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Abstract

This paper looks at the web as a corpus
and at the effects of using web counts
to model language, particularly when we
consider them as a domain-specific versus
a general-purpose resource. We first com-
pare three vocabularies that were ranked
according to frequencies drawn from
general-purpose, specialised and web cor-
pora. Then, we look at methods to com-
bine heterogeneous corpora and evaluate
the individual and combined counts in the
automatic extraction of noun compounds
from English general-purpose and spe-
cialised texts. Better n-gram counts can
help improve the performance of empiri-
cal NLP systems that rely on n-gram lan-
guage models.

1 Introduction

Corpora have been extensively employed in sev-
eral NLP tasks as the basis for automatically
learning models for language analysis and gener-
ation. In theory, data-driven (empirical or statis-
tical) approaches are well suited to take intrinsic
characteristics of human language into account. In
practice, external factors also determine to what
extent they will be popular and/or effective for a
given task, so that they have shown different per-
formances according to the availability of corpora,
to the linguistic complexity of the task, etc.

An essential component of most empirical sys-
tems is the language model (LM) and, in partic-
ular, n-gram language models. It is the LM that
tells the system how likely a word or n-gram is in
that language, based on the counts obtained from

corpora. However, corpora represent a sample of
a language and will be sparse, i.e. certain words or
expressions will not occur. One alternative to min-
imise the negative effects of data sparseness and
account for the probability of out-of-vocabulary
words is to use discounting techniques, where a
constant probability mass is discounted from each
n-gram and assigned to unseen n-grams. Another
strategy is to estimate the probability of an un-
seen n-gram by backing off to the probability of
the smaller n-grams that compose it.

In recent years, there has also been some ef-
fort in using the web to overcome data sparseness,
given that the web is several orders of magnitude
larger than any available corpus. However, it is
not straightforward to decide whether (a) it is bet-
ter to use the web than a standard corpus for a
given task or not, and (b) whether corpus and web
counts should be combined and how this should
be done (e.g. using interpolation or back-off tech-
niques). As a consequence there is a strong need
for better understanding of the impacts of web fre-
quencies in NLP systems and tasks.

More reliable ways of combining word counts
could improve the quality of empirical NLP sys-
tems. Thus, in this paper we discuss web-based
word frequency distributions (§ 2) and investigate
to what extent “web-as-a-corpus” approaches can
be employed in NLP tasks compared to standard
corpora (§ 3). Then, we present the results of
two experiments. First, we compare word counts
drawn from general-purpose corpora, from spe-
cialised corpora and from the web (§ 4). Second,
we propose several methods to combine data from
heterogeneous corpora (§ 5), and evaluate their ef-
fectiveness in the context of a specific multiword
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expression task: automatic noun compound iden-
tification. We close this paper with some conclu-
sions and future work (§ 6).

2 The web as a corpus

Conventional and, in particular, domain-specific
corpora, are valuable resources which provide a
closed-world environment where precise n-gram
counts can be obtained. As they tend to be smaller
than general purpose corpora, data sparseness can
considerably hinder the results of statistical meth-
ods. For instance, in the biomedical Genia cor-
pus (Ohta et al., 2002), 45% of the words occur
only once (so-called hapax legomena), and this is
a very poor basis for a statistical method to decide
whether this is a significant event or just random
noise.

One possible solution is to see the web as a
very large corpus containing pages written in sev-
eral languages and being representative of a large
fraction of human knowledge. However, there are
some differences between using regular corpora
and the web as a corpus, as discussed by Kilgar-
riff (2003). One assumption, in particular, is that
page counts can approximate word counts, so that
the total number of pages is used as an estimator
of the n-gram count, regardless of how many oc-
currences of the n-gram they contain.

This simple underlying assumption has been
employed for several tasks. For example, Grefen-
stette (1999), in the context of example-based ma-
chine translation, uses web counts to decide which
of a set of possible translations is the most natural
one for a given sequence of words (e.g. groupe de
travail as work group vs labour collective). Like-
wise, Keller and Lapata (2003) use the web to esti-
mate the frequencies of unseen nominal bigrams,
while Nicholson and Baldwin (2006) look at the
interpretation of noun compounds based on the
individual counts of the nouns and on the global
count of the compound estimated from the web as
a large corpus.

