shallow semantic tree kernel (Moschitti et al., 2007), and a variation of the extended
string subsequence kernel (ESSK) (Hirao et al., 2003) to accomplish the task. Our empirical
evaluation on the DUC benchmark datasets demonstrate the effectiveness of applying sentence
compression for the task of query-focused multi-document summarization. The results also show
that the quality of the generated summaries vary based on the use of alternative redundancy
constraints in the optimization framework.

2 ILP-based Sentence Compression Models

An ILP is a constrained optimization problem, where both the cost function and constraints
are linear in a set of integer variables (McDonald, 2007; Clarke and Lapata, 2008). In this
section we describe three ILP-based sentence compression models which we apply for the task
of query-focused multi-document summarization. Our first model is a bigram language model
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derived from the work of Knight and Marcu (2002); Clarke and Lapata (2008). Our second
model is close in spirit rather different in content to Clarke and Lapata (2008). In this model,
we combine the bigram language model with a corpus-based topic signature modeling approach
of Lin and Hovy (2000). Our first two models include various lexical and syntactical constraints
based on the work of Clarke and Lapata (2008). In the third model, we add a set of semantically
motivated constraints into the bigram language model based on the work of Yoshikawa et al.
(2012).

2.1 Bigram Language Model

According to Clarke and Lapata (2008), the sentence compression problem can be formally
defined as follows. Let S = w1, w2, · · · , wn is an original sentence in a document. To represent
the words to be included in the compressed version of this sentence, we define a set of indicator
variables δi that are set to 1 if i-th word is selected into the compression, and 0 otherwise. To
make decisions based on word sequences (rather than individual words), we define additional
indicator variables ai (that are set to 1 if i-th word starts the compression, and 0 otherwise), bi
(that are set to 1 if i-th word ends the compression, and 0 otherwise), and ci j (that are set to
1 if sequence wi , w j is present in the compression, and 0 otherwise). Now the inference task
is solved by maximizing the following objective function (that includes the overall sum of the
decision variables multiplied by their log-transformed corpus bigram probabilities) (Clarke and
Lapata, 2008):

Maximize
∑

i

ai · P(wi |star t) +
n−1∑
i=1

n∑
j=i+1

ci j · P(w j |wi) +
∑

i

bi · P(end|wi) (1)

such that ∀i, j ∈ {1 · · ·n} :

δi , ai , bi , ci j ∈ {0, 1} (2)
∑

i

ai = 1 (3)

δ j − a j −
j∑

i=1

ci j = 0 (4)

δi −
n∑

j=i+1

ci j − bi = 0 (5)

∑
i

bi = 1 (6)

∑
i

δi ≥ l (7)

∑
i:wi∈ver bs

δi ≥ 1 (8)

δi = 1 (9)

∀i : wi ∈ personal pronouns

δi = 0 (10)

∀i : wi ∈ words in parentheses

δi −δ j = 0 (11)

∀i, j : w j ∈ possessive mods o f wi

The objective function in Equation 1 is maximized to find the optimal target compression where
“start” and “end” denote w0 and wn, respectively. The above ILP formulation incorporates
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various constraints. The first constraint states that the variables are binary. The later constraints
are defined to disallow invalid bigram sequences in the compression. Constraint 3 states that
exactly one word can start a compression. Constraint 4 and Constraint 5 are responsible to
ensure correct bigram sequences, whereas Constraint 6 denotes that exactly one word can end
the compression. On the other hand, Constraint 7 forces the compression to have at least l
words. We add some additional constraints (Constraint 8 to Constraint 11) from Clarke and
Lapata (2008) to ensure that the target compressions are lexically and syntactically acceptable.
To accomplish this purpose, we use the Oak system3 (Sekine, 2002) and the Charniak parser4

(Charniak, 1999) to obtain information regarding parts-of-speech and grammatical relations in
a sentence.

