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ABSTRACT

Unsupervised Relation Extraction (URE) is the task of extracting relations of a priori unknown
semantic types using clustering methods on a vector space model of entity pairs and patterns. In
this paper, we show that an informed feature generation technique based on dependency trees
significantly improves clustering quality, as measured by the F-score, and therefore the ability of
the URE method to discover relations in text. Furthermore, we extend URE to produce a set of
weighted patterns for each identified relation that can be used by an information extraction
system to find further instances of this relation. Each pattern is assigned to one or multiple
relations with different confidence strengths, indicating how reliably a pattern evokes a relation,
using the theory of Discriminative Category Matching. We evaluate our findings in two tasks
against strong baselines and show significant improvements both in relation discovery and
information extraction.
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1 Introduction

Recently, there has been great interest in broadening information extraction methods to allow
for unsupervised discovery of relational information in large document collections of unknown
content. Contrary to classic information extraction in which relationship types (such as BorNIN
or MARRIEDTO) are specified in advance, such methods automatically identify a priori unknown
relationship types in a given corpus. For these identified semantic relations', they subsequently
or simultaneously perform an information extraction step, thereby transforming the corpus into
structured, relational data without any supervision or previous knowledge about its content.

One such approach, Unsupervised Relation Extraction (URE), addresses this challenge by
building on the latent relation hypothesis which states that pairs of words that co-occur in
similar patterns tend to have similar relations (Turney, 2008; Rosenfeld and Feldman, 2007).
Current techniques capture this in a vector space model by computing a pair-pattern matrix
in which each row represents an entity pair and each column a distinct pattern, with co-
occurrence counts as cell values. This representation allows us to compute the similarity of
two entity pairs by comparing the distribution over observed patterns. Using such a similarity
metric, clustering methods can find clusters of entity pairs that share similar patterns and can
therefore be assumed to represent a relation. Ideally, a clustering method returns three kinds of
structured information, each of which is highly relevant to information discovery and extraction
in unknown corpora: Firstly, a set of clusters, each of which represents one distinct relation.
Secondly, for each cluster a set of entity pairs between which this relation holds. Thirdly, for
each cluster a set of discriminative patterns that extensionally describe the relation and may be
used by an information extraction system to find further relation instances of this relation.

The choice of patterns as well as their significance within a cluster assignment is crucial to the
success of this endeavor. Each pattern may be underspecified or ambiguous and give different
amounts of explicit or implicit evidence to different relations. Worse, as the complexity of
language permits for one relation to be expressed in a multitude of ways, we may expect
the distribution of patterns observed for each relation to be heavy-tailed, with a few patterns
observed in high numbers and a large number of very rare patterns.

Take, for instance, the relation MarRrIEDTO: Patterns that indicate this relation range from
explicit and discriminative expressions, such as “X married Y” and “X married to Y”, over
entailment, such as “X divorced from Y” and “X ex-wife of Y”, to mere implicit evidence, such
as “X fell in love with Y”. Here, X and Y are placeholders for an entity each. At the same time,
these patterns may also express other relations at varying degrees; the pattern “X divorced
from Y”, for example, explicitly expresses the DivorcEDFROM relation, while also entailing the
MaRrrIEDTO relation. The desired result should reflect this and allow one-to-many assignments
of patterns to relations, in which each pattern-relation assignment is weighted according to a
distinctiveness value: High distinctiveness indicates a pattern that explicitly and unambiguously
evokes a relation, low distinctiveness more implicit or ambiguous patterns.

In this paper, we examine more closely the task of discovering and ranking discriminative
patterns for each relation and the impact of the choice of pattern generation scheme on overall
URE results. By focusing on patterns, URE benefits in two ways: On the one hand we show that
an informed feature generation strategy can markedly reduce the amount of underspecified
and ambiguous patterns in the pair-pattern matrix, thereby significantly improving clustering

n this paper, we refer to relationship types as relations and to instances of relationship types as relation instances.
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approaches. On the other hand, this allows us to extend URE to not only identify relations,
but also to find and rank a list of patterns for each relation that can be used in subsequent
information extraction.