Villavicencio et al. (2007) show that the web
and the British National Corpus (BNC) could be
used interchangeably to identify general-purpose
and type-independent multiword expressions. La-
pata and Keller (2005) perform a careful and
systematic evaluation of the web as a corpus in

other general-purpose tasks both for analysis and
generation, comparing it with a standard corpus
(the BNC) and using two different techniques to
combine them: linear interpolation and back-off.
Their results show that, while web counts are not
as effective for some tasks as standard counts, the
combined counts can generate results, for most
tasks, that are as good as the results produced by
the best individual corpus between the BNC and
the web. Nakov (2007) further investigates these
tasks and finds that, for many of them, effective
attribute selection can produce results that are at
least comparable to those from the BNC using
counts obtained from the web.

On the one hand, the web can minimise the
problem of sparse data, helping distinguish rare
from invalid cases. Moreover, a search engine al-
lows access to ever increasing quantities of data,
even for rare constructions and words, which
counts are usually equated to the number of pages
in which they occur. On the other hand, n-
grams in the highest frequency ranges, such as
the words the, up and down, are often assigned
the estimated size of the web, uniformly. While
this still gives an idea of their massive occur-
rence, it does not provide a finer grained distinc-
tion among them (e.g. in the BNC, the, down and
up occur 6,187,267, 84,446 and 195,426 times,
respectively, while in Yahoo! they all occur in
2,147,483,647 pages).

3 Standard vs web corpora

When we compare n-gram counts estimated from
the web with counts taken from a well-formed
standard corpus, we notice that web counts are
“estimated” or “approximated” as page counts,
whereas standard corpus counts are the exact
number of occurrences of the n-gram. In this way,
web counts are dependent on the particular search
engine’s algorithms and representations, and these
may perform approximations to handle the large
size of their indexing structures and procedures,
such as ignoring punctuation and using stopword
lists (Kilgarriff, 2007). This assumption, as well
as the following discussion, are not valid for for
controlled data sets derived from Web data, such
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as the Google 1 trillion n-grams1. Thus, our re-
sults cannot be compared to those using this kind
of data (Bergsma et al., 2009).

In data-driven techniques, some statistical mea-
sures are based on contingency tables, and the
counts for each of the table cells can be straight-
forwardly computed from a standard corpus.
However, this is not the case for the web, where
the occurrences of an n-gram are not precisely
calculated in relation to the occurrences of the
(n− 1)-grams composing it. For instance, the
n-gram the man may appear in 200,000 pages,
while the words the and man appear in respec-
tively 1,000,000 and 200,000 pages, implying that
the word man occurs with no other word than the2.

In addition, the distribution of words in a stan-
dard corpus follows the well known Zipfian dis-
tribution (Baayen, 2001) while, in the web, it is
very difficult to distinguish frequent words or n-
grams as they are often estimated as the size of the
web. For instance, the Yahoo! frequencies plotted
in figure 1(a) are flattened in the upper part, giv-
ing the same page counts for more than 700 of the
most frequent words. Another issue is the size of
the corpus, which is an important information, of-
ten needed to compute frequencies from counts or
to estimate probabilities in n-gram models. Un-
like the size of a standard corpus, which is easily
obtained, it is very difficult to estimate how many
pages exist on the web, especially as this number
is always increasing.

But perhaps the biggest advantage of the web is
its availability, even for resource-poor languages
and domains. It is a free, expanding and easily ac-
cessible resource that is representative of language
use, in the sense that it contains a great variability
of writing styles, text genres, language levels and
knowledge domains.

4 Analysing n-gram frequencies

In this section, we describe an experiment to com-
pare the probability distribution of the vocabulary
of two corpora, Europarl (Koehn, 2005) and Ge-
nia (Ohta et al., 2002), that represent a sample
of general-purpose and specialised English. In

1This dataset is released through LDC and is not freely
available. Therefore, we do not consider it in our evaluation.