2.2 Topic Signature Model

We use a topic signature modeling approach (Lin and Hovy, 2000) to identify the important
content words from the original source sentence. The important words are considered to
have significantly greater probability of occurring in a given text compared to that in a large
background corpus. We incorporate this importance score into the objective function of the
bigram language model (Section 2.1) to ensure that the target compression prefers to keep
important content words. We use a topic signature computation tool5 for this purpose. The
background corpus that is used in this tool contains 5000 documents from the English GigaWord
Corpus. Our modified objective function becomes:

Maximize
∑

i

δi · I(wi) +
∑

i

ai · P(wi |star t) +
n−1∑
i=1

n∑
j=i+1

ci j · P(w j |wi) +
∑

i

bi · P(end|wi) (12)

where I(wi) denotes the importance score of the i-th word.

2.3 Bigram Language Model with Semantic Constraints

Yoshikawa et al. (2012) have proposed a set of formulas called Markov Logic Network (MLN)
to build a semantically motivated sentence compression model and showed that their model
achieves improved performance. We recast their formulas as constraints of our ILP model and
incorporate them into the bigram language model. The main idea is to utilize the predicate-
argument relations of a sentence and define constraints based on semantic roles to improve
the weaknesses of the lexical and syntactical constraints. In this manner, we can ensure that
the target compression contains meaningful information. For this purpose, we parse the source
sentence semantically using a Semantic Role Labeling (SRL) system (Kingsbury and Palmer,
2002; Hacioglu et al., 2003), ASSERT6. When presented with a sentence, ASSERT performs a
full syntactic analysis of the sentence, automatically identifies all the verb predicates in that
sentence, extracts features for all constituents in the parse tree relative to the predicate, and
identifies and tags the constituents with the appropriate semantic arguments. We add the
following additional constraints as the semantic constraints to our bigram language model
(Section 2.1):

δi = 1 (13)

∀i : wi is a predicate

3http://nlp.cs.nyu.edu/oak/
4Available at ftp://ftp.cs.brown.edu/pub/nlparser/
5Available at http://www.cis.upenn.edu/ lannie/topicS.html
6Available at http://cemantix.org/assert.html

461



δi −δ j = 0 (14)

∀i, j : w j is an ar gument o f predicate wi

δi = 1 (15)

∀i : wi ∈ [ARG0...ARG5]

δi = 0 (16)

∀i : wi ∈ optional ar guments

Here, Constraint 13 guarantees that if a word is a predicate, it is included in the compression.
Constraint 14 states that if a predicate is in compression, then its argument is also kept in
the compression. In Constraint 15, we define that if a word denotes any of the possible
semantic roles (i.e. [ARG0...ARG5] which are called mandatory arguments), it is included in
the compression. On the other hand, we use Constraint 16 to restrict the inclusion of optional
arguments7 in the compression.

3 ILP for Query-focused Multi-document Summarization

The query-focused multi-document summarization inference problem can be formulated in
terms of ILP. To represent the sentences included in the summary we define a set of indicator
variables αi that are set to 1 if i-th sentence is selected into the summary, and 0 otherwise. Let
Rel(i) be the relevance function that returns the relevance score of the i-th sentence. The score
of a summary is the sum of the relevance scores of the sentences present in the summary. The
inference task is solved by maximizing the overall score of a summary:

Maximize
∑

i

Rel(i) ∗αi
such that ∀i, j :

αi ∈ {0, 1} (17)

Sim(i, j) ∗
�
αi +α j

�
≤ K (18)

∑
i

Len(i) ∗αi ≤ L (19)

We incorporate three constraints into our formulation. The first constraint states that the
variables are binary. The second constraint is the redundancy constraint that ensures that
only one of the two similar sentences is chosen into the summary. Sim(i, j) function returns
a similarity score between the i-th and j-th sentences. Higher scores correspond to higher
similarity between a pair of sentences. We assume a threshold K , that sets a tolerance limit to
the acceptable similarity score between any two sentences. This value is empirically determined
during experiments. The third constraint controls the length of the summary up to a maximum
limit, L. Len(i) denotes the length of the i-th sentence in words.

