
Coling 2010: Poster Volume, pages 748–756,
Beijing, August 2010

Head-modifier Relation based Non-lexical Reordering Model 

for Phrase-Based Translation  

Shui Liu1, Sheng Li1, Tiejun Zhao1, Min Zhang2, Pengyuan Liu3 
1School of Computer Science and Technology, Habin Institute of Technology 

{liushui,lisheng,tjzhao}@mtlab.hit.edu.cn 
2Institute for Infocomm Research 

mzhang@i2r.a-star.edu.sg 
3Institute of Computational Linguistics, Peking University  

liupengyuan@pku.edu.cn 
 

Abstract 

Phrase-based statistical MT (SMT) is a 
milestone in MT. However, the transla-
tion model in the phrase based SMT is 
structure free which greatly limits its 
reordering capacity. To address this is-
sue, we propose a non-lexical head-
modifier based reordering model on 
word level by utilizing constituent based 
parse tree in source side. Our experi-
mental results on the NIST Chinese-
English benchmarking data show that, 
with a very small size model, our me-
thod significantly outperforms the base-
line by 1.48% bleu score. 

1 Introduction 

Syntax has been successfully applied to SMT to 
improve translation performance. Research in 
applying syntax information to SMT has been 
carried out in two aspects. On the one hand, the 
syntax knowledge is employed by directly inte-
grating the syntactic structure into the transla-
tion rules i.e. syntactic translation rules. On this 
perspective, the word order of the target transla-
tion is modeled by the syntax structure explicit-
ly.  Chiang (2005), Wu (1997) and Xiong (2006) 
learn the syntax rules using the formal gram-
mars. While more research is conducted to learn 
syntax rules with the help of linguistic analysis 
(Yamada and Knight, 2001; Graehl and Knight, 
2004). However, there are some challenges to 
these models. Firstly, the linguistic analysis is 
far from perfect. Most of these methods require 
an off-the-shelf parser to generate syntactic 
structure, which makes the translation results 
sensitive to the parsing errors to some extent. 

To tackle this problem, n-best parse trees and 
parsing forest (Mi and Huang, 2008; Zhang, 
2009) are proposed to relieve the error propaga-
tion brought by linguistic analysis. Secondly, 
some phrases which violate the boundary of 
linguistic analysis are also useful in these mod-
els ( DeNeefe et al., 2007; Cowan et al. 2006). 
Thus, a tradeoff needs to be found between lin-
guistic sense and formal sense. 

On the other hand, instead of using syntactic 
translation rules, some previous work attempts 
to learn the syntax knowledge separately and 
then integrated those knowledge to the original 
constraint. Marton and Resnik (2008) utilize the 
language linguistic analysis that is derived from 
parse tree to constrain the translation in a soft 
way. By doing so, this approach addresses the 
challenges brought by linguistic analysis 
through the log-linear model in a soft way.  

Starting from the state-of-the-art phrase based 
model Moses ( Koehn e.t. al, 2007), we propose 
a head-modifier relation based reordering model 
and use the proposed model as  a soft syntax 
constraint in the phrase-based translation 
framework. Compared with most of previous 
soft constraint models, we study the way to util-
ize the constituent based parse tree structure by 
mapping the parse tree to sets of head-modifier 
for phrase reordering. In this way, we build a 
word level reordering model instead of phras-
al/constituent level model.  In our model, with 
the help of the alignment and the head-modifier 
dependency based relationship in the source 
side, the reordering type of each target word 
with alignment in source side is identified as 
one of pre-defined reordering types. With these 
reordering types, the reordering of phrase in 
translation is estimated on word level.   
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Fig 1. An Constituent based Parse Tree 

 
 

2 Baseline  

Moses, a state-of-the-art phrase based SMT sys-
tem is used as our baseline system. In Moses, 
given the source language f and target language 
e, the decoder is to find: 

ebest = argmaxe p ( e | f ) pLM ( e ) ω
length(e)  

      (1)    

where p(e|f) can be computed using phrase 
translation model, distortion model and lexical 
reordering model. pLM(e) can be computed us-
ing the language model. ω

length(e)
 is word penalty 

model.  
Among the above models, there are three 

reordering-related components: language model, 
lexical reordering model and distortion model. 
The language model can reorder the local target 
words within a fixed window in an implied way. 
The lexical reordering model and distortion 
reordering model tackle the reordering problem 
between adjacent phrase on lexical level and 
alignment level. Besides these reordering model, 
the decoder induces distortion pruning con-
straints to encourage the decoder translate the 
leftmost uncovered word in the source side 
firstly and to limit the reordering within a cer-
tain range. 