2In practice, this procedure can lead to negative counts.

Vep Vgenia Vinter

types 104,144 20,876 6,798
hapax 41,377 9,410 –
tokens 39,595,352 486,823 –

Table 1: Some characteristics of general vs
domain-specific corpora.

addition to both corpora, we also considered the
counts from the web as a corpus, using Google
and Yahoo! APIs, and these four corpora act as n-
gram count sources. To do that, we preprocessed
the data (§ 4.1), extracted the vocabularies from
each corpus and calculated their counts in our
four n-gram count sources (§ 4.2), analysing their
rank plots to compare how each of these sources
models general-purpose and specialised language
(§ 4.3). The experiments described in this sec-
tion were implemented in the mwetoolkit and
are available at http://sf.net/projects/
mwetoolkit/.

4.1 Preprocessing
The Europarl corpus v3.0 (ep) contains transcrip-
tions of the speeches held at the European Par-
liament, with more than 1.4M sentences and
39,595,352 words. The Genia corpus (genia) con-
tains abstracts of scientific articles in biomedicine,
with around 1.8K sentences and 486,823 words.
These standard corpora were preprocessed in the
following way:

1. conversion to XML, lemmatisation and POS
tagging3;

2. case homogenisation, based on the following
criteria:

• all-uppercase and mixed case words
were normalised to their predominant
form, if it accounts for at least 80% of
the occurrences;
• uppercase words at the beginning of

sentences were lowercased;
• other words were not modified.

3Genia contains manual POS tag annota-
tion. Europarl was tagged using the TreeTagger
(www.ims.uni-stuttgart.de/projekte/
corplex/TreeTagger).
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This lowercasing algorithm helps to deal with the
massive use of abbreviations, acronyms, named
entities, and formulae found in specialised cor-
pora, such as those containing biomedical (and
other specialised) scientific articles.

For calculating arbitrary-sized n-grams in large
textual corpora efficiently, we implemented a
structure based on suffix arrays (Yamamoto and
Church, 2001). While suffix trees are often used
in LM tools, where n-grams have a fixed size, they
are not fit for arbitrary length n-gram searches and
can consume quite large amounts of memory to
store all the node pointers. Suffix arrays, on the
other hand, allow for arbitrary length n-grams to
be counted in a time that is proportional to log(N),
where N is the number of words (which is equiva-
lent to the number of suffixes) in the corpus. Suf-
fix arrays use a constant amount of memory pro-
portional to N. In our implementation, where ev-
ery word and every word position in the corpus are
encoded as a 4-byte integer, it corresponds pre-
cisely to 4×2×N plus the size of the vocabulary,
which is generally very small if compared to N,
given a typical token/type ratio. The construction
of the suffix array takes O(N log2 N) operations,
due to a sorting step at the end of the process.

4.2 Vocabulary creation

After preprocessing, we extracted all the unigram
surface forms (i.e. all words) from ep and from ge-
nia, generating two vocabularies, Vep and Vgenia,
where the words are ranked in descending fre-
quency order with respect to the corpus itself seen
as a n-gram count source. Formally, we can model
a vocabulary as a set V of words vi ∈V taken from
a corpus. A word count is the value c(vi) = n of a
function that goes from words to natural numbers,
c : V → N. Therefore, there is always an implicit
word order relation≤r in a vocabulary, that can be
generated from V and c by using the order relation
≥ in N4. Thus, a rank is defined as a partially-
ordered set formed by a vocabulary–word order
pair relation: 〈V,≤r〉.