3.1 Rel(i) Function

For each sentence, the Rel(i) function returns a relevance score by combining a set of query-
related and importance-oriented measures. The query-related measures calculate the similarity
between each sentence and the given query while the importance-oriented measures denote
the importance of a sentence in a given document (Chali and Hasan, 2012; Edmundson,
1969; Sekine and Nobata, 2001). For query-related measures, we consider n–gram overlap,

7There are some additional arguments or semantic roles that can be tagged by ASSERT. They are called optional
arguments and they start with the prefix ARGM. These are defined by the annotation guidelines set in (Palmer et al.,
2005).
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longest common subsequence (LCS), weighted LCS, skip-bigram, exact word, synonym, hy-
pernym/hyponym, gloss and basic elements (BE) overlap (Lin, 2004; Zhou et al., 2005) using
WordNet (Fellbaum, 1998), and syntactic similarity (Collins and Duffy, 2001; Moschitti and
Basili, 2006). To measure the importance of a sentence, we consider its position, length,
similarity with topic title, and presence of certain named entities and cue words. The mean of
these scores denote the relevance of a sentence.

3.1.1 Query-related Measures

n-gram Overlap n–gram overlap measures the overlapping word sequences between the
candidate document sentence and the query sentence (Lin, 2004).

LCS Given two sequences S1 and S2, the longest common subsequence (LCS) of S1 and S2 is
a common subsequence with maximum length. We use this feature to calculate the longest
common subsequence between a candidate sentence and the query.

WLCS Weighted Longest Common Subsequence (WLCS) improves the basic LCS method by
remembering the length of consecutive matches encountered so far. Given two sentences X
and Y, the WLCS score of X and Y can be computed using the similar dynamic programming
procedure as stated in Lin (2004).

Skip-Bigram Skip-bigram measures the overlap of skip-bigrams between a candidate sentence
and a query sentence. Skip-bigram counts all in-order matching word pairs while LCS only
counts one longest common subsequence.

Exact-word Overlap This is a measure that counts the number of words matching exactly
between the candidate sentence and the query sentence.

Synonym Overlap This is the overlap between the list of synonyms of the content words (i.e.
nouns, verbs and adjectives) extracted from the candidate sentence and query related words8.

Hypernym/Hyponym Overlap This is the overlap between the list of hypernyms (up to depth
2 in WordNet’s hierarchy) and hyponyms (depth 3) of the nouns extracted from the sentence in
consideration and query related words.

Gloss Overlap This is the overlap between the list of content words that are extracted from
the gloss definition of the nouns in the sentence in consideration and query related words.

Syntactic Feature The syntactic similarity between the query and the sentence is calculated
using a similar procedure discussed in Section 3.2.2, which gives the similarity score based on
syntactic structures.

Basic Element (BE) Overlap We extract BEs (Hovy et al., 2006) for the sentences (or query)
by using the BE package distributed by ISI9. We compute the Likelihood Ratio (LR) for each BE
according to Zhou et al. (2005). We sort the BEs based on LR scores to produce a BE-ranked
list. The ranked list contains important BEs at the top which may or may not be relevant to the

8To establish the query related words, we took a query and created a set of related queries by replacing its content
words by their first-sense synonyms using WordNet.

9BE website:http://www.isi.edu/ cyl/BE
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complex question. We filter out the BEs that are not related to the query and get the BE overlap
score.

3.1.2 Importance-oriented Measures

Position of Sentences Sentences that reside at the start and at the end of a document often
tend to include the most valuable information. We manually inspected10 the given document
collection and found that the first and the last 3 sentences of a document often qualify to be
considered for this feature. We assign the score 1 to them and 0 to the rest.

Length of Sentences Longer sentences contain more words and have a greater probability of
containing valuable information. Therefore, a longer sentence has a better chance of inclusion
in a summary11. We give the score 1 to a longer sentence and assign the score 0 otherwise.
We manually investigated the document collection and set a threshold that a longer sentence
should contain at least 11 words.

Title Match If we find a match such as exact word overlap, synonym overlap and hyponym
overlap between the title and a sentence, we give it the score 1, otherwise 0.