3 Model  

In this paper, we utilize the constituent parse 
tree of source language to enhance the  reorder- 

 
 
ing capacity of the translation model. Instead of 
directly employing the parse tree fragments 
(Bod, 1992; Johnson, 1998) in reordering rules 
(Huang and Knight, 2006; Liu 2006; Zhang and 
Jiang 2008), we make a mapping from trees to 
sets of head-modifier dependency relations 
(Collins 1996 ) which  can be obtained  from the 
constituent based parse tree with the help of 
head rules ( Bikel, 2004 ). 

3.1 Head-modifier Relation  

According to Klein and Manning (2003) and 
Collins (1999), there are two shortcomings in n-
ary Treebank grammar.  Firstly, the grammar is 
too coarse for parsing. The rules in different 
context always have different distributions. Se-
condly, the rules learned from training corpus 
cannot cover the rules in testing set. 

Currently, the state-of-the-art parsing algo-
rithms (Klein and Manning, 2003; Collins 1999) 
decompose the n-ary Treebank grammar into 
sets of head-modifier relationships. The parsing 
rules in these algorithms are constructed in the 
form of finer-grained binary head-modifier de-
pendency relationships. Fig.2 presents an exam-
ple of head-modifier based dependency tree 
mapped from the constituent parse tree in Fig.1.  
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Fig. 2. Head-modifier Relationships with Aligned Translation 

 
Moreover, there are several reasons for which 

we adopt the head-modifier structured tree as 
the main frame of our reordering model. Firstly, 
the dependency relationships can reflect some 
underlying binary long distance dependency 
relations in the source side. Thus, binary depen-
dency structure will suffer less from the long 
distance reordering constraint. Secondly, in 
head-modifier relation, we not only can utilize 
the context of dependency relation in reordering 
model, but also can utilize some well-known 
and proved helpful context (Johnson, 1998) of 
constituent base parse tree in reordering model. 
Finally, head-modifier relationship is mature 
and widely adopted method in full parsing.   

3.2 Head-modifier Relation Based Reor-
dering Model  

Before elaborating the model, we define some 
notions further easy understanding. S=<f1, f 

2…fn> is the source sentence; T=<e1,e2,…,em> is 
the target sentence; AS={as(i) | 1≤ as(i) ≤ n } 
where as(i) represents that the ith word in source 
sentence  aligned to the as(i)th word in target 
sentence; AT={aT(i) | 1≤ aT (i) ≤ n } where aT(i) 
represents that the ith word in target sentence  

aligned to the aT(i)th word in source sentence; 
D= {( d(i), r(i) )| 0≤ d(i) ≤n} is the head-
modifier relation set of  the words in S where 
d(i) represents that the ith word in source sen-
tence is the modifier of d(i)th  word in source 
sentence under relationship r(i); O= < o1, o2,…, 
om > is the sequence of the reordering type of 
every word in target language. The reordering 
model probability is P(O| S, T, D, A).  

Relationship: in this paper, we not only use the 
label of the constituent label as Collins (1996), 
but also use some well-known context in pars-
ing to define the head-modifier relationship r(.), 
including the POS of the modifier m,  the POS 
of the head h, the dependency direction d, the 
parent label of the dependency label l, the 
grandfather label of the dependency relation p, 
the POS of adjacent siblings of the modifier s. 
Thus, the head-modifier relationship can be 
represented as a 6-tuple <m, h, d, l, p, s>. 
 

r(.) relationship 
r(1) <VV, - , -, -, -, - > 

r(2) <NN, NN, right, NP, IP, - > 
r(3) <NN,VV, right, IP, CP, - > 

r(4) <VV, DEC, right, CP, NP, - > 
r(5) <NN,VV, left, VP, CP, - > 

r(6) <DEC, NP, right, NP, VP, - > 
r(7) <NN, VV, left, VP,  TOP, - > 

Table 1. Relations Extracted from Fig 2.  
 

