A framework for representing lexical resources

Fabrice Issac
LDI
Université Paris 13

Abstract

Our goal is to propose a description model
for the lexicon. We describe a software
framework for representing the lexicon
and its variations called Proteus. Various
examples show the different possibilities
offered by this tool. We conclude with
a demonstration of the use of lexical re-
sources in complex, real examples.

1 Introduction

Natural language processing relies as well on
methods, algorithms, or formal models as on lin-
guistic resources. Processing textual data involves
a classic sequence of steps : it begins with the nor-
malisation of data and ends with their lexical, syn-
tactic and semantic analysis. Lexical resources are
the first to be used and must be of excellent qual-
ity.

Traditionally, a lexical resource is represented
as a list of inflected forms that are projected on a
text. However, this type of resource can not take
into account linguistic phenomena, as each unit
of information is independent. This results in a
number of problems regarding the improvement
or review of the resource. On the other hand some
languages such as Arabic, because of the potential
large lexicon, lends itself less easily to this kind of
manipulation.

Our goal is to propose a model for the descrip-
tion of the lexicon. After presenting the existing
theory and software tools, we introduce a software
framework called Proteus, capable of represent-
ing the lexicon and its variations. The different
possibilities offered by this tool will be illustrated
through various examples. We conclude with a

demonstration of the use of lexical resources in
different languages.

2 Context

Whatever the writing system of a language (logo-
graphic, syllabic or alphabetic), it seems that the
word is a central concept. Nonetheless, the very
definition of a word is subject to variation depend-
ing on the language studied. For some Asian lan-
guages such as Mandarin or Vietnamese, the no-
tion of word delimiter does not exist ; for others,
such as French or English, the space is a good in-
dicator. Likewise, for some languages, preposi-
tions are included in words, while for others they
form a separate unit.

Languages can be classified according to their
morphological mechanisms and their complexity ;
for instance, the morphological systems of French
or English are relatively simple compared to that
of Arabic or Greek.

There are two main branches of morphology,
inflectional or grammatical morphology and lexi-
cal morphology. The first one deals with context-
related variations, as the rules of agreement in
gender and number or the conjugation of verbs.
The second one concerns word formation, gener-
ally involving the association of a lexeme to pre-
fixes or suffixes.

3 Tagging

Text tagging consists in adding one or more infor-
mation units to a group of characters : the token.
This association is firstly performed in a context-
free way, that is to say considering only the to-
ken, and secondly by increasing the context size :
the tagging process is subsequently repeated in or-

490

Coling 2010: Poster Volume, pages 490-497,
Beijing, August 2010

[
o - 1
| — o —
! [— W —
— | —
—
lemma
a0
—
S 2
b A
i 2
R
-
S
\, Inflected
u forme

rules

Figure 1: tagging schema

der to merge multiple tokens. Token merging ap-
plies to polylexical units, syntactic or para-textual
structures.

We distinguish two main types of resources
that can be projected on raw texts in order to
enrich them. The first of these resources is a
set of inflected forms associated with a num-
ber of information units (in the example below,
the lemma and the morphosyntactic annotation of
each form) :

A--ms
N-mp

abyssal
abysses

abyssal
abysse

The projection of this type of resources in tex-
tual corpora is quite simple. After identifying a
token, the program only needs to check if the to-
ken is included in the resource and add the infor-
mation units associated with it.

The second type of resources contains a set of
rules and a set of canonical forms (usually the
lemma but not necessarily). These sets are used
jointly, to produce all the inflected forms or to
analyse the tokens. Analysis consists in determin-
ing, for a given inflected form, which rule was
used, on which canonical form, in order to gener-
ate it. Then the information to be associated with
the inflected form is related to the rule found.

Diagram 1 presents the place of different re-
sources in the tagging process.

4 Tools and resources

Several concepts are related to the use of lexical
resources ; here we provide some examples of
tools, theoretical as well as computational.

e resources in the form of a frozen list: Mor-
phalou (Romary et al., 2004), Morfetik (Bu-
vet et al., 2007), Lexique3 (New, 2006) ;

e lexical representation formalisms:
DATR (Evans and Gazdar, 1996) ;

o inflections’ parsers: Flemm (Namer, 2000) ;

e complete software platforms: Nooj (Sil-
berztein, 2005), Unitex (Paumier, 2002) ;

e lexicon acquisition: lefff (Sagot et al., 2006).

4.1 Frozen resources

If this kind of resource is directly used in the
tagging process, it raises many maintenance is-
sues. Moreover, in the case of languages with rich
morphology, the number of elements becomes too
large. These lists are most often the result of in-
flection engines that use canonical forms and in-
flection rules to generate the inflected forms.