Table 1 summarises some measures of the ex-
tracted vocabularies, where Vinter denotes the in-
tersection of Vep and Vgenia. Notice that Vinter

4That is, ∀v1,v2 ∈V , suppose c(v1) = n1 and c(v2) = n2,
then v1 ≤r v2 if and only if n1 ≥ n2.

n-gram genia ep google yahoo

642 1 4 8090K 220M
African 2 2028 15400K 916M
fatty 16 22 2550K 59700K
medicine 4 643 21900K 934M
Mac 15 3 34500K 1910M
SH2 27 1 113K 3270K
advances 4 646 6200K 173M
thereby 29 2370 8210K 145M

Table 2: Distribution of some words in Vinter.

contains considerably less entries than the small-
est vocabulary (Vgenia). This shows to what ex-
tent both types of text differ and how important
it is to use the correct techniques when work-
ing with domain-specific data in empirical ap-
proaches. The table also shows the number of ha-
pax legomena (i.e. words that occur only once) in
each corpus, and in this aspect both corpora are
similar5. It also shows how sparseness affects lan-
guage, since a vocabulary that is 400% bigger has
only 5% less hapax legomena.

For each entry in each vocabulary, we ob-
tained a count estimated from four different n-
gram count sources: ep, genia, Google as a cor-
pus (google) and Yahoo! as a corpus (yahoo). The
latter were configured to return only results for
pages in English. Table 2 shows an example of
entries extracted from Vinter. Notice that there are
no zeroes in columns genia and ep, since this vo-
cabulary only contains words that occur at least
once in these corpora. Also, some words like Mac
and SH2, that are probably specialised terms, oc-
cur more in genia than in ep even if the latter is
more than 80 times larger than the former.

4.3 Rank analyses

For each vocabulary, we want to estimate how
similar the ranks generated by each of the four
count sources are. Figure 1 shows the rank po-
sition (x) against the frequency (y) of words in
Vgenia, Vep and Vinter, where each plotted point rep-
resents a rank position according to corpus fre-

5The percentual difference in the proportion of hapax
legomena can be explained by the fact that genia is much
smaller than ep.
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(a) Rank plot of Vgenia.
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(b) Rank plot of Vep.
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(c) Rank plot of Vinter.

Figure 1: Plot of normalised frequencies of vocabularies according to rank positions, log-log scale.

quencies and may correspond to several different
words.6 The four sources have similar shaped
curves for each of the three vocabularies: ep
and genia could be reasonably approximated by
a linear regression curve (in the log-log domain).
google and yahoo present Zipfian curves for low
frequency ranges but have a flat line for higher
frequencies, and the phenomenon seems consis-
tent in all vocabularies and more intense on yahoo.
This is related to the problem discussed in sec-
tion 3 which is that web-based frequencies are not
accurate to model common words because web
counts correspond to page counts and not to word
counts, and that a common word will probably ap-
pear dozens of times in a single page. Nonethe-
less, google seems more robust to this effect,
and indeed yahoo returns exactly the same value
(roughly 2 billion pages) for a large number of
common words, producing the perfectly straight
line in the rank plots. Moreover, the problem
seems less serious in Vinter, but this could be due
to its much smaller size. These results show that
google is incapable of distinguishing among the
top-100 words while yahoo is incapable of distin-
guishing among the top-1000 words, and this can
be a serious drawback for web-based counts both
in general-purpose and specialised NLP tasks.

The curves agree in a large portion of the fre-
quency range, and the only interval in which ge-
nia and ep disagree is in lower frequencies (shown
in the bottom right corner). This happens be-

6Given the Zipfian behaviour of word probability distri-
butions, a log-log scale was used to plot the curves.

cause general-purpose ep frequencies are much
less accurate to model the specialised genia vo-
cabulary, specially in low frequency ranges when
sparseness becomes more marked (figure 1(a)),
and vice-versa (figure 1(b)). This effect is min-
imised in figure 1(c), corresponding to Vinter.

Although both vocabularies present the same
word frequency distributions, it does not mean
that their ranks are similar for the four count
sources. Tables 3 and 4 show the correlation
scores for the compared count sources and for the
two vocabularies, using Kendall’s τ . The τ corre-
lation index estimates the probability that a word
pair in a given rank has the same respective po-
sition in another rank, in spite of the distance be-
tween the words7.