Contributions. We propose an unsupervised approach that identifies relations in a corpus of
unknown content by clustering entity pairs and characterizes each relation by finding a list of
patterns ordered according to the amount of explicit evidence they give to the presence of the
identified relation. The contributions of this paper can be summarized as follows:

Algorithm for feature selection in a dependency graph. We propose an algorithm that se-
lects possible patterns for a given entity pair in a dependency path, as an extension of the
shortest path method. The approach is capable of capturing a wider range of phenom-
ena than previous part-of-speech based feature generation and filtering approaches by
incorporating syntactic elements for long range dependencies, complements for light or
support verbs, appositions and context for arguments in direct conjunction. We show that
the proposed feature selection technique increases the clustering quality F-measure by
65% over baseline approaches and that identified patterns are better suited to be used in
an information extraction task.

Method for computing weighted pattern-relation assignments. We propose an approach
that uses clustering results to compile a set of pattern-relation assignments, weighted
according to the amount of discriminative evidence each pattern gives to an assigned
relation. The method is based on the theory of Discriminative Category Matching (Fung
et al., 2002). We experimentally show that these assignments produce patterns suitable
for the task of information extraction.

We evaluate the proposed method in two different tasks: A clustering task in which we evaluate
our clustering approach on three ground truth datasets of different composition against three
baseline approaches 2. We investigate the impact of our proposed feature selection algorithm on
overall clustering quality and its ability to find the optimal amount of relationships in different
datasets. Secondly, an information extraction task in which we evaluate the ranked patterns on
two gold standard corpora and compare precision and recall with a baseline approach.

The remainder of the paper is organized as follows: Section 2 reviews previous work in the
area of clustering for unsupervised relation discovery. We outline several approaches used as
baselines in our evaluation. Section 3 outlines our clustering approach. In Section 3.1 we
illustrate our proposed algorithm for pattern extraction in dependency trees, and in Section 3.3
our proposed method for identifying and ranking discriminative patterns. Section 4 describes
evaluation methods, experimental setup and datasets, and reports the results on the two
evaluation tasks. Finally, Section 5 concludes this paper.

2 Related Work

Most previous work utilizes the pair-pattern matrix to either measure the similarity of pairs of
words, or to measure the similarity between patterns for a number of different purposes. In this
section we review this work with respect to our pattern extraction and clustering approach and
identify evaluation baselines.

2The datasets used in our experiments are available on request for research purposes.
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Relation discovery. (Rosenfeld and Feldman, 2007) cluster entity pairs in the pair-pattern
matrix to identify semantic relations. The resulting clusters are interpreted as each representing
one relation that holds between all entity pairs in the cluster. They use the text between two
entities in a sentence as patterns, but also allow arbitrary word skips, meaning that for each
sentence containing an entity pair a large number of features are generated. They cluster the
matrix using k-means and hierarchical agglomerative approaches and find that better results
are reached with a complex feature space. (Bollegala et al., 2010) propose a co-clustering
approach that simultaneously clusters both entity pairs and patterns for identifying relations,
using not only lexical, but also shallow syntactic patterns. They expand the feature set to also
include prefix and postfix spans. More recently, (Wang et al., 2011) analyzed the impact of
filtering techniques and found that overall clustering quality F-measure significantly increases
by using a set of filters to eliminate patterns that are unlikely to represent a relation. They
filter out a total of 80% of all observed patterns. They use the text between entities as patterns,
without word skips, and include named entity class information into the feature set.

Contrary to previous approaches in relation discovery, we employ a feature generation technique
that utilizes information from a dependency parser. Our observation is that current dependency
parsers are becoming orders of magnitudes faster while retaining a sufficiently high precision
and recall, see (Rush and Petrov, 2012) and (Zhang and Nivre, 2011). We comparatively
evaluate our feature generation technique against baselines modeled after the three approaches
mentioned above.