Named Entity The score 1 is given to a sentence that contains a Named Entity class among:
PERSON, LOCATION, ORGANIZATION, GPE (Geo-Political Entity), FACILITY, DATE, MONEY,
PERCENT, TIME. We believe that the presence of a Named Entity increases the importance of a
sentence. For example, the sentence “Washington, D.C. is the capital of the United States” has
two named entities (i.e. locations) which denote that the sentence is important. We use the
OAK System (Sekine, 2002), from New York University for Named Entity recognition.

Cue Word Match The probable relevance of a sentence is affected by the presence of pragmatic
words such as “significant”, “impossible”, “in conclusion”, “finally” etc. We use a cue word list
of 228 words. We give the score 1 to a sentence having any of the cue words and 0 otherwise.

3.2 Sim(i, j) Function

We employ four alternative redundancy constraints based on different sentence similarity
functions (i.e. Sim(i, j)) using a) cosine similarity, b) syntactic similarity, c) semantic similarity,
and d) extended string subsequence kernel (ESSK).

3.2.1 Cosine Similarity Measure (COS)

The cosine similarity between the respective pair of sentences can be calculated by representing
each sentence as a vector of term specific weights (Erkan and Radev, 2004). The term specific
weights in the sentence vectors are products of local and global parameters. This is known as
term frequency-inverse document frequency (tf-idf) model. The weight vector for a sentence s
is ~vs = [w1,s, w2,s, . . . , wN ,s]T , where,

wt,s = t f t × log
|S|
|{t ∈ s}|

10We randomly investigated few newspaper articles and observed that sentences that reside at the start and at the
end of a document often tend to include the most valuable information. The “Position of sentences” feature could be
tuned to fit other genres of texts as well.

11The “Length of sentences” feature was exploited for summarization by extraction in general, which was our
motivation to apply different compression models for the task.
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Here, t ft is the term frequency (tf) of the term t in a sentence s (a local parameter). log |S|
|{t∈s}| is

the inverse document frequency (idf) (a global parameter). |S| is the total number of sentences
in the corpus, and |{t ∈ s}| is the number of sentences containing the term t.

3.2.2 Syntactic Similarity Measure (SYN)

Pasca and Harabagiu (2001) demonstrated that with the syntactic form one can see which
words depend on other words. Syntactic features have been used successfully so far in question
answering (Zhang and Lee, 2003; Moschitti et al., 2007; Moschitti and Basili, 2006). Inspired
by the potential significance of using syntactic measures for finding similar texts, we get a
strong motivation to use it as a redundancy measure in our optimization framework. The first
step to calculate the syntactic similarity between two sentences is to parse the corresponding
sentences into syntactic trees using the Charniak parser (Charniak, 1999). Once we build the
syntactic trees, our next task is to measure the similarity between the trees. For this, every
tree T is represented by an m dimensional vector v(T) =

�
v1(T ), v2(T ), · · · vm(T )

�
, where the

i-th element vi(T) is the number of occurrences of the i-th tree fragment in tree T . The tree
fragments of a tree are all of its sub-trees which include at least one production with the
restriction that no production rules can be broken into incomplete parts. The tree kernel of two
trees T1 and T2 is actually the inner product of v(T1) and v(T2) (Collins and Duffy, 2001):

T K(T1, T2) = v(T1).v(T2) (20)

We define the indicator function Ii(n) to be 1 if the sub-tree i is seen rooted at node n and 0
otherwise. It follows:

vi(T1) =
∑

n1∈N1

Ii(n1)

vi(T2) =
∑

n2∈N2

Ii(n2)

where, N1 and N2 are the set of nodes in T1 and T2 respectively. The TK (tree kernel) function
gives the similarity score between a pair of sentences based on the syntactic structure.