In the two vocabularies, correlation is low,
which indicates that the ranks tend to order words
differently even if there are some similarities in
terms of the shape of the frequency distribution.
When we compare genia with google and with
yahoo, we observe that yahoo is slightly less cor-
related with genia than google, probably because
of its uniform count estimates for frequent words.
However, both seem to be more similar to genia
than ep.

A comparison of ep with google and with yahoo
shows that web frequencies are much more similar
to a general-purpose count source like ep than to
a specialised source like genia. Additionally, both
yahoo and google seem equally correlated to ep.

7For all correlation values, p < 0.001 for the alternative
hypothesis that τ is greater than 0.
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Vgenia Vgenia Vgenia Vgenia
top middle bottom

genia-ep 0.26 0.24 0.13 0.06
genia-google 0.28 0.24 0.18 0.09
genia-yahoo 0.27 0.22 0.17 0.09
ep-google 0.57 0.68 0.53 0.49
ep-yahoo 0.57 0.68 0.53 0.49
google-yahoo 0.90 0.90 0.89 0.89

Table 3: Kendall’s τ for count sources in Vgenia.

Vep Vep Vep Vep
top middle bottom

genia-ep 0.26 0.36 0.07 0.04
genia-google 0.27 0.39 0.15 0.12
genia-yahoo 0.24 0.35 0.12 0.10
ep-google 0.40 0.45 0.22 0.09
ep-yahoo 0.38 0.44 0.20 0.08
google-yahoo 0.86 0.89 0.84 0.83

Table 4: Kendall’s τ for count sources in Vep.

Surprisingly, this correlation is higher for Vgenia

than for Vep, as web frequencies and ep frequen-
cies are more similar for a specialised vocabulary
than for a general-purpose vocabulary. This could
mean that the three perform similarly (poorly) at
estimating frequencies for the biomedical vocab-
ulary (Vgenia) whereas they differ considerably at
estimating general-purpose frequencies.

The correlation of the rank (first column) is also
decomposed into the correlation for top words
(more than 10 occurrences), middle words (10 to
3 occurrences) and bottom words (2 and 1 occur-
rences). Except for the pair google-yahoo, the cor-
relation is much higher in the top portion of the
vocabulary and is close to zero in the long tail.
In spite of the logarithmic scale of the graphics
in figure 1, that show the largest difference in the
top part, the bottom part is actually the most ir-
regular. The only exception is ep compared with
the web count sources in Vgenia: these two pairs do
not present the high variability of the other com-
pared pairs, and this means that using ep counts
(general-purpose) to estimate genia counts (spe-
cialised) is similar to using web counts, indepen-
dently of the position of the word in the rank.

Counts from google and from yahoo are also very
similar, specially if we also consider Spearman’s
ρ , that is very close to total correlation. Web ranks
are also more similar for a specialised vocabulary
than for a general-purpose one, providing further
evidence for the hypothesis that the higher corre-
lation is a consequence of both sources being poor
frequency estimators. That is, for a given vocabu-
lary, when web count sources are good estimators,
they will be more distinct (e.g. having less zero
frequencies).

5 Combining corpora frequencies

In our second experiment, the goal is to propose
and to evaluate techniques for the combination
of n-gram counts from heterogeneous sources.
Therefore, we will use the insights about the vo-
cabulary differences presented in the previous sec-
tion. In this evaluation, we measure the impact
of the suggested techniques in the identification
of noun–noun compounds in corpora. Noun com-
pounds are very frequent in general-purpose and
specialised texts (e.g. bus stop, European Union
and gene activation). We extract them automat-
ically from ep and from genia using a standard
method based on POS patterns and association
measures (Evert and Krenn, 2005; Pecina, 2008;
Ramisch et al., 2010).

5.1 Experimental setup
The evaluation task consists of, given a corpus
of N words, extract all occurrences of adjacent
pairs of nouns8 and then rank them using a stan-
dard statistical measure that estimates the asso-
ciation strength between the two nouns. Analo-
gously to the formalism adopted in section 4.2,
we assume that, for each corpus, we generate a
set NN containing n-grams v1...n ∈ NN9 for which
we obtain n-gram counts from four sources. The
elements in NN are generated by comparing the
POS pattern noun–noun against all the bigrams in
the corpus and keeping only those pairs of adja-
cent words that match the pattern. The calculation
of the association measure, considering a bigram
v1v2, is based on a contingency table which cells

8We ignore other types of compounds, e.g. adjective–
noun pairs.