Similarity of patterns or words. Instead of using clustering to identify relations, much work
has focused on measuring the pairwise similarity of patterns or words. (Turney, 2006) computes
the pairwise similarity of lexical patterns to solve the problem of finding analogies between
word pairs. (Turney, 2011) compares pairs of words using the distribution over patterns to
find proportional analogies and evaluate this on corpora of word comprehension tests, such as
analogy questions in SAT or TOEFL tests. By contrast, (Lin and Pantel, 2001) directly measure
the pairwise similarity between patterns in dependency trees using the distribution over word
pairs to find inference rules from text. (Sun and Grishman, 2010) extend this with a clustering
approach to group patterns into clusters, which they use to guide semi-supervised relation
extraction methods. While this approach returns clusters of patterns for each discovered relation,
the clustering is “hard”, meaning that each pattern is assigned to exactly one cluster. This is
contrary to our intuition that each pattern may give different amounts of evidence to different
semantic relations. Nevertheless, we use a reimplementation of this approach as baseline for
the evaluation of our proposed pattern ranking method.

3 Relation Discovery and Pattern Ranking

We propose a method that takes as input a document collection, identifies relations by clustering
entity pairs with a similar pattern distribution, and outputs a ranked list of patterns for each
relation. This is done in three steps: First, we generate the pair-pattern matrix using a feature
generation approach based on deep syntactic analysis as explained in Section 3.1. Second, we
run a clustering algorithm to group entity pairs into clusters representing relations (see Section
3.2). Finally, we compute the distinctiveness for each pattern in each cluster based on the
distribution of patterns both within and across generated clusters as detailed in Section 3.3.
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3.1 Feature Generation Using Dependency Trees

The proposed feature generation algorithm takes as input a set of dependency parsed sentences
and entity pairs®. For each sentence and entity pair it generates a list of patterns that are used as
features for the entity pair. The method determines a set of core tokens by collecting all tokens
on the shortest path between the two entities. It then finds a set of optional tokens by collecting
all tokens linked to a core token with certain typed dependency. It generates one feature for
each combination of the core tokens and the power set (the set of all possible subsets) of the
optional tokens.

Typed dependencies that indicate possibly important information even if not on the shortest
path were determined through experimentation. Simple examples of cases in which important
information is not on the shortest path are negation and particles, which are directly connected
to a verb (with the dependencies “neg” and “prt” respectively) but never function as a link on
the path between two arguments bound by this verb. Other examples are appositions, which
may be connected to an entity but are not themselves part of the shortest path (indicated by
“nn” or “appos”), and light verb constructions in which only the verb, but not the typically more
important noun is part of the shortest path. Another example - discussed in detail below - are
two entities in conjunction that function as an argument for a verb.

The method consists of four steps:

Step 1: Compute the shortest path between subject and object. The shortest path between
two entities in a dependency path serves as basis for our extraction method. Recent research
shows that lexical tokens along the shortest path represent particularly discriminative patterns
for extraction of binary and even higher-order relations (Etzioni et al., 2011; Akbik and BroR3,
2009). By focusing on the tokens that syntactically link both entities, we can skip over tokens
that are less likely to be relevant to the relationship. This step yields a list of core tokens likely
to be relevant to the relation expressed between the two entities.

Step 2: Collect of a set optional tokens on the path. We collect all tokens that may be
relevant to identifying a relation by iterating over each token on the shortest path and examining
all typed dependencies of each token to non-path tokens. If the dependency is one of {nn, neg,
prt, poss, possessive, nsubj, nsubjpass} we collect the target token into a list of optional tokens.
This step yields a list of tokens to be added to the core list to produce a good extraction pattern.

Step 3: Generate features. We build the power set over all optional tokens and generate one
feature for each combination of the shortest path and optional set. This power set includes the
empty set as well, so the shortest path without any optional tokens is included in the features.

Step 4: Remove uninformative features. We filter out all features that consist only of closed-
world word classes. Examples are features like “X and Y” or “X of Y”. The intuition for this
step is that such patterns are semantically too weak to be used as patterns and not suitable for
clustering approaches.