In Table 1, there are 7 relationships extracted 
from the source head-modifier based dependen-
cy tree as shown in Fig.2. Please notice that, in 
this paper, each source word has a correspond-
ing relation.  
Reordering type: there are 4 reordering types 
for target words with linked word in the source 
side in our model: R= {rm1, rm2, rm3 , rm4}. The 
reordering type of target word as(i) is defined  as 
follows: 

 rm1: if the position number of the ith 
word’s head is less than i ( d(i) < i ) in 
source language, while the position num-
ber of the word aligned to i is less than 
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as(d(i)) (as(i)  < as(d(i)) ) in target lan-
guage;  

 rm2: if the position number of the ith 
word’s head is less than i ( d(i) < i ) in 
source language, while the position num-
ber of the word aligned to i is larger than 
as(d(i)) (as(i) > as(d(i)) ) in target lan-
guage. 

 rm3: if the position number of the ith 
word’s head is larger than i ( d(i) > i ) in 
source language, while the position num-
ber of the word aligned to i is larger than 
as(d(i)) (as(i) > as(d(i))) in target language. 

 rm4: if the position number of the ith 
word’s head is larger than i ( d(i) > i) in 
source language, while the position num-
ber of the word aligned to i is less than 
as(d(i)) (as(i) < as(d(i)) ) in target lan-
guage. 

 
 

Fig. 3.  An example of the reordering types in 
Fig. 2. 

Fig. 3 shows examples of all the reordering 
types. In Fig. 3, the reordering type is labeled at 
the target word aligned to the modifier: for ex-
ample, the reordering type of rm1 belongs to the 
target word “scale”. Please note that, in general, 
these four types of reordering can be divided 
into 2 categories: the target words order of rm2 
and rm4 is identical with source word order, 
while rm1 and rm3 is the swapped order of 
source. In practice, there are some special cases 
that can’t be classified into any of the defined 
reordering types: the head and modifier in 
source link to the same word in target. In such 
cases, rather than define new reordering types, 
we classify these special cases into these four 
defined reordering types: if the head is right to 
the modifier in source, we classify the reorder-

ing type into rm2; otherwise, we classify the 
reordering type into rm4. 
Probability estimation: we adopt maximum 
likelihood (ML) based estimation in this paper. 
In ML estimation, in order to avoid the data 
sparse problem brought by lexicalization, we 
discard the lexical information in source and 
target language: 
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where F(. ) is the frequency of the statistic event 
in training corpus. For a given set of dependen-
cy relationships mapping from constituent tree, 
the reordering type of ith word is confined to 
two types: it is whether one of rm1 and rm2 or 
rm3 and rm4. Therefore, |O|=2 instead of |O|=4 
in (2). The parameter α is an additive factor to 
prevent zero probability. It is computed as:   
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(4) 
where c is a constant parameter(c=5 in this pa-
per). 
   In above, the additive parameter α is an adap-
tive parameter decreasing with the size of the 
statistic space. By doing this, the data sparse 
problem can be relieved. 

4 Apply the Model to Decoder 

Our decoding algorithm is exactly the same as 
(Kohn, 2004). In the translation procedure, the 
decoder keeps on extending new phrases with-
out overlapping, until all source words are trans-
lated. In the procedure, the order of the target 
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words in decoding procedure is fixed.  That is, 
once a hypothesis is generated, the order of tar-
get words cannot be changed in the future. Tak-
ing advantage of this feature, instead of compu-
ting a totally new reordering score for a newly 
generated hypothesis, we merely calculate the 
reordering score of newly extended part of the 
hypothesis in decoding. Thus, in decoding, to 
compute the reordering score, the reordering 
types of each target word in the newly extended 
phrase need to be identified.  

The method to identify the reordering types 
in decoding is proposed in Fig.4. According to 
the definition of reordering, the reordering type 
of the target word is identified by the direction 
of head-modifier dependency on the source side, 
the alignment between the source side and tar-
get side, and the relative translated order of 
word pair under the head-modifier relationship. 
The direction of dependency and the alignment 
can be obtained in input sentence and phrase 
table. While the relative translation order needs 
to record during decoding. A word index is em-
ployed to record the order. The index is con-
structed in the form of true/false array: the index 
of the source word is set with true when the 
word has been translated. With the help of this 
index, reordering type of every word in the 
phrase can be identified. 
 

1: Input: alignment array AT; the Start is the 
start position of the phrase in the source side; 
head-modifier relation d(.); source word in-
dex C, where C[i]=true  indicates that the 
ith word in source has been translated.   