9We abbreviate a sequence v1 . . .vn as v1...n.
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contain all possible outcomes a1a2,ai ∈ {vi,¬vi}.
For web-based counts, we corrected up to 2% of
them by forcing the frequency of a unigram to be
at least equal to the frequency of the bigram in
which it occurs. Such inconsistencies are incom-
patible with statistical approaches based on con-
tingency table, as discussed in section 2.

The log-likelihood association measure (LL, al-
ternatively called expected mutual information),
estimates the difference between the observed ta-
ble and the expected table under the assumption of

independent events, where E(a1 . . .an) =

n
∏
i=1

c(ai)

Nn−1
is calculated using maximum likelihood:

LL(v1v2) = ∑
a1a2

c(a1a2)× log2
c(a1a2)

E(a1a2)

The evaluation of the NN lists is performed au-
tomatically with the help of existing noun com-
pound dictionaries. The general-purpose gold
standard, used to evaluate NNep, is composed of
bigram noun compounds extracted from several
resources: 6,212 entries from the Cambridge In-
ternational Dictionary of English, 22,981 from
Wordnet and 2,849 from the data sets of MWE
200810. Those were merged into a single general-
purpose gold standard that contains 28,622 bi-
gram noun compounds. The specialised gold stan-
dard, used to evaluate NNgenia, is composed of
7,441 bigrams extracted from constituent annota-
tion of the genia corpus with respect to concepts
in the Genia ontology (Kim et al., 2006).

True positives (TPs) are the n-grams of NN
that are contained in the respective gold standard,
while n-grams that do not appear in the gold stan-
dard are considered false positives11. While this
is a simplification that underestimates the perfor-
mance of the method, it is appropriate for the pur-
pose of this evaluation because we compare only
the mean average precision (MAP) between two
NN ranks, in order to verify whether improve-
ments obtained by the combined frequencies are

10420 entries provided by Timothy Baldwin, 2,169 en-
tries provided by Su Nam Kim and 250 entries provided by
Preslav Nakov, freely available at http://multiword.
sf.net/

11In fact, nothing can be said about an n-gram that is not
in a (limited-coverage) dictionary, further manual annotation
would be necessary to asses its relevance.

significant. Additionaly, MWEs are complex lin-
guistic phenomena, and their annotation, specially
in a domain corpus, is a difficult task that reaches
low agreement rates, sometimes even for expert
native speakers. Therefore, not only for theo-
retical reasons but also for practical reasons, we
adopted an automatic evaluation procedure rath-
ern than annotating the top candidates in the lists
by hand.

Since the log-likelihood measure is a function
that assigns a real value to each n-gram, there is
a rank relation ≤r that will be used to calculate
MAP as follows:

MAP(NN,≤r) =

∑
v1...n∈NN

P(v1...n)× p(v1...n)

|TPs in NN| ,

where p = 1 if v1...n is a TP, 0 else, and the preci-
sion P(v1...n) of a given n-gram corresponds to the
number of TPs before v1...n in 〈NN,≤r〉 over the
total number of n-grams before v1...n in 〈NN,≤r〉.

5.2 Combination heuristics
From the initial list of 176,552 lemmatised n-
grams in NNep and 14,594 in NNgenia, we fil-
tered out all hapax legomena in order to remove
noise and avoid useless computations. Then, we
counted the occurrences of v1, v2 and v1v2 in our
four sources, and those were used to calculate the
four LL values of n-grams in both lists. We also
propose three heuristics to combine a set of m
count sources c1 through cm into a single count
source ccomb:

ccomb(v1...n) =
m

∑
i=1

wi(v1...n)× ci(v1...n),

where w(v1...n) is a function that assigns a weight
between 0 and 1 for each count source accord-
ing to the n-gram v1...n. Three different func-
tions were used in our experiments: uniform
linear interpolation assumes a constant and uni-
form weight w(v1...n) = 1/m for all n-grams; pro-
portional linear interpolation assumes a constant
weight wi(v1...n) = ((∑m

j=1 N j)−Ni)/∑m
j=1 N j that

is proportional to the inverse size of the corpus;
and back-off uses the uniform interpolation of
web frequencies whenever the n-gram count in the
original corpus falls below a threshold (empiri-
cally defined as log2(N/100,000)).
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MAP of rank NNgenia NNep