The following example sentence illustrates the feature generation process: ‘James Joyce and his
longtime lover Nora Barnacle got married in 1931”. Figure 1 depicts the sentence’s dependency
parse. Here, the shortest path is a “conj”-link, directly connecting the two entities "James Joyce“

3We use the Stanford dependency parser (Klein and Manning, 2003) and Stanford typed dependencies (De Marneffe
et al., 2006) in our experiments.
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and ”Nora Barnacle“. The resulting pattern ”X and Y** is highly ambiguous and therefore of
limited use. We collect the tokens “and*, "his“, ”lover* and "married“ into a set of optional
tokens and build its power set. By taking each combination of the power set and the shortest
path (and after filtering non-informative features) we arrive at a total of five features. Table 1
lists them and compares them to shallow patterns as generated by (Turney, 2011) and (Wang
etal., 2011).

nsubjpass

num
[ ittty

vl ¥ l—]vﬁ’ﬂ‘_l

James Joyce and his longtime Jover Nora Barnacle got married in 1931

Figure 1: Dependency parse of the example sentence. The entity pair and shortest path are
marked in bold. "James Joyce* and "Nora Barnacle* are directly connected with a ”conj“ link.
Links to optional tokens are illustrated as dotted lines; optional tokens are underlined.

(Turney, 2011) X and his longtime lover Y,
X and his longtime * Y,

X and his * lover Y,

X and * longtime lover Y,
X * his longtime lover Y,

[]
(Wang et al., 2011) | PERSON and his longtime lover PERSON
PROPOSED X and lover Y,

X and Y married,

X and lover Y married,

X and his lover Y,

X and his lover Y married

Table 1: Features from different generation methods for the sentence in Figure 1. We observe
that the features generated by the proposed approach all indicate the MARRIEDTO relation either
explicitly or implicitly. By contrast, the shallow feature generation technique used by (Turney,
2011) produces a total of 24 patterns, many of which are highly underspecified. (Wang et al.,
2011) generate only one overspecified feature.

3.2 Relation Discovery by Clustering Entity Pairs

From the features as generated according to Section 3.1 we build a pair-pattern matrix for
all entity pairs observed at least 20 times in the corpus. This is accomplished by counting
co-occurrences between patterns (features) and entity pairs. We cluster this vector space model
using the k-means algorithm which partitions entity pairs into k clusters of similar variance®.
Following (Bullinaria and Levy, 2007), we use the Cosine similarity to measure distances
between feature vectors — a measure useful for highly sparse vectors like the ones at hand.

“In this case, the pattern "X and Y* is a verbalization of the entities X and Y being linked by the typed dependency
”conj“ for readability reasons.
5We use Apache Mahout (http: //mahout.apache.org/) in our experiments.
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The k-means algorithm requires us to manually specify the number of output clusters which
in turn allows us to control the granularity of discovered relations. For instance, the cluster
representing the relation CHILDOF for low values of k is split into two clusters representing the
relations SONOF and DAuGHTEROF given higher values of k. Following (Rosenfeld and Feldman,
2007) we interpret each cluster within a clustering as a distinct, unlabeled relation and all
entity pairs as relation instances.

3.3 Ranking Patterns by Distinctiveness

Clustering assigns each entity pair to a cluster and thereby implicitly produces a set of patterns
per cluster, namely all non-zero features of the entity pairs in that cluster. The approach
proposed here for ranking these patterns is based on two intuitions. The first being that clusters
are representative of relations, meaning that the distribution of patterns in a cluster dominantly
contains a single relation. This implies that patterns that are shared by a majority of entity pairs
in a cluster are common ways of expressing a relation, while patterns that are shared only by
few entity pairs are either less commonly used or provide only implicit evidence of a relation.
To capture this intuition we compute pattern weights by adding up the counts per pattern over
all entity pairs within a cluster. We normalize the value to compute the significance of a pattern:

log, (fig +1)
log, (PR + 1)
As the equation shows, the significance of a pattern i within a cluster R is denoted as the
logarithmic ratio of its weight f; x normalized by the sum over all pattern weights Py in the
cluster.

1

Significance; p =

The second intuition is that patterns that occur in more than one cluster may be ambiguous
and lend different amounts of evidence to different relations. Such patterns therefore have low
clarity. We collect the distributed evidence of these patterns across clusters and relate it to a
pattern’s highest significance over all clusters. The following equation measures this clarity for
each pattern, with 0 < Clarity; <1.

( n- max {Significance(R }
jell.n} Rj

. log, —= ] L a>1
Clarity; = { 3. Significance;z, 0821 2)

j=1
1, n=1

Thereby, a pattern i has a high Clarity; if it is significant in one cluster and insignificant in the
others. (Note that 1/log, n is a normalization factor.) If we observe a pattern only once and in
one cluster its Clarity is 1.