3.2.3 Semantic Similarity Measure (SEM)

Shallow semantic representations can prevent the sparseness of deep structural approaches
and the weakness of cosine similarity based models (Moschitti et al., 2007). As an example,
PropBank (PB) (Kingsbury and Palmer, 2002) made it possible to design accurate automatic
Semantic Role Labeling (SRL) systems (Hacioglu et al., 2003). Therefore, we get the feeling
that an application of SRL as a redundancy measure might suit well, since the textual similarity
between a pair of sentences relies on a deep understanding of the semantics of both. So, applying
semantic similarity measurement as a Sim(i, j) function is another noticeable contribution
of this paper. To calculate the semantic similarity between two sentences, we first parse the
corresponding sentences semantically using the Semantic Role Labeling (SRL) system, ASSERT.
ASSERT is an automatic statistical semantic role tagger, that can annotate naturally occurring
text with semantic arguments. We represent the annotated sentences using tree structures
that are called semantic trees (ST). In the semantic tree, arguments are replaced with the
most important word, often referred to as the semantic head. We look for noun, then verb,
then adjective, then adverb to find the semantic head in the argument. If none of these is
present, we take the first word of the argument as the semantic head. As in tree kernels
(Section 3.2.2), common substructures cannot be composed by a node with only some of its
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children as an effective ST representation would require, Moschitti et al. (2007) solved this
problem by designing the Shallow Semantic Tree Kernel (SSTK) which allows to match portions
of a ST. The SSTK function yields the similarity score between a pair of sentences based on their
semantic structures.

3.2.4 Extended String Subsequence Kernel (ESSK)

The ESSK is a simple extension of the Word Sequence Kernel (WSK) (Cancedda et al., 2003) and
String Subsequence Kernel (SSK) (Lodhi et al., 2002) that can incorporate semantic information
with the use of word senses. In original ESSK, each “alphabet” in SSK is replaced by a disjunction
of an “alphabet” and its alternative (word senses) (Hirao et al., 2003). Here, all possible senses
of a word are used as the alternatives. However, in our ESSK formulation, we consider each
word in a sentence as an “alphabet”, and the alternative as its disambiguated sense found
through a dictionary based disambiguation approach. We use WordNet to find the semantic
relations among the words in a text. We calculate the similarity score Sim(Ti , U j) using ESSK
where Ti and U j are the two sentences. Formally, ESSK is defined as follows12:

Kessk(T, U) =
d∑

m=1

∑
ti∈T

∑
u j∈U

Km(t i , u j)

Km(t i , u j) =

¨
val(t i , u j) if m= 1
K
′
m−1(t i , u j) · val(t i , u j)

Here, K
′
m(t i , u j) is defined below. t i and u j are the nodes of T and U , respectively. The function

val(t, u) returns the number of attributes (i.e. words) common to the given nodes t and u.

K
′
m(t i , u j) =

¨
0 if j = 1
λK
′
m(t i , u j−1) + K

′′
m(t i , u j−1)

Here λ is the decay parameter for the number of skipped words. We choose λ = 0.5 for this
research. K

′′
m(t i , u j) is defined as:

K
′′
m(t i , u j) =

¨
0 if i = 1
λK
′′
m(t i−1, u j) + Km(t i−1, u j)

Finally, the similarity measure is defined after normalization as below:

simessk(T, U) =
Kessk(T, U)p

Kessk(T, T )Kessk(U , U)

4 Experiments

4.1 Task Description

We consider the query-focused multi-document summarization task defined in the Document
Understanding Conference (DUC13), 2007. The task is: “Given a complex question and a collection
of relevant documents, the task is to synthesize a fluent, well-organized 250-word summary
of the documents that answers the question(s) in the topic”. We generate 250-word extract
summaries for the topics of DUC-2007 using different combinations of sentence compression
models (defined in Section 2) and alternative redundancy constraints (Section 3.2). DUC-
2007 provided 45 document clusters each containing 25 news articles that came from the

12The formulae denotes a dynamic programming technique to compute the ESSK similarity score (Hirao et al., 2004)
where d is the vector space dimension i.e. the number of all possible subsequences of up to length d.

