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Abstract

An unsupervised discriminative training
procedure is proposed for estimating a
language model (LM) for machine trans-
lation (MT). An English-to-English syn-
chronous context-free grammar is derived
from a baseline MT system to capture
translation alternatives: pairs of words,
phrases or other sentence fragments that
potentially compete to be the translation
of the same source-language fragment.
Using this grammar, a set of impostor
sentences is then created for each En-
glish sentence to simulate confusions that
would arise if the system were to process
an (unavailable) input whose correct En-
glish translation is that sentence. An LM
is then trained to discriminate between
the original sentences and the impostors.
The procedure is applied to the IWSLT
Chinese-to-English translation task, and
promising improvements on a state-of-
the-art MT system are demonstrated.

1 Discriminative Language Modeling

A language model (LM) constitutes a crucial com-
ponent in many tasks such as machine translation
(MT), speech recognition, information retrieval,
handwriting recognition, etc. It assigns a pri-
ori probabilities to word sequences. In general,
we expect a low probability for an ungrammat-
ical or implausible word sequence. The domi-
nant LM used in such systems is the so-called
n-gram model, which is typically derived from a
large corpus of target language text via maximum
likelihood estimation, mitigated by some smooth-
ing or regularization. Due to the Markovian as-
sumptions implicit in n-gram models, however,
richer linguistic and semantic dependencies are

not well captured. Rosenfeld (1996) and Khu-
danpur and Wu (2000) address such shortcom-
ing by using maximum entropy models with long-
span features, while still working with a locally
normalized left-to-right LM. The whole-sentence
maximum entropy LM of Rosenfeld et al. (2001)
proposes a globally normalized log-linear LM in-
corporating several sentence-wide features.

The n-gram as well as the whole-sentence
model are generative or descriptive models of
text. However, in a task like Chinese-to-English
MT, the de facto role of the LM is to discriminate
among the alternative English translations being
contemplated by the MT system for a particular
Chinese input sentence. We call the set of such
alternative translations a confusion set. Since a
confusion set is typically a minuscule subset of
the set of all possible word sequences, it is ar-
guably better to train the LM parameters so as to
make the best candidate in the confusion set more
likely than its competitors, as done by Roark et al.
(2004) for speech recognition and by Li and Khu-
danpur (2008) for MT. Note that identifying the
best candidate requires supervised training data—
bilingual text in case of MT—which is expensive
in many domains (e.g. weblog or newsgroup) and
for most language pairs (e.g. Urdu-English).

We propose a novel discriminative LM in this
paper: a globally normalized log-linear LM that
can be trained in an efficient and unsupervised
manner, using only monolingual (English) text.

The main idea is to exploit (translation) un-
certainties inherent in an MT system to de-
rive an English-to-English confusion grammar
(CG), illustrated in this paper for a Hiero sys-
tem (Chiang, 2007). From the bilingual syn-
chronous context-free grammar (SCFG) used in
Hiero, we extract a monolingual SCFG, with rules
of the kind, X → 〈strong tea, powerful tea〉 or
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X → 〈in X1, in the X1〉. Thus our CG is also an
SCFG that generates pairs of English sentences
that differ from each other in ways that alterna-
tive English hypothesis considered during transla-
tion would differ from each other. This CG is then
used to “translate” each sentence in the LM train-
ing corpus into what we call its confusion set — a
set of other “sentences” with which that sentence
would likely be confused by the MT system, were
it to be the target translation of a source-language
sentence. Sentences in the training corpus, each
paired with its confusion set, are then used to train
a discriminative LM to prefer the training sen-
tences over the alternatives in their confusion sets.

Since the monolingual CG and the bilingual
Hiero grammar are both SCFGs, the confusion
sets are isomorphic with translation hypergraphs
that are used by supervised discriminative train-
ing. The confusion sets thus simulate the super-
vised case, with a key exception: lack of any
(Chinese) source-language information. There-
fore, only target-side “language model” probabil-
ities may be estimated from confusion sets.

We carry out this discriminative training proce-
dure, and empirically demonstrate promising im-
provements in translation quality.