2: Output: reordering type array O which re-
serves the reordering types of each word in 
the target phrase 

3: for i = 1, |AT| do 
4:    P  ← aT(i) + Start 
5:    if (d (P)<P) then 
6:      if C [d(p)] = false then 

7:         O[i] ← rm1 
8:      else 

9:         O[i] ← rm2 

10:        end if 

11:  else   
12:     if  C[d(p)] = true then 

13:        O[i] ← rm3 

14:       else 

15:          O[i] ← rm4 

16:       end if 
17:    end if 
18: C[p] ←true //update word index 
19: end for 

Fig. 4.  Identify the Reordering Types of  Newly 
Extended Phrase 

After all the reordering types in the newly ex-
tended phrase are identified, the reordering 
scores of the phrase can be computed by using 
equation (3). 

5 Preprocess the Alignment 

In Fig. 4, the word index is to identify the reor-
dering type of the target translated words. Ac-
tually, in order to use the word index without 
ambiguity, the alignment in the proposed algo-
rithm needs to satisfy some constraints.  

Firstly, every word in the source must have 
alignment word in the target side. Because, in 
the decoding procedure, if the head word is not 
covered by the word index, the algorithm cannot 
distinguish between the head word will not be 
translated in the future and the head word is not 
translated yet. Furthermore, in decoding, as 
shown in Fig.4, the index of source would be set 
with true only when there is word in target 
linked to it. Thus, the index of the source word 
without alignment in target is never set with true.  

 
Fig. 5.  A complicated Example of Alignment in 

Head-modifier based Reordering Model 

Secondly, if the head word has more than one 
alignment words in target, different alignment 
possibly result in different reordering type. For 
example, in Fig. 5, the reordering type of e2 is 
different when f2 select to link word e1 and e3   
in the source side.  

To solve this problem, we modify the align-
ment to satisfy following conditions: a) each 
word in source just has only one alignment 
word in target, and b) each word in target has at 
most one word aligned in source as its anchor 
word which decides the reordering type of the 
target word.  

To make the alignment satisfy above con-
straints, we modify the alignment in corpus. In 
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order to explain the alignment preprocessing, 
the following notions are defined: if there is a 
link between the source word f j  and target word 
ei, let  l(ei ,fj) = 1 , otherwise l(ei ,fj) = 0; the 

source word fj∈F1-to-N , iff  ∑i l(ei,fj) >1, such 
as the source word f2 in Fig. 5; the source word 

fj∈FNULL, iff ∑i l(ei,fj) = 0, such as the source 

word f4 in Fig. 5; the target word ei∈E1-to-N  , iff 

∑j l(ei,fj) > 1, such as the target word e1 in Fig. 
5.  

In preprocessing, there are 3 types of opera-
tion, including DiscardLink(fj) , BorrowLink( f j )  
and FindAnchor(ei ) : 
DiscardLink( fj ) : if the word fj in source with 

more than one words aligned in target, i.e.  fj∈
F1-to-N ; We set the target word en with l(en, fj) = 
1, where en= argmaxi p(ei | fj) and   p(ei | fj) is 
estimated by ( Koehn e.t. al, 2003), while set  
rest of words linked to fj with l (en, fj) = 0.    
BorrowLink( fj ): if the word fj in source with-

out a alignment word in target, i.e.  fj∈FNULL ; 
let l(ei,fj)=1 where ei  aligned to the word fj , 
which is the nearest word to  fj  in the source 
side; when there are two words nearest to fj with 
alignment words in the target side at the same 
time, we select the alignment of  the left word 
firstly .  

FindAnchor( ): for the word ei  in target with 
more than one words aligned in source , i.e.  ei

∈E1-to-N ; we select the word  fm  aligned to ei as 
its anchor word to decide the reordering type of 
ei  ,  where fm= argmaxj p(ei | fj) and  p(fj | ei) is 
estimated by ( Koehn et al, 2003); For the rest 
of words aligned to  ei , we would set their word 
indexes with true in the update procedure of 
decoding  in the 18

th
 line of Fig.4.    

With these operations, the required alignment 
can be obtained by preprocessing the origin 
alignment as shown in Fig. 6. 
1: Input: set of alignment A between target lan-

guage e and source language f  
2: Output: the 1-to-1 alignment required by the 

model 

3:  foreach fi∈F1-to-N do 
4:    DiscardLink( fi ) 
5:  end for 

6:  foreach fi  ∈FNULL  do 
7:    BorrowLink( fi ) 
8:  end for 

9:  foreach  ei∈E1-to-N do  

10:   FindAnchor(ei ) 
11:endfor           

Fig. 6. Alignment Pre-Processing algorithm 

 

 

 
Fig. 7. An Example of Alignment Preprocessing. 