Following the theory of Discriminative Category Matching (DCM) (Fung et al., 2002), the
overall distinctiveness of a pattern given a cluster is a combination of Significance and Clarity
accordingly; with a normalization factor of v/2:

SignificanceiR . Clarityi2

(3

Distinctiveness; g = —— - —-
\/Slgmflcancei’k + Clarity;

We use this Distinctiveness measure to re-weigh the pattern-cluster assignments and produce
a ranked list of patterns for each cluster.
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4 Evaluation

We quantify the proposed approach in two tasks: a clustering task to measure the impact of
our feature generation method on overall clustering performance and evaluate the ability to
discover relations. And an information extraction task to examine clustered patterns with respect
to their usefulness to information extraction. Since ground truth is not usually readily available
for large amounts of text, assessing the quality of large scale clustering results has proven
to be difficult. We therefore use distant supervision based on the YAGO knowledge base to
automatically construct various ground truth data sets. Details of the set-up, advantages and
drawbacks of such an evaluation approach as well as measures used to analyze clustering
quality against such ground truth are discussed in Section 4.1. Details on clustering evaluation
and the information extraction task are discussed in Sections 4.2 and 4.3 respectively.

4.1 Experimental Setup

4.1.1 Datasets

The extrinsic evaluation of URE is problematic as it requires a document collection with exact
knowledge regarding its content in the form of labeled relation triples. Several projects have
constructed such a ground truth manually, which has a number of drawbacks: Firstly, there is
a high cost involved in manually annotating sentences with relations, limiting the size of the
ground truth as well as the ability to quickly generate new evaluation sets. Secondly, much care
must be taken to ensure that no URE-specific assumptions are modeled into the ground truth,
i.e. “overfitting” the ground truth to the capabilities of the algorithm that is to be evaluated. The
inherent risk in manual annotation is the creation of a ground truth that does not realistically
reflect the application scenario the URE approach is intended for.

We therefore choose a distant supervision-based approach to automatically generate a number
of labeled training, test and evaluation sets. In distant supervision, an existing knowledge base
of facts (triples consisting of two entities and a relation that holds between the entities) is
used as support tool (Mintz et al., 2009). We use YAGO, a semantic knowledge base derived
from Wikipedia, WordNet and GeoNames with knowledge of more than 10 million entities and
around 447 million facts (Hoffart et al., 2011). The relations in YAGO are semantic labels, such
as WasBornIN, AcTepIN and DiepIN and are therefore different from a textual representation of
these relations in a sentence.

The approach randomly selects a number of entity pairs from the knowledge base and retrieves
from the Web® a set of sentences containing each entity pair. The assumption is that a sentence
that contains an entity pair for which the knowledge base specifies a relation is likely to express
it, either explicitly or implicitly. Accordingly, this allows the method to automatically label all
retrieved sentences with relations, enabling the generation of a ground truth of arbitrary size.
In order to assess the quality of the ground truth we manually examine 200 sentences with a
total of 209 relations and 29 distinct relations’. We find that in 159 cases the relation is either
explicitly or implicitly represented in the sentence, whereas in 50 cases the entity pair is present
in the sentence but the YAGO relation between them could not be inferred from the text.

Examples for explicit, implicit and false sentences are given in Table 2. While imperfect, the

SWe use the Bing API (http: //www.bing.com /developers/) to retrieve sentences.
7In 9 cases, one entity pair has more than one relation in YAGO. Some persons, for example, both AcTEpIN and
PRODUCED a movie.
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assumption therefore holds for approximately 76% of the generated ground truth. For our
evaluation purposes we find this satisfactory, as this realistically simulates noise while reliably
indicating the relational content of generated evaluation sets.

sentence retrieved relation expressed
Mystery Men (1999) stars Ben Stiller as Mr. Furious. explicit
Mystery Men brought on board a talented cast from William H. explicit

Macy to Ben Stiller.

What was Ben Stiller’s character’s super quality in Mystery implicit
Men?

Ben Stiller does not think Mystery Men should be remade. false

Table 2: Sentences retrieved for the entity pair “Ben Stiller” and “Mystery Men”, labeled in YAGO
with relation AcTeDIN and the degree of explicitness: explicit, implicit or not at all.