2 Discriminative LM Training

2.1 Whole-sentence Maximum Entropy LM
We aim to train a globally normalized log-linear
language model pθ(y) of the form

pθ(y) = Z−1 ef(y)·θ (1)

where y is an English sentence, f(y) is a vector
of arbitrary features of y, θ is the (weight) vec-
tor of model parameters, and Z def

=
∑

y′ e
f(y′)·θ is

a normalization constant. Given a set of English
training sentences {yi}, the parameters θ may be
chosen to maximize likelihood, as

θ∗ = argmax
θ

∏

i

pθ(yi). (2)

This is the so called whole-sentence maximum
entropy (WSME) language model1 proposed by

1Note the contrast with the maximum entropy n-gram
LM (Rosenfeld, 1996; Khudanpur and Wu, 2000), where the
normalization is performed for each n-gram history.

Rosenfeld et al. (2001). Training the model of
(2) requires computing Z, a sum over all possible
word sequences y′ with any length, which is com-
putationally intractable. Rosenfeld et al. (2001)
approximate Z by random sampling.

2.2 Supervised Discriminative LM Training

In addition to the computational disadvantage, (2)
also has a modeling limitation. In particular, in
a task like MT, the primary role of the LM is to
discriminate among alternative translations of a
given source-language sentence. This set of alter-
natives is typically a minuscule subset of all pos-
sible target-language word sequences. Therefore,
a better way to train the global log-linear LM,
given bilingual text {(xi, yi)}, is to generate the
real confusion set N (xi) for each input sentence
xi using a specific MT system, and to adjust θ to
discriminate between the reference translation yi
and y′ ∈ N (xi) (Roark et al., 2004; Li and Khu-
danpur, 2008).

For example, one may maximize the condi-
tional likelihood of the bilingual training data as

θ∗ = argmax
θ

∏

i

pθ(yi |xi) (3)

= argmax
θ

∏

i

ef(xi,yi)·θ∑
y′∈N (xi)

ef(xi,y′)·θ
,

which entails summing over only the candidate
translations y′ of the given input xi. Furthermore,
if the features f(xi, y) are depend on only the out-
put y, i.e. on the English-side features of the bilin-
gual text, the resulting discriminative model may
be interpreted as a language model.

Finally, in a Hiero style MT system, if f(xi, y)
depends on the target-side(s) of the bilingual rules
used to construct y from xi, we essentially have a
syntactic LM.

2.3 Unsupervised Discriminative Training
using Simulated Confusion Sets

While the supervised discriminative LM training
has both computational and modeling advantages
over the WSME LM, it relies on bilingual data,
which is expensive to obtain for several domains
and language pairs. For such cases, we propose
a novel discriminative language model, which is
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still a global log-linear LM with the modeling ad-
vantage and computational efficiency of (3) but re-
quires only monolingual text {yi} for training θ.
Specifically, we propose to modify (3) as

θ∗ = argmax
θ

∏

i

pθ(yi | N (yi)) (4)

= argmax
θ

∏

i

ef(yi)·θ∑
y′∈N (yi)

ef(y′)·θ
,

where N (yi) is a simulated confusion set for yi
obtained by applying a confusion grammar to yi,
as detailed in Section 3. Our hope is that N (yi)
resembles the actual confusion set N (xi) that an
MT system would generate if it were given the in-
put sentence xi.

Like (3), the maximum likelihood training of
(4) does not entail the expensive computation of a
global normalization constant Z, and is therefore
very efficient. Unlike (3) however, where the input
xi for each output yi is needed to create N (xi),
the model of (4) can be trained in an unsupervised
manner with only {yi}.

3 Unsupervised Discriminative Training
of the Language Model for MT

The following is thus the proposed procedure for
unsupervised discriminative training of the LM.

1. Extract a confusion grammar (CG) from the
baseline MT system.

2. “Translate” each English sentence in the LM
training corpus, using the CG as an English-
to-English translation model, to generate a
simulated confusion set.

3. Train a discriminative language model on the
simulated confusion sets, using the corre-
sponding original English sentences as the
training references.

The trained model may then be used for actual MT
decoding. We next describe each step in detail.

3.1 Extracting a Confusion Grammar

We assume a synchronous context free grammar
(SCFG) formalism for the confusion grammar
(CG). While the SCFG used by the MT system

is bilingual, the CG we extract will be monolin-
gual, with both the source and target sides being
English. Some example CG rules are:

X → 〈 strong tea , powerful tea 〉 ,
X → 〈X0 at beijing , beijing ’s X0 〉 ,
X → 〈X0 of X1 , X0 of the X1 〉 ,
X → 〈X0 ’s X1 , X1 of X0 〉 .