   An example of  the preprocess the alignment 
in Fig. 5 is shown in Fig. 7 : firstly, Discar-
dLink(f2) operation discards the link between f2 
and e1  in (a); then the link between f4 and e3 is 
established by operation BorrowLink(f4 )  in (b); 
at last, FindAnchor(e3) select f2 as the anchor 
word of e3  in source in (c). After the prepro-
cessing, the reordering type of e3   can be identi-
fied. Furthermore, in decoding, when the de-
coder scans over e2, the word index sets the 
word index of f3 and f4 with true. In this way, 
the never-true word indexes in decoding are 
avoided.  

6 Training the Reordering Model 

Before training, we get the required alignment 
by alignment preprocessing as indicated above. 
Then we train the reordering model with this 
alignment: from the first word to the last word 
in the target side, the reordering type of each 
word is identified. In this procedure, we skip the 
words without alignment in source. Finally, all 
the statistic events required in equation (3) are 
added to the model.   

In our model, there are 20,338 kinds of rela-
tions with reordering probabilities which are 
much smaller than most phrase level reordering 
models on the training corpus FBIS.   

Table 1 is the distribution of different reor-
dering types in training model.  
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Type of Reordering   Percentage   %    

           

rm1 
rm2 
rm3 

3.69 
27.61 
20.94 

rm4 47.75 

Table 1: Percentage of different reordering 
types in model 

From Table 1, we can conclude that the reor-
dering type rm2 and rm4 are preferable in reor-
dering which take over nearly 3/4 of total num-
ber of reordering type and are identical with 
word order of the source. The statistic data indi-
cate that most of the words order doesn’t change 
in our head-modifier reordering view.  This 
maybe can explain why the models (Wu, 1997; 
Xiong, 2006; Koehn, et., 2003) with limited 
capacity of reordering can reach certain perfor-
mance. 

7 Experiment and Discussion  

7.1 Experiment Settings 

We perform Chinese-to-English translation task 
on NIST MT-05 test set, and use NIST MT-02 
as our tuning set. FBIS corpus is selected as our 
training corpus, which contains 7.06M Chinese 
words and 9.15M English words. We use GI-
ZA++(Och and Ney, 2000) to make the corpus 
aligned. A 4-gram language model is trained 
using Xinhua portion of the English Gigaword 
corpus (181M words). All models are tuned on 
BLEU, and evaluated on both BLEU and NIST 
score. 

To map from the constituent trees to sets of 
head-modifier relationships, firstly we use the 
Stanford parser (Klein, 2003) to parse the 
source of corpus FBIS, then we use the head-
finding rules in (Bikel, 2004) to get the head-
modifier dependency sets. 

In our system, there are 7 groups of features. 
They are: 

1. Language model score (1 feature) 
2. word penalty score (1 feature) 
3. phrase model scores (5 features) 
4. distortion score (1 feature) 
5. lexical RM scores (6 features) 
6. Number of each reordering type (4 fea-

tures) 
7. Scores of each reordering type (4 fea-

tures, computed by equation (3)) 

In these feature groups, the top 5 groups of 
features are the baseline model, the left two 
group scores are related with our model.  

In decoding, we drop all the OOV words and 
use default setting in Moses: set the distortion 
limitation with 6, beam-width with 1/100000, 
stack size with 200 and max number of phrases 
for each span with 50.  

7.2 Results and Discussion 

We take the replicated Moses system as our 
baseline. Table 2 shows the results of our model.  
In the table, Baseline model is the model includ-
ing feature group 1, 2, 3 and 4. Baselinerm mod-
el is the Baseline model with feature group 5. H-

M model is the Baseline model with feature 
group 6 and 7. H-Mrm model is the Baselinerm 

model with feature group 6 and 7.  

Model BLEU% NIST 
Baseline 27.06 7.7898 
Baselinerm  27.58     7.8477 
H-M  28.47     8.1491 
H-Mrm 29.06 8.0875 

Table 2: Performance of  the Systems on NIST-
05(bleu4 case-insensitive). 