13http://duc.nist.gov/
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AQUAINT corpus, which is comprised of newswire articles from the Associated Press and New
York Times (1998-2000) and Xinhua News Agency (1996-2000). As we intend to study if
the order of performing compression and extraction can affect the overall performance of the
query-focused multi-document summarization, we compose three different models depending
on the order to perform sentence compression and extraction: (1) ComFirst: In this approach,
document sentences are compressed first (using different models as described in Section 2)
and then the most relevant compressions are selected to form the summaries (according to
Section 3), (2) SumFirst: In this approach, we extract the most important sentences first from
the source documents (according to Section 3) and then compress them (using different models
as described in Section 2) to form the summaries, and (3) Combined: Here, we perform
compression and extraction jointly by combining the objective functions of Section 2 and
Section 3 according to Martins and Smith (2009). Then we optimize the combined objective
function to select a small number of most important sentences (from the source documents)
whose compressions should be used to form a summary.

4.2 Solving the ILPs

To solve the proposed ILP formulations, we use lp_solve14, a widely used Integer Linear Pro-
gramming solver that implements Branch-and-Bound algorithm. For summarization, we solve
an ILP for each topic in consideration and generate the corresponding query-focused summary.
For a document cluster of average size (approximately 510 sentences), the solving process takes
under 20 seconds on an Intel Pentium 4, 3.20 GHz desktop machine. For a larger document
cluster (of size around 1000 sentences), it takes 90− 120 seconds to solve the ILP. For a smaller
document set, the ILP is solved in a few seconds. For compression, we solve an ILP for each
sentence in consideration. The solving process takes less than a second per sentence on average
for all the compression models. For the joint extraction and compression model, we solve an
ILP for each topic in consideration. The solving process is generally slower than solving the ILPs
for only sentence extraction or compression as it takes 300− 1200 seconds depending on the
document cluster size.

4.3 Evaluation Results and Discussion

4.3.1 Automatic Evaluation

The multiple “reference summaries” given by DUC-2007 are used in the evaluation of our
summary content. We carried out the automatic evaluation of our summaries using the ROUGE
(Lin, 2004) toolkit. Among different scores reported by ROUGE, unigram-based ROUGE score
(ROUGE-1) has been shown to agree with human judgment most (Lin, 2003). We report the
widely adopted important ROUGE metrics in the results: ROUGE-1 (unigram),and ROUGE-2
(bigram). The comparison between the systems in terms of their F-scores is given in Table 1.
We also include the results of the official baseline systems, the best system (Pingali et al., 2007),
and the average ROUGE scores of all the participating systems of DUC-2007. Baseline-1 returns
all the leading sentences (up to 250 words) of the most recent document whereas baseline-2’s
main idea is to ignore the topic narrative while generating summaries using an HMM model15.

The columns in Table 1 denote the use of alternative redundancy constraints in the optimization

14http://lpsolve.sourceforge.net/5.5/
15http://duc.nist.gov/pubs/2004papers/ida.conroy.ps
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COS SYN SEM ESSK No Red. Comp.

Model R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2

ComFirst

bi 0.359 0.074 0.369 0.078 0.371 0.077 0.368 0.072 0.355 0.060
topicS 0.372 0.080 0.366 0.081 0.378 0.079 0.373 0.076 0.360 0.071
bi+sem 0.385 0.093 0.376 0.085 0.389 0.092 0.384 0.088 0.367 0.075

SumFirst

bi 0.368 0.076 0.365 0.079 0.388 0.096 0.370 0.088 0.362 0.071
topicS 0.374 0.083 0.371 0.084 0.392 0.101 0.378 0.091 0.365 0.074
bi+sem 0.388 0.096 0.382 0.091 0.405 0.113 0.391 0.101 0.374 0.083

Combined

bi 0.384 0.102 0.371 0.087 0.385 0.091 0.371 0.081 0.356 0.082
topicS 0.389 0.105 0.374 0.089 0.398 0.103 0.368 0.084 0.364 0.078
bi+sem 0.412 0.115 0.390 0.092 0.424 0.119 0.395 0.094 0.372 0.086

No compr. 0.400 0.108 0.399 0.109 0.412 0.111 0.396 0.105 0.381 0.091

Baseline1 0.334 0.060
Baseline2 0.400 0.093
AverageDUC 0.400 0.095
Best System 0.438 0.122