Like a regular SCFG, a CG contains rules with
different “arities” and reordering of the nontermi-
nals (as shown in the last example) capturing the
confusions that the MT system encounters when
choosing word senses, reordering patterns, etc.

3.1.1 Extracting a Confusion Grammar from
the Bilingual Grammar

The confusion grammar is derived from the MT
system’s bilingual grammar. In Hiero, the bilin-
gual rules are of the form X → 〈c, e〉, where
both c and e may contain (a matched number of)
nonterminal symbols. For every c which appears
on the source-side of two different Hiero rules
X → 〈c, e1〉 and X → 〈c, e2〉, we extract two CG
rules, X → 〈e1, e2〉 and X → 〈e2, e1〉, to capture
the confusion the MT system would face were it
to encounter c in its input. For each Hiero rule
X → 〈c, e〉, we also extract X → 〈e, e〉, the iden-
tity rule. Therefore, if a pattern c appears with |E|
different translation options, we extract |E|2 dif-
ferent CG rules from c. In our current work, the
rules of the CG are unweighted.

3.1.2 Test-set Specific Confusion Grammars
If the bilingual grammar contains all the rules

that are extractable from the bilingual training cor-
pus, the resulting confusion grammar is likely to
be huge. As a way of reducing computation, the
bilingual grammar can be restricted to a specific
test set, and only rules used by the MT system for
translating the test set used for extracting the CG.2

To economize further, one may extract a CG
from the translation hypergraphs that are gener-
ated for the test-set. Recall that a node in a hy-
pergraph corresponds to a specific source (Chi-
nese) span, and the node has many incident hy-
peredges, each associated with a different bilin-

2Test-set specific CGs are of course only practical for off-
line applications.
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gual rule. Therefore, all the bilingual rules asso-
ciated with the incoming hyperedges of a given
node translate the same Chinese string. At each
hypergraph node, we extract CG rules to represent
the competing English sides as described above.
Note that even though different rules associated
with a node may have different “arity,” we extract
CG rules only from pairs of bilingual rules that
have the same arity.

A CG extracted from only the bilingual rule
pairs incident on the same node in the test hy-
pergraphs is, of course, much smaller than a CG
extracted from the entire bilingual grammar. It
is also more suitable for our task, since the test
hypergraphs have already benefited from a base-
line n-gram LM and pruning, removing all confu-
sions that are easily resolved (rightly or wrongly)
by other system components.

3.2 Generating Simulated Confusion Sets

For each English sentence y in the training cor-
pus, we use the extracted CG to produce a simu-
lated confusion set N (y). This is done like a reg-
ular MT decoding pass, because we can treat the
CG as a Hiero style “translation” grammar3 for an
English-to-English translation system.

Since the CG is an SCFG, the confusion set
N (y) generated for a sentence y is a hypergraph,
encoding not only the alternative sentences y′ but
also the hierarchical derivation tree for each y′

from y (e.g., which phrase in y has been re-
placed with what in y′). As usual, many differ-
ent derivation trees d may correspond to the same
string/sentence y′ due to spurious ambiguity. We
use D(y) to denote the set of derivations d, which
is a hypergraph representation of N (y).

Figure 1 presents an example confusion hy-
pergraph for the English sentence y =“a cat on
the mat,” containing four alternative hypotheses:

3To make sure that we produce at least one derivation tree
for each y, we need to add to the CG the following two glue
rules, as done in Hiero (Chiang, 2007).

S → 〈X0 , X0 〉 ,
S → 〈S0 X1 , S0 X1 〉 .

We also add an out of vocabulary rule X → 〈word, oov〉 for
each word in y and set the cost of this rule to a high value so
that the OOV rule will get used only when the CG does not
know how to “translate” the word.