4.2 Hierarchical lexical representation
formalisms

The goal of this type of formalisms is to represent
the most general information at the top-level of
a hierarchy. There is an inheritance mechanism to
transmit, specify, and if necessary, delete informa-
tion along the structure. It is possible to group un-
der one tag a set of morphological phenomena and
their exceptions. Multiple inheritance allows a
node to inherit from several different hierarchies.

4.3 Inflections’ parsers

They propose a morphological analysis for a given
inflected form : they try to apply the derivation
rules backwards and test whether the result ob-
tained corresponds to an attested canonical form.
The use of canonical forms is optional ; it provides
an analysis for lexical neologisms but can cause
incorrect results (Hundred is not the past partici-
ple of hundre).

491

4.4 Software platforms

Unitex / Intex / Nool are complete environments
for performing linguistic analysis on documents.
They are able to project dictionaries on texts and
to query them. They offer a set of tools for man-
aging dictionaries, both lexical and inflectional.
NoolJ is the successor of Intex ; among the new
features, is the redesign of the architecture of
the dictionaries. It proposes handling simple and
compound words in a single way. The method is a
mix of manipulation of characters and use of mor-
phological grammars.

The inflexion mechanism is based on classic
character handling operators as well as on word
manipulation operators. Here is the list of some
operators:
 delete last character
<D> duplicate last character
<L> go left
<R> go right
<N> go to the end of next word form
<P> go to the end of previous word form
<S> delete next character

S Representation and structuring of
inflections: the Proteus model

We introduce a framework capable to represent
and structure inflections efficiently, not only in
terms of resource creation, but in terms of linguis-
tic consistency too. At the inflection level we pro-
pose a simple multilingual mechanism for simple
and compound forms. It is used both to generate
simple forms and to analyse them. Regarding the
lexicon, the model allows for clusters.
We distinguish three levels:

o the inflection level: determine how to pro-
duce a derived form from a base form ; the
atomic processing unit here is the character
(i.e. local transformation).

o the conjugation level: determine how to or-
ganise family rules effectively in order to
avoid redundancy ; the atomic processing
unit here is the transformation rule.

e the word level: once the derived form is
produced, determine which operation is re-

quired to validate the form against non-
morphological rules ; the processing unit
here is the token (i.e. global transformation).

The model was developed to meet the following
objectives:

1. A verbatim description of a language does
not allow for the analysis of unknown words
even if their inflection is regular. We must
therefore develop a mechanism that we can
use for both analysis and generation. Then
we will be able to analyse not only known
words but also neologisms.

2. In a lexical database, where, for French, the
number of elements reaches one million, the
presence of an error is always possible, even
inevitable. We must therefore consider an ef-
fective maintenance procedure : a dictionary
of lemmas linked to a dictionary of inflec-
tions and not a read-only resource containing
all inflected forms.

3. The concept of word is so complex that
we cannot limit a resource to simple words.
The model must integrate the management of
both simple and compound words. The only
limit we set is syntax: the management of id-
ioms, even if it is fundamental, requires the
implementation of other tools.

4. The concept of inflection varies depending
on the language. We must build a system ca-
pable of dealing with all types of affixation
(prefixation, suffixation or infixation). The
treatment of Arabic is from this point of view
a good indicator since it uses all three types
of affixation.

5. An inflection rule, applied to a canonical
form, is never completely autonomous ; it is
part of a group. For instance, we group to-
gether all the inflections of a verb type, for
all tenses.

6. The transformation is not limited to morpho-
logical changes. For instance, phonological
phenomena can occur too. More generally
there are treatments that cannot be modelled
on simple rules.

492

7. The proposed model is based on a set of sim-
ple tools, it is able to easily integrate third-
party applications and allows use of dictio-
naries built in another environment.

5.1 Inflection description

Let f be the inflexion function and f~! its inverse
function, then

f(canonical form, code) = inflectedf orm

fY(inflectedf orm, code) = canonical form

By simplifying the model to the extreme, we
use of a rule that generates an inflected form from
its lemma. The form is represented as a list of car-
acters : (i) it shifts characters from the list to a
stack or vice versa (ii) and deletes or inserts char-
acters in the list. By default, the operations apply
to characters placed at the end of the list of char-
acters or, depending on the operator, at the top of
the stack. Most operators allow for the applica-
tion of the inverse function for the analysis of an
inflection. Due to the operator based construction,
the function has the following property:

let c1, c2 be valid code and x a character string,
then

f(f(x7cl)7 CQ) = f(.’E,Cl hd CQ)

We now present the different operators. They
must be sufficiently numerous, to offer the nec-
essary expressive power to represent any kind of
inflection, but small enough, not to make the task
of creating the rule too difficult.

P (Push) : move a character from the list to the
stack

D (Dump) : moves the character of the stack to
the list

E (Erase) : deletes a character from the list
/x/ : adds the character x at the end of the list

To simplify code writing, it is possible to
indicate the number of repetitions of an operator.
Here is an example of code that generates an
inflected form from its lemma.