We use this approach to generate 5 different ground truth datasets for the two evaluation tasks.
For the clustering task, we generate 3 datasets of approximately 200.000 sentences, each with
a different number of distinct relations. For the information extraction task, we generate two
small gold standard corpora that are manually checked for correctness, with all falsely labeled
sentences filtered out: GOLD, a corpus of 300 sentences that explicitly express the labeled
relation, and SILVER, a corpus of 400 sentences that either explicitly or implicitly express the
labeled relation. Refer to Table 3 for a list of all datasets.

dataset | # sentences | # relations | # entity pairs | manually cleansed
R10 200.000 10 12.000 false
R20 200.000 20 9.000 false
R30 200.000 30 6.000 false
GOLD 300 20 300 true
SILVER | 400 20 400 true

Table 3: Datasets created using YAGO and distant supervision. The three large datasets differ
in number of distinct relations and contained entity pairs. GOLD and SILVER are smaller,
manually cleaned datasets.

4.1.2 Measures

We use BCubed for extrinsic clustering evaluation (Amigo et al., 2009), an effective measure ex-
tendable to overlapping clustering, which satisfies the following essential criteria for measuring
cluster quality &:

o Cluster homogeneity, which rewards clusterings with pure clusters.

o Cluster completeness, which promotes "same label, same cluster" policy.

® Rag bag, which rewards introducing a garbage cluster over polluting pure clusters.

o Small cluster preservation, which penalizes spreading data points of a rare label across
various clusters.

General BCubed precision and recall are computed based on Multiplicity, a measure of the
minimum intersection between two data points o; and o; regarding their labels and cluster
assignments. In our case this intersection contains 1 element at most, since we performed

8Cf. (Han et al., 2011, Ch. 1, p. 6) for a more verbose elaboration on these quality criteria and BCubed in general.
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non-overlapping clustering. Depending on whether precision or recall is computed, Multiplicity
is normalized with the amount of shared cluster assignments or shared labels respectively:

min(|C(o;) N C(o0;)l,1L(0;) N L(0;)])
[Clo)NC (o))

MuztipliCityprecision(oi; Oj) = (C))]

min(|C(0;) N C(0;)l,|L(0;) N L(0))I)
IL(0;) N L(o))|

Multiplicity ecqu(0;,0;) = 5)

Here C(0;) denotes the set of cluster assignments of a data point o; given a clustering and L(o;)
the set of labels for a given data point o; according to ground truth. Precision and recall are
then calculated by averaging Multiplicity over all data points °:

Mul tipliCityprecision(oi; Oj)

i uJ:C(ox)ﬁC(oj)#-Q

= ll{0;1C(o) N C(o;) # B
Precisiongcyped = = { ! : ! } (6)
n
Multipli(:ityrecall(oi;Oj)
i n,:L(ol)nL(oJ)#@
= lI{0;1L(0;) N L(oj) # B L]
Recallgeypeq = - ! { A ! } (@)

n

In a final step Precisiongcyp.q and Recallgcypeq are combined to give the F,-score.

4.2 Clustering Task

We evaluate our method’s ability to identify relations by comparing it on ground truth datasets
of different composition with several baselines. We use BCubed F-measure to judge overall
clustering performance.

4.2.1 Baselines

We compare our feature generation method (referred to as PROP) to the three baseline ap-
proaches using shallow analysis that were introduced in Section 2: The first is based on (Turney,
2011) and (Rosenfeld and Feldman, 2007) and uses a lexical feature generation technique with
arbitrary word skips. We refer to this approach as TUR. A second baseline is modeled after
(Bollegala et al., 2010), uses shallow lexico-syntactic patterns including pre- and postfix spans,
and is referred to as BOL. The third baseline, after (Wang et al., 2011), uses lexical patterns
without word skips and incorporates named entity class information. Patterns containing the
verbs to say or to tell are filtered. This method is referred to as WAN.