X → 〈 a cat , the cat 〉
X → 〈 the mat , the mat 〉
X → 〈X0 on X1 , X0 X1 〉
X → 〈X0 on X1 , X0 ’s X1 〉
X → 〈X0 on X1 , X1 on X0 〉
X → 〈X0 on X1 , X1 of X0 〉
S → 〈X0 , X0 〉

(a) An example confusion grammar.

a0  cat1                    on2         the3 mat4

S→〈X0,X0〉

X 0,5

X 0,2
X 3,5

X → 〈 a cat , the cat 〉 X → 〈 the mat , the mat 〉

X → 〈X0 on X1 , X0 X1 〉
X → 〈X0 on X1 , X0 ’s X1 〉

X → 〈X0 on X1 , X1 of X0 〉

X → 〈X0 on X1 , X1 on X0 〉

S 0,5

(b) An example hypergraph generated by the confusion
grammar of (a) for the input sentence “a cat on the mat.”

Figure 1: Example confusion grammar and simulated
confusion hypergraph. Given an input sentence y = “a cat
on the mat,” the confusion grammar of (a) generates a hyper-
graph D(y) shown in (b), which represents the confusion set
N (y) containing four alternative sentences y′.

N (y) = { “the cat the mat,” “the cat ’s the mat,”
“the mat of the cat,” “the mat on the cat”}.

Notice that each competitor y′ ∈ N (y) can be
regarded as the result of a “round-trip” translation
y → x → y′, in which we reconstruct a possible
Chinese source sentence x that our Hiero bilin-
gual grammar could translate into both y and y′.4

We will train our LM to prefer y, which was ac-
tually observed. Our CG-based round-trip forces
x→ y′ to use the same hierarchical segmentation
of x as y → x did. This constraint leads to effi-
cient training but artificially reduces the diversity

4This is because of the way we construct our CG from the
Hiero grammar. However, the identity and glue rules in our
CG allow almost any portion of y to be preserved untrans-
lated through the entire y → x → y′ process. Much of y
will necessarily be preserved in the situation where the CG is
extracted from a small test set and hence has few non-identity
rules. See (Li, 2010) for further discussion.
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ofN (y). In other recent work (Li et al., 2010), we
have taken the round-trip view more seriously, by
imputing likely source sentences x and translating
them back to separate, weighted confusion forests
N (y), without any same-segmentation constraint.

3.3 Confusion-based Discriminative Training
With the training sentences yi and their simulated
confusion sets N (yi) — represented as hyper-
graphs D(yi)) — we can perform the discrimi-
native training using any of a number of proce-
dures such as MERT (Och, 2003) or MIRA as
used by Chiang et al. (2009). In our paper, we
use hypergraph-based minimum risk (Li and Eis-
ner, 2009),

θ∗ = argmin
θ

∑

i

Riskθ(yi) (5)

= argmin
θ

∑

i

∑

d∈D(yi)

L(Y(d), yi)pθ(d |D(yi)),

where L(y′, yi) is the loss (e.g negated BLEU) in-
curred by producing y′ when the true answer is yi,
Y(d) is the English yield of a derivation d, and
pθ(d |D(yi)) is defined as,

pθ(d |D(yi)) =
ef(d)·θ∑

d∈D(yi)
ef(d)·θ

, (6)

where f(d) is a feature vector over d. We will
specify the features in Section 5, but in general
they should be defined such that the training will
be efficient and the actual MT decoding can use
them conveniently.

The objective of (5) is differentiable and thus
we can optimize θ by a gradient-based method.
The risk and its gradient on a hypergraph can
be computed by using a second-order expectation
semiring (Li and Eisner, 2009).

3.3.1 Iterative Training
In practice, the full confusion set N (y) defined

by a confusion grammar may be too large and we
have to perform pruning when training our model.
But the pruning itself may depend on the model
that we aim to train. How do we solve this circu-
lar dependency problem? We adopt the following
procedure. Given an initial model θ, we generate a
hypergraph (with pruning) for each y, and train an

optimal θ∗ of (5) on these hypergraphs. Then, we
use the optimal θ∗ to regenerate a hypergraph for
each y, and do the training again. This iterates un-
til convergence. This procedure is quite similar to
the k-best MERT (Och, 2003) where the training
involves a few iterations, and each iteration uses a
new k-best list generated using the latest model.

3.4 Applying the Discriminative LM
First, we measure the goodness of our language
model in a simulated task. We generate simulated
confusion sets N (y) for some held out English
sentences y, and test how well pθ(d |D(y)) can
recover y from N (y). This is merely a proof of
concept, and may be useful in deciding which fea-
tures f(d) to employ for discriminative training.