Table 1: Automatic Evaluation Results: Average ROUGE F-scores

framework whereas the rows stand for the use of different compression models16. From these
results, we can clearly see the impact of using different sentence compression models on the
overall summarization performance. In the ComFirst approach, we can see that the bigram
model with semantic constraints outperforms all the other alternative models by a clear margin.
We can also see the impact of different redundancy constraints on the overall performance.
We observe that the use of semantic measure as the redundancy constraint yields the best
performance. On the other hand, we see a clear improvement in almost all the scores when
we follow the SumFirst approach. This phenomenon suggests that compressing the document
sentences at the beginning often tend to reduce relevant information in the sentences for
which we get lesser similarity matching when we calculate the relevance scores according to
Section 3.1. In the Combined approach, we achieve better summarization performance than
the other two approaches which denotes that the overall summary quality can be improved if
a global optimization framework is utilized having a joint compression and extraction model.
Again, we see that the bigram language model with semantic constraints along with the semantic
redundancy constraint (used in the summarization model) yields the best performance. We
also report the results of a “No compression” and a “No redundancy” baseline. Comparisons
with these baselines also suggest that our bigram compression model with semantic constraints
can improve the overall summarization performance if a Combined optimization framework is
used in presence of COS or SEM redundancy constraints. These results also demonstrate that
the absence of a redundancy constraint in the ILP framework for summarization really hurts the
overall quality of the summaries. We also compare the scores of our model with the state-of-the-
art systems of DUC-2007. From the results, we see that our semantically motivated models can
mostly outperform the DUC baselines and the AverageDUC scores to show a clear improvement
in the overall summarization performance while achieving a comparable performance with
respect to the DUC-2007 best system. The differences between the models are computed

16The last few rows and columns are used to accommodate the scores of the baselines and the state-of-the-art systems.
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to be statistically significant at p < 0.05 (using Student’s t-test) except for the differences
between topicSig+SYN and bigram+SYN, and topicSig+ESSK and bigram+ESSK in all the
three approaches, between topicSig+COS and bigram+COS in the Combined approach, and
between “bigram+sem”+SEM and DUC Best System in the Combined approach.

4.3.2 Manual Evaluation

One of the important demerits of using sentence compression models is that they can degrade
the linguistic quality of a summary by showing poor compression performance. ROUGE is not
reliable to some researchers as there might be some linguistically bad summaries that get state-
of-the-art ROUGE scores (Sjöbergh, 2007). So, we conduct an extensive manual evaluation
in order to analyze the effectiveness of our approaches. Two self reported native English-
speaking university graduate students judge the summaries for linguistic quality and overall
responsiveness according to the DUC-2007 evaluation guidelines17. The given linguistic quality
score is an integer between 1 (very poor) and 5 (very good) and is guided by consideration
of the following factors: 1. Grammaticality, 2. Non-redundancy, 3. Referential clarity, 4.
Focus, and 5. Structure and Coherence. The responsiveness score is also an integer between
1 (very poor) and 5 (very good) and is based on the amount of information in the summary
that helps to satisfy the information need. The carried out user evaluation was subjective in
nature specially while judging referential clarity, focus, coherence and overall responsiveness
of the summaries. The inter-annotator agreement of Cohen’s κ = 0.43 (Cohen, 1960) was
computed that denotes a moderate degree of agreement (Landis and Koch, 1977) between
the raters. Table 2 presents the average linguistic quality and overall responsive scores of all
the systems. From these results, we can see that the use of different sentence compression
models has a negative impact on the overall linguistic quality of the summaries. The reason
behind this is that our bigram compression models were less aware of the underlying context
in a sentence and hence, some word deletions resulted a loss in focus and coherence of
the overall summaries. However, we observe that the semantically motivated models are
showing an improved summarization performance; also, their overall responsiveness scores are
comparable to the state-of-the-art systems. This suggests that the manual evaluation results are
corresponding well to the automatic evaluation results. Considering the work of Gillick and
Favre (2009) for a relative comparison, we find that both our automatic and manual evaluation
results are corresponding fairly well to their results obtained on the TAC18-2008 data. Their ILP
model with additional constraints to include sentence compression achieved an improvement
in ROUGE-2 score over the “no compression” alternative while having reductions in manual
evaluation scores. We perform a statistical significance test on our manual evaluation results at
p < 0.05 using Student’s t-test. The differences between the models are statistically significant
except for the differences between topicSig+COS and bigram+COS, and topicSig+SYN and
bigram+SYN in all the three approaches. The manual evaluation results also demonstrate
that the use of different redundancy constraints certainly affects the overall performance of
the proposed optimization framework for summarization19. From these experiments we can
conclude that the semantic similarity measure can be used effectively as the Sim(i, j) function
to improve the performance of the traditional cosine similarity based approaches. We plan to
make our created resources available to the scientific community.