9Note that self-relation is not excluded. And that Multiplicity is defined only when the two data points share at least
1 cluster assignment or label respectively.
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4.2.2 Results

The results of the comparative evaluation are visualized in Figure 2. It clearly shows the impact
of using an informed feature generation method. On the R30 dataset, we note overall increases
in F-measure of 65% over the next best approach. Overall F-measure is highest around a k of
30 at 0.445. The next best approach is WAN at k = 12 with 0.288. This shows that our feature
generation algorithm is capable of finding patterns for many expressions that shallow feature
generation methods miss. Also, as F-measure peaks around k = 30, the results indicate that the
clustering mechanism can effectively model the relations contained in the corpus.

BCubed F-measure

Feature extraction method:

-=PROP
< BOL
2 +WAN
3 TUR
£
w
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Figure 2: Clustering quality in terms of precision, recall and F;-measure on the R30 dataset.
The proposed feature generation approach (black line, square data points) outperforms all
baseline approaches.

In order to examine this observation more closely, we use our approach on the R20 and
R10 datasets, which contain 20 and 10 distinct relations respectively in the same amount of
sentences as R30. The results are shown in Figure 3. Compared to results on the R30 dataset,
we measure strong increases in F-measure on the R10 dataset which may be due to a much
larger amount of examples per relation. However, we note that the results on the R20 and R30
are roughly similar, even though they are of different relational composition.

To gain more insight into these results, we inspect the data manually by randomly selecting
clusters at different k. We make a number of observations. Firstly, when increasing k, the
resulting clusters represent finer granularities of relations. The YAGO relation CHILDOF, for
example, is split into two clusters at higher k one representing the relation SoNOF, the other
DAUGHEROE. Similarly, the relation CREATED is split into multiple clusters, representing CREATED-
FiLm, CREATEDMUSIC and CREATEDNOVEL respectively. The YAGO relation LocATEDIN is split at
various k into clusters of finer granularities, first into CityLocATEDIN and VILLAGELOCATEDIN,
then at an even higher k also into RivERLocATEDIN. The YAGO relation ISAFFILIATEDTO is split at
higher k into AFFILIATEDTOSPORTSTEAM and AFFILIATEDTOPOLITICALPARTY. These observations
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Figure 3: Clustering quality for the proposed approach on different datasets. Performance is best
on dataset R10 which consists of relations typically expressed explicitly. R20 and R30 datasets
each contain various more implicit or difficult to detect relations, causing lower F-measure.

indicate that the approach can be directed through parameterization to discover relations of
varying granularity. However, we also note that some clusters split for difficult to interpret
reasons, such as MARRIEDT0 which splits into two clusters at higher k.

Generally, we observe that some relations are easier to identify by URE than others; relations
like HaAsWonPRrizE or MARRIEDTO are often explicitly expressed and therefore easier to cluster.
Other relations, like LivesIN are often, if at all, very implicitly expressed causing difficulties
to the algorithm. Other relations, such as DEALsWITH, which signifies trade relations between
two countries, are almost impossible to find as very few sentences express this relation. Again
other relations, such as KNowNFoR are semantically very broad as there are any number of
accomplishments (expressed in any number of ways) a person may be known for. This causes
problems for a clustering approach. However, our approach is capable of finding a subset of all
KnowNFoR relations in a cluster that resembles the INVENTORINVENTED relation. This indicates
that not only the amount of distinct relations in a corpus is important, but also how explicitly
they are expressed and whether one relation dominates a given entity pair. We also find that the
most highly ranked patterns usually characterize clusters very well. Example clustering results
are shown in Table 4. Here, we find examples of explicit patterns, entailment and implicit
patterns. We examine the patterns more closely in the information extraction task.

4.3 Information Extraction Task

We evaluate the ranked patterns on the GoLD and siLVER datasets using the generated patterns
as classifiers. If the classifier finds a known pattern in a sentence it extracts and labels a relation,
but only if the distinctiveness of the pattern is above the classifier’s threshold setting. We
compute a precision-recall curve for our proposed approach over a range of threshold values
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ID | example entity pairs example patterns YAGO label

(1) | - Media General; WJAR 1. Y owned by X [owns]
- CBS Radio; WPHT 3. X operate Y
- News Corporation; Fox 5. X acquire Y

6. X parent company of Y
32. X gain for buying Y
(2) | - Ronny Yu; Fearless 1. Y film directed by X [DIRECTED]
- John Madden; Proof 2. Y directed by X