The intended use of our model is, of course, for
actual MT decoding (e.g., translating Chinese to
English). Specifically, we can add the discrimina-
tive model into an MT pipeline as a feature, and
tune its weight relative to other models in the MT
system, including the baseline n-gram LM.

4 Related and Similar Work

The detailed relation between the proposed pro-
cedure and other language modeling techniques
has been discussed in Sections 1 and 2. Here, we
review two other methods that are related to our
method in a broader context.

4.1 Unsupervised Training of Global
Log-linear Models

Our method is similar to the contrastive estimation
(CE) of Smith and Eisner (2005) and its succes-
sors (Poon et al., 2009). In particular, our confu-
sion grammar is like a neighborhood function in
CE. Also, our goal is to improve both efficiency
and accuracy, just as CE does. However, there
are two important differences. First, the neigh-
borhood function in CE is manually created based
on human insights about the particular task, while
our neighborhood function, generated by the CG,
is automatically learnt (e.g., from the bilingual
grammar) and specific to the MT system being
used. Therefore, our neighborhood function is
more likely to be informative and adaptive to the
task. Secondly, when tuning θ, CE uses the maxi-
mum likelihood training, but we use the minimum
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risk training of (5). Since our training uses a task-
specific loss function, it is likely to perform better
than maximum likelihood training.

4.2 Paraphrasing Models

Our method is also related to methods for train-
ing paraphrasing models (Quirk et al., 2004; Ban-
nard and Callison-Burch, 2005; Callison-Burch et
al., 2006; Madnani et al., 2007). Specifically, the
form of our confusion grammar is similar to that
of the paraphrase model they use, and the ways
of extracting the grammar/model are also similar
as both employ a second language (e.g., Chinese
in our case) as a pivot. However, while a “trans-
lation” rule in a paraphrase model is expected to
contain a pair of phrases that are good alterna-
tives for each other, a confusion rule in our CG
is based on an MT system processing unseen test
data and contains pairs of phrases that are typi-
cally bad (and only rarely good) alternatives for
each other.

The motivation and goal are also different. For
example, the goal of Bannard and Callison-Burch
(2005) is to extract paraphrases with the help of
parallel corpora. Callison-Burch et al. (2006) aim
to improve MT quality by adding paraphrases in
the translation table, while Madnani et al. (2007)
aim to improve the minimum error rate training by
adding the automatically generated paraphrases
into the English reference sets. In contrast, our
motivation is to train a discriminative language
model to improve MT (by using the confusion
grammar to decide what alternatives the model
should learn to discriminate).

5 Experimental Results

We have applied the confusion-based discrimina-
tive language model (CDLM) to the IWSLT 2005
Chinese-to-English text translation task5 (Eck and
Hori, 2005). We see promising improvements
over an n-gram LM for a solid Joshua-based
baseline system (Li et al., 2009).

5.1 Data Partitions for Training & Testing

Four kinds of data are used for CDLM training:
5This is a relatively small task compared to, say, the NIST

MT tasks. We worked on it for a proof-of-concept. Having
been successful, we are now investigating larger MT tasks.

# sentencesData Usage
ZH EN

Set1 TM & LM training 40k 40k
Set2 Min-risk training 1006 1006×16
Set3 CDLM training — 1006×16
Set4 Test 506 506×16

Table 1: Data sets used. Set1 contains translation-equivalent
Chinese-English sentence pairs, while for each Chinese sen-
tence in Set2 and Set4, there are 16 English translations. Set3
happens to be the English side of Set2 due to lack of ad-
ditional in-domain English text, but this is not noteworthy;
Set3 could be any in-domain target-language text corpus.

Set1 a bilingual training set on which 10 individ-
ual MT system components are trained,

Set2 a small bilingual, in-domain set for tuning
relative weights of the system components,

Set3 an in-domain monolingual target-language
corpus for CDLM training, and

Set4 a test set on which improvements in MT per-
formance is measured.

We partition the IWSLT data into four such sub-
sets as listed in Table 1.

5.2 Baseline MT System

Our baseline translation model components are
estimated from 40k pairs of utterances from the
travel domain, called Set1 in Table 1. We use a 5-
gram language model with modified Kneser-Ney
smoothing (Chen and Goodman, 1998), trained on
the English side of Set1, as our baseline LM.