From table 2, we can conclude that our reor-
dering model is very effective. After adding 
feature group 6 and 7, the performance is im-
proved by 1.41% and 1.48% in bleu score sepa-
rately. Our reordering model is more effective 
than the lexical reordering model in Moses:  
1.41% in bleu score is improved by adding our 
reordering model to Baseline model, while 0.48 
is improved by adding the lexical reordering to 
Baseline model.   

threshold KOR BLEU NIST 

≥1 20,338  29.06  8.0875 

≥2      13,447 28.83   8.3658 

≥3      10,885 28.64 8.0350 

≥4        9,518 28.94 8.1002 

≥5        8,577       29.18   8.1213 

Table 3: Performance on NIST-05 with Differ-
ent Relation Frequency Threshold (bleu4 case-

insensitive). 

Although our model is lexical free, the data 
sparse problem affects the performance of the 
model. In the reordering model, nearly half 
numbers of the relations in our model occur less 
than three times. To investigate this, we statistic 
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the frequency of the relationships in our model, 
and expertise our H-M full model with different 
frequency threshold.  

In Table 3, when the frequency of relation is 
not less than the threshold, the relation is added 
into the reordering model; KOR is the number 
of relation type in the reordering model.  

Table 3 shows that, in our model, many rela-
tions occur only once. However, these low-
frequency relations can improve the perfor-
mance of the model according to the experimen-
tal results. Although low frequency statistic 
events always do harm to the parameter estima-
tion in ML, the model can estimate more events 
in the test corpus with the help of low frequency 
event. These two factors affect the experiment 
results on opposite directions: we consider that 
is the reason the result don’t increase or de-
crease with the increasing of frequency thre-
shold in the model. According to the results, the 
model without frequency threshold achieves the 
highest bleu score. Then, the performance drops 
quickly, when the frequency threshold is set 
with 2. It is because there are many events can’t 
be estimated by the smaller model. Although, in 
the model without frequency threshold, there 
are some probabilities overestimated by these 
events which occur only once, the size of the 
model affects the performance to a larger extent. 
When the frequency threshold increases above 3, 
the size of model reduces slowly which makes 
the overestimating problem become the impor-
tant factor affecting performance. From these 
results, we can see the potential ability of our 
model: if our model suffer less from data spars 
problem, the performance should be further im-
proved, which is to be verified in the future.   

8 Related Work and Motivation 

There are several researches on adding linguis-
tic analysis to MT in a “soft constraint” way. 
Most of them are based on constituents in parse 
tree. Chiang(2005), Marton and Resnik(2008) 
explored the constituent match/violation in hie-
ro; Xiong (2009 a) added constituent parse tree  
based linguistic analysis into BTG model; 
Xiong (2009 b) added source dependency struc-
ture to BTG; Zhang(2009) added tree-kernel to 
BTG model.  All these studies show promising 
results. Making soft constrain is an easy and 

efficient way in adding linguistic analysis into 
formal sense SMT model.   

In modeling the reordering, most of previous 
studies are on phrase level. In Moses, the lexical 
reordering is modeled on adjacent phrases. In 
(Wu, 1996; Xiong, 2006), the reordering is also 
modeled on adjacent translated phrases. In hiero, 
the reordering is modeled on the segments of 
the unmotivated translation rules. The tree-to-
string models (Yamada et al. 2001; Liu et 
al.2006) are model on phrases with syntax re-
presentations. All these studies show excellent 
performance, while there are few studies on 
word level model in recent years. It is because, 
we consider, the alignment in word level model 
is complex which limits the reordering capacity 
of word level models.  

However, our work exploits a new direction 
in reordering that, by utilizing the decomposed 
dependency relations mapped from parse tree as 
a soft constraint, we proposed a novel head-
modifier relation based word level reordering 
model. The word level reordering model is 
based on a phrase based SMT framework. Thus, 
the task to find the proper position of translated 
words converts to score the reordering of the 
translated words, which relax the tension be-
tween complex alignment and word level reor-
dering in MT.  

9 Conclusion and Future Work 

Experimental results show our head-modifier 
relationship base model is effective to the base-
line (enhance by 1.48% bleu score), even with 
limited size of model and simple parameter es-
timation. In the future, we will try more compli-
cated smooth methods or use maximum entropy 
based reordering model. We will study the per-
formance with larger distortion constraint, such 
as the performances of   the distortion constraint 
over 15, or even the performance without distor-
tion model.  
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