- Dana Brown; Highwater 7. X’sfilmY

14. find trailer info for Y by X

(3) | - Alan Turing; Turing test 1. Y invented by X [knowNFOR]
- Carlos Chagas; Chagas 2. X creator of Y
disease 3. Y discovered by X
- Hans Geiger; Geiger 7. Y named after X
counter 19. X inventor known for inven-
tion of Y

Table 4: Example of clustering output. Each cluster contains a set of entity pairs and is defined
via a ranked list of patterns. The rank is given in italics before each pattern. The YAGO relation
labels are not part of the clustering output and added for evaluation purposes only.

from O to 1, see Figure 4. The results show that the threshold can be used to control the tradeoff
between precision and recall. If the threshold is set high, the extractor only uses patterns with
high distinctiveness and finds relations at high precision and lower recall. At lower threshold
settings, recall gradually increases while precision decreases. This indicates that the proposed
method computes a valid ranking of patterns. The ability to use such a threshold setting to
influence the precision-recall tradeoff is a valuable feature for information extraction.

Precision-Recall Curve
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Figure 4: Precision-recall curves on the coLp and siver gold standards for a range of threshold
values. By lowering the confidence threshold, we trade high precision for an increase in recall.

We compare the approach against a reimplementation of (Lin and Pantel, 2001) in which
patterns are directly clustered according to the distribution of entity pairs as introduced in
(Sun and Grishman, 2010). This baseline (referred to as PAN) produces a hard clustering of
patterns, without a distinctiveness value that can be used as threshold. We therefore compare
the proposed approach against this baseline at two threshold levels: A threshold of 0 (PROP-0)
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and 1 (PROP-1). For completeness, we also compare the proposed approach using TUR and
WAN instead of our proposed feature generation method. This is denoted as PROP-TUR and
PROP-WAN respectively, again at threshold settings of 0 and 1.

GOLD SILVER

approach precision | recall | F,-measure || precision | recall | F,-measure
PROP-0 0.88 0.21 0.34 0.79 0.18 0.29
PROP-1 1 0.1 0.18 0.92 0.07 0.13
PAN 0.58 0.15 0.24 0.51 0.1 0.17
PROP-WAN-0 0.6 0.03 0.06 0.56 0.05 0.09
PROP-WAN-1 0.19 0.1 0.13 0.21 0.11 0.14
PROP-TUR-0 0.28 0.14 0.19 0.26 0.14 0.18
PROP-TUR-1 0.31 0.18 0.23 0.29 0.17 0.21

Table 5: Results of the information extraction task on the corLp and siver ground truths. The
proposed approach outperforms the baseline in precision, recall and F,-measure.

The results in Table 5 show that the proposed method outperforms the baseline. Shallow
patterns, as used in TUR and WAN, are hardly usable for information extraction. Especially on
the coLD dataset, in which all relations are explicitly expressed, we note very high precision
of the proposed approach. As expected, precision is lower on the siLver dataset, which also
includes implicit expressions of relations, but still higher than the baseline. Overall, the results
show that the pattern-relation assignment of the proposed approach yields valuable results for
the task of information extraction.

5 Conclusion

In this paper we have presented a method for Unsupervised Relation Extraction that discovers
relations from unstructured text as well as finding a list of discriminative patterns for each
discovered relation. We introduced a feature generation algorithm that utilizes dependency
parse information and demonstrated that using an informed feature generation technique signif-
icantly improves overall clustering F-measure. We interpreted clustering results to produce a set
of pattern-relation assignments weighted according to the distinctiveness of each assignment
using the theory of Discriminative Category Matching. We demonstrated that the strength
of an assignment indicates how reliably a pattern evokes a relation by using the patterns for
information extraction at different confidence thresholds. We presented a thorough evaluation
of both relation discovery and pattern ranking on 5 datasets of different composition. We
believe our approach to be a promising step towards achieving the goals of URE.

Future work will focus on further evaluation on a range of different clustering algorithms in
order to find an optimal approach. Specifically, we believe that using overlapping or fuzzy
clustering algorithms may counterbalance problems of entity pair ambiguities. Furthermore,
since using more samples positively affected clustering quality, we aim to scale up the method
to large corpora and more broadly inspect the results at different levels of granularity.
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