LLgenia 0.4400 0.0462
LLep 0.4351 0.0371
LLgoogle 0.4297 0.0532
LLyahoo 0.4209 0.0508

LLuni f orm 0.4254 0.0508
LLproportional 0.4262 0.0520
LLbacko f f 0.3719 0.0370

Table 5: Performance of compound extraction.

Table 5 shows that the performance of back-
off is below all other techniques for both vocab-
ularies, thus excluding it as a successful combina-
tion heuristic. The large difference between MAP
scores for NNep and for NNgenia is explained by
the relative size of the gold standards: while the
general-purpose reference accounts for 16% of the
size of the NNep set, the specialised reference has
as many entries as 50% of NNgenia. Moreover, the
former was created by joining heterogeneous re-
sources while the latter was compiled by human
annotators from the Genia corpus itself. The goal
of our evaluation, however, is not to compare the
difficulty of each task, but to compare the com-
bination heuristics presented in each row of the
table.

The best MAP for NNgenia was obtained with
genia, that significantly outperforms all other
sources except ep12. On the other hand, the use
of web-based or interpolated counts in extracting
specialised noun–noun compounds does not im-
prove the performance of results based on sparse
but reliable counts drawn from well-formed cor-
pora. Nonetheless, the performance of ep in spe-
cialised extraction is surprising and could only be
explained by some overlap between the corpora.
Moreover, the interpolated counts are not signif-
icantly different from google counts, even if this
corpus should have the weakest weight in propor-
tional interpolation.

General-purpose compound extraction, how-
ever, benefits from the counts drawn from large
corpora as google and yahoo. Indeed, the former

12Significance was assessed through a standard one-tailed
t test for equal sample sizes and variances, α = 0.005.

significantly outperforms all other count sources,
closely followed by proportional counts. In
both vocabularies, proportional interpolation per-
forms very similar to the best count source, but,
strangely enough, it still does not outperform
google. Further data inspection would be needed
to explain these results for the interpolated combi-
nation and to try to shed some light on the reason
why the backoff method performs so poorly.

6 Future perspectives

In this work, we presented a detailed evalua-
tion of the use of web frequencies as estima-
tors of corpus frequencies in general-purpose and
specialised tasks, discussing some important as-
pects of corpus-based versus web-based n-gram
frequencies. The results indicate that they are
not only very distinct but they are so in different
ways. The importance of domain-specific data for
modelling a specialised vocabulary is discussed in
terms of using ep to get Vgenia counts. Further-
more, the web corpora were more similar to genia
than to ep, which can be explained by the fact that
“similar” is different from “good”, i.e. they might
be equally bad in modelling genia while they are
distinctly better for ep.

We also proposed heuristics to combine count
sources inspired by standard interpolation and
back-off techniques. Results show that we can-
not use web-based or combined counts to identify
specialised noun compounds, since they do not
help minimise data sparseness. However, general-
purpose extraction is improved with the use of
web counts instead of counts drawn from standard
corpora.

Future work includes extending this research
to other languages and domains in order to es-
timate how much of these results depend on the
corpora sizes. Moreover, as current interpolation
techniques usually combine two corpora, weights
are estimated in a more or less ad hoc proce-
dure (Lapata and Keller, 2005). Interpolating sev-
eral corpora would need a more controlled learn-
ing technique to obtain optimal weights for each
frequency function. Additionally, the evaluation
shows that corpora perform differently according
to the frequency range. This insight could be used
to define weight functions for interpolation.
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