The baseline MT system comprises 10 com-
ponent models (or “features”) that are standard
in Hiero (Chiang, 2007), namely the baseline
language model (BLM) feature, three baseline
translation model features, one word-insertion
penalty (WP) feature, and five arity features —
three to count how many rules with an arity of
zero/one/two are used in a derivation, and two
to count how many times the unary and binary
glue rules are used in a derivation. The rela-
tive weights of these 10 features are tuned via
hypergraph-based minimum risk training (Li and
Eisner, 2009) on the bilingual data Set2.

The resulting MT system gives a BLEU score of
48.5% on Set4, which is arguably a solid baseline.
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5.3 Unsupervised Training of the CDLM

We extract a test-set specific CG from the hyper-
graphs obtained by decoding Set2 and Set4, as de-
scribed in Section 3.1.2. The number of rules in
the bilingual grammar and the CG are about 167k
and 1583k respectively. The CG is used as the
“translation” model to generate confusion hyper-
graphs for sentences in Set3.

Two CDLMs, corresponding to different fea-
ture sets f(d) in equation (6), were trained.

Only n-gram LM Features: We consider a
CDLM with only two features f(d): a base-
line LM feature (BLM) that equals the 5-
gram probability of Y(d) and a word penalty
feature (WP) equal to the length of Y(d).

Target-side Rule Bigram Features6: For each
CG rule used in d, we extract counts of bi-
grams that appear on the target-side of the
CG rule. For example, if the confusion rule
X → 〈X0 of X1 , X0 of the X1 〉 is used in
d, the bigram features in f(d) whose counts
are incremented are: “X of,” “of the” and
“the X .”7 Note that the indices on the non-
terminals in the rule have been removed. To
avoid very rare features, we only consider
the 250 most freqent terminal symbol (En-
glish words) in the English of Set1 and map
all other terminal symbols into a single class.
Finally, we replace the identities of words
with their dominant POS tags. These restric-
tions result in 525 target-side rule bigram
(TsRB) features f(d) in the model of (6).

For each choice of the feature vector f(d), be it
2- or 527-dimensional, we use the training proce-
dure of Section 3.3.1 to iteratively minimize the
objective of (5) and get the CDLM parameter θ∗.

Note that each English sentence in Set3 has 15
other paraphrases. We generate a separate confu-
sion hypergraph D(y) for each English sentence
y, but for each such hypergraph we use both y
and its 15 paraphrases as “reference translations”
when computing the risk L(Y(d), {y}) in (5).8

6Note that these features are novel in MT.
7With these target-side rule-based features, our LM is es-

sentially a syntactic LM, not just an LM on English strings.
8We take unfair advantage of this unusual dataset to com-

5.4 Results on Monolingual Simulation

We first probe how our novel CDLM performs as
a language model itself. One usually uses the per-
plexity of the LM on some unseen text to measure
its goodness. But since we did not optimize the
CDLM for likelihood, we instead examine how
it performs in discriminating between a good En-
glish sentence and sentences with which the MT
system may confuse that sentence. The test is per-
formed as follows. For each test English sentence
y of Set4, the confusion grammar defines a full
confusion set N (y) via a hypergraph D(y). We
use a LM to pick the most likely y∗ from N (y),
and then compute its BLEU score by using y and
its 15 paraphrase sentences as references. The
higher the BLEU, the better is the LM in picking
out a good translation from N (y).

Table 2 shows the results9 under a regular n-
gram LM and the two CDLMs described in Sec-
tion 5.3.

The baseline LM (BLM) entails no weight op-
timization a la (5) on Set3. The CDLM with the
BLM and word pentaly (WP) features improves
over the baseline LM. Compared to either of them,
the CDLM with the target-side rule bigram fea-
tures (TsRB) performs dramatically better.

5.5 Results on MT Test Data

We now examine how our CDLM performs during
actual MT decoding. To incorporate the CDLM
into MT decoding, we add the log-probability (6)
of a derivation d under the CDLM as an additional
bat an unrelated complication—a seemingly problematic in-
stability in the minimum risk training procedure.