17http://www-nlpir.nist.gov/projects/duc/duc2007/quality-questions.txt
18Text Analysis Conference, http://www.nist.gov/tac/
19The selection of sentences in the optimal summaries varied due to different redundancy measures, hence, the

linguistic quality scores also varied to reflect the differences in coherence, redundancy etc.
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COS SYN SEM ESSK No Redundancy Comparison

Models LQ Res. LQ Res. LQ Res. LQ Res. LQ Res. LQ Res.

ComFirst

bigram 2.10 2.12 2.28 2.20 2.44 2.21 2.32 2.25 1.94 2.10
topicSig 2.14 2.30 2.45 2.27 2.48 2.78 2.39 2.46 2.08 2.26

bigram+sem 2.42 2.56 2.55 2.61 2.74 3.05 2.54 2.80 2.25 2.58

SumFirst

bigram 2.43 2.44 2.54 2.50 2.60 2.45 2.25 2.34 2.16 2.56
topicSig 2.48 2.56 2.65 2.69 2.72 2.66 2.48 2.55 2.27 2.68

bigram+sem 2.61 2.76 2.88 2.78 3.20 3.56 2.75 2.93 2.42 2.62

Combined

bigram 2.54 2.62 2.52 2.31 2.76 2.55 2.36 2.50 1.98 2.20
topicSig 2.62 2.75 2.68 2.38 2.80 2.62 2.45 2.64 2.14 2.31

bigram+sem 2.85 3.08 2.91 2.93 3.18 3.61 2.77 2.88 2.32 2.42

No compression 3.30 3.38 3.42 3.15 3.64 3.50 3.38 3.21 2.28 2.15

Baseline1 4.24 1.86
Baseline2 4.48 2.71
Best System 4.11 3.40

Table 2: Average linguistic quality (LQ) and responsiveness scores (Res.)

Conclusion and Future Work

We have analyzed the effectiveness of using different ILP-based sentence compression mod-
els for the task of query-focused multi-document summarization. Our empirical evaluation
suggested that the semantically motivated sentence compression models can enhance the
overall summarization performance in presence of the semantic redundancy constraint in the
summarization model and this can be achieved irrespective of the compression and extraction
order followed during the process. Our results also demonstrated that a combined optimization
framework of compression and extraction can achieve better performance than the other two
considered approaches effectively. We also found that the SumFirst approach shows superior
performance to that of the ComFirst approach suggesting the fact that extracting the most
important sentences before compression is a more effective way of summarization. We have
also used different textual similarity measurement techniques as the redundancy constraints of
the ILP-based summarization framework and performed an extensive experimental evaluation to
show their impact on the overall summarization performance. Experimental results showed that
the use of semantic similarity measure as the Sim(i, j) function in the redundancy constraint
yields the best performance. Overall, our global optimization frameworks showed promising
performance with respect to the state-of-the-art systems. We look forward to apply our approach
to other available datasets of DUC-2005 and DUC-2006. The findings should hold for these
datasets as well as for other genres of datasets since we believe that our ILP-based compression
and summarization models could be tuned to fit them. We also plan to use other automatic
measures (Saggion et al., 2010; Pitler et al., 2010) to evaluate our approach.
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