As an illustration of this problem, we note that in super-
vised tuning of the baseline MT system (|f(d)|=10) with
500 sentences from Set2, the BLEU score on Set4 varies from
38.6% to 44.2% to 47.8% if we use 1, 4 and 16 reference
translations during the supervised training respectively. We
choose a system tuned on 16 references on Set2 as our base-
line. In order not to let the unsupervised CDLM training
suffer from this unrelated limitation of the tuning procedure,
we give it too the benefit of being able to compute risk on
Set3 using y plus its 15 paraphrases.

We wish to emphasize that this trait of Set3 having 15
paraphrases for each sentence is otherwise unnecessary, and
does not detract much from the main claim of this paper.

9Note that the scores in Table 2 are very low compared to
scores for actual translation from Chinese shown in Table 3.
This is mainly because in this monolingual simulation, the
LM is the only model used to rank the y′ ∈ N (y). Said dif-
ferently, y∗ is being chosen in Table 2 entirely for its fluency
with no consideration whatsoever for its adequacy.
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LM used for Features used BLEU

rescoring BLM WP TsRB on Set4
Baseline LM X 12.8
CDLM X X 14.2
CDLM X X X 25.3

Table 2: BLEU scores in monolingual simulations. Rescor-
ing the confusion sets of English sentences created using the
CG shows that the CDLM with TsRB features recovers hy-
potheses much closer to the sentence that generated the con-
fusion set than does the baseline n-gram LM.

Model used Features used BLEU

for rescoring 10 models TsRB on Set4
Joshua X 48.5
+ CDLM X X 49.5

Table 3: BLEU scores on the test set. The baseline MT sys-
tem has ten models/features, and the proposed system has
one additional model, the CDLM. Note that for the CDLM,
only the TsRB features are used during MT decoding.

feature, on top of the 10 features already present
in baseline MT system (see Section 5.2). We then
(re)tune relative weights for these 11 features on
the bilingual data Set2 of Table 1.

Note that the MT system also uses the BLM and
WP features whose weights are now retuned on
Set2. Therefore, when integrating a CDLM into
MT decoding, it is mathematically equivalent to
use only the TsRB features of the CDLM, with
the corresponding weights as estimated alongside
its “own” BLM and WP features during unsuper-
vised discriminative training on Set3.

Table 3 reports the results. A BLEU score im-
provement of 1% is seen, reinforcing the claim
that the unsupervised CDLM helps select better
translations from among the system’s alternatives.

5.6 Goodness of Simulated Confusion Sets

The confusion set N (y) generated by applying
the CG to an English sentence y aims to simulate
the real confusion set that would be generated by
the MT system if the system’s input was the Chi-
nese sentence whose English translation is y. We
investigate, in closing, how much the simulated
confusion set resembles to the real one. Since
we know the actual input-output pairs (xi, yi) for
Set4, we generate two confusion sets: the simu-
lated set N (yi) and the real one N (xi).

One way to measure the goodness of N (yi) as
a proxy for N (xi), is to extract the n-gram types

n-gram Precision Recall
unigram 36.5% 48.2%
bigram 10.1% 12.8%
trigram 3.7% 4.6%
4-gram 2.0% 2.4%

Table 4: n-gram precision and recall of simulated con-
fusion sets relative to the true confusions when translating
Chinese sentences. The n-grams are collected from k-best
strings in both cases, with k = 100. The precision and recall
change little when varying k.

witnessed in the two sets, and compute the ratio of
the number of n-grams in the intersection to the
number in their union. Another is to measure the
precision and recall of N (yi) relative to N (xi).

Table 4 presents such precision and recall fig-
ures. For convenience, the n-grams are collected
from the 100-best strings, instead of the hyper-
graph D(yi) and D(xi). Observe that the sim-
ulated confusion set does a reasonably good job
on the real unigram confusions but the simulation
needs improving for higher order n-grams.

6 Conclusions

We proposed a novel procedure to discrimina-
tively train a globally normalized log-linear lan-
guage model for MT, in an efficient and unsu-
pervised manner. Our method relies on the con-
struction of a confusion grammar, an English-to-
English SCFG that captures translation alterna-
tives that an MT system may face when choosing
a translation for a given input. For each English
training sentence, we use this confusion gram-
mar to generate a simulated confusion set, from
which we train a discriminative language model
that will prefer the original English sentence over
sentences in the confusion set. Our experiments
show that the novel CDLM picks better alterna-
tives than a regular n-gram LM from simulated
confusion sets, and improves performance in a
real Chinese-to-English translation task.
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