Step | Mot Pile Code restant
1 céder 3PE/&/3D/ais/
2 cé der | E/&/3D/ais/
3 C der /&/3D/ais/
4 ce der 3D/ais/
5 ceder /ais/
6 cederais
Steps:
1—2 : stack of three characters
2—3 : deleting of a character
3—4 : adding the character ¢
4—5 : dumping three characters from the stack
5—6 : addition of three characters ais

This code can inflect french verbs like céder (as
révéler, espérer, ...). However, this kind of code
does not allow reversing the operation, i.e. find the
lemma from the inflection : the E (erase) operator,
unlike other operators, is not reversible. Therefore
we add another operator to erase this function or
remove the characters to delete.

\x\ : erase given character from the list (this
rule cannot be applied if the character is not
present)

The code of the previous example becomes
3P\é\/e/3D/ais/.

Since consonant duplication is a common phe-
nomenon, we introduce a specific operator :

C (Clone) : duplicates the last character of the
list.

The code C/ing/ generates the present par-
ticiple of words such as run, sit or stop

The management of prefixes requires the addi-
tion of operators:

] (fill stack) : transfers all the characters from
the list to the stack

[(empty stack) : transfers all the characters from
the stack to the list

493

Operator | can prepare an addition at the begin-
ning of a word since all characters are put in the
stack. We are now able to describe the inflexion
of the form: move — unmovable. The transfor-
mation “remove the character ’e’ at the end of a
word, add 'un’ at the beginning and ’able’ end of a
word” is coded \e\]1/un/[/able/. The same
code can analyse verb constructions that end with
the character e.

Processing compound words requires the addi-
tion, or rather the transformation, of an operator.
The difficulty here is to distinguish the different
components of an expression with respect to one
or more separators (traditionally in French space,
hyphen or apostrophe).

P|x| (Push): moves the character of the list to the
stack to meet the character x

Changing the stacking operator allows us to ac-
cess directly an element of an expression or a
compound word. Please note that access to dif-
ferent elements of an expression is achieved by
stacking and unstacking successively. The code
2P| —|/s/ [allows to form the plural of expres-
sions such as brother-in-law : only the third word
from the end is pluralized (brothers-in-law). To
preserve the analysis function of the model, it
would be necessary to add, symmetrically, a con-
ditional popping operator (e.g. D | x |). However,
compound words analysis is far more complex,
and such an operator could not bring the solution.

5.2 Management of inflexion

We have defined an XML DTD to manage the in-
flections expressed in code.

<flex id="n-y-p" type="final">
<name>Np</name>
<info>Noun plural with

a terminal y</info>

<code>\y\/ies/</code>

<\flex>

The above definition associates N-y-p identifier
with the code \y\/ies/. A typical inflexion is

characterised by:

e an identifier (attribute id) is used by the de-
scription language ;

e a status (optional attribute type) ;

e a name (optional element <name>) which
corresponds to the tag associated to the in-
flected form ;

e information (optional element <info>)
about the inflection ;

e a Proteus inflection code (element <code>).

However it is often necessary to combine sev-
eral transformations : masculine/feminine and
singular/plural for nouns and adjectives, persons
and tenses for verbs. Take for example the con-
jugation of a French verb in the first group in the
present tense. The prototypical inflection may be
given as follows:

<flex id="vlip" type="term">

<name>Vp</name>

<info>verbes
indicatif présent</info>

<flex id="plns">
<name>1s</name>
<code>/e/</code>

</flex>

<flex id="p2ns">
<name>2s</name>
<code>/es/</code>

</flex>

<flex id="p3ns">
<name>3s</name>
<code>/e/</code>

</flex>

<flex id="plnp">
<name>1lp</name>
<code>/ons/</code>

</flex>

<flex id="p2np">
<name>2p</name>
<code>/ez/</code>

</flex>

<flex id="p3np">
<name>3p</name>
<code>/ent/</code>

</flex>

</flex>

In this structure we regroup all the inflections
of a given tense. Each inflection is : associated
to its own identifier, prefixed with the main iden-
tifier, separated with a point, and associated to a
name which is also a concatenation. Note that it
is the identifier that must be unique and not the
name. This mechanism allows for the expression
of variants in a paradigm (see below). The pre-
vious definition states that, for the first group of
the present tense, French verbs require suffixes at
the end of the canonical form. Note that this is

494

a generic definition that can take into account ex-
ceptions, and can be apllied to any tense or mood.

identifier name code
vlip.plns | Vipls | /e/
vlip.p2ns | Vip2s | /es/
vlip.p3ns | Vip3s | /e/
vlip.plnp | Viplp | /ons/
vlip.p2np | Vip2p | /ez/
vlip.p3np | Vip3p | /ent/

It is also possible to group inflections with a
new element (<op> with the attribute type).
<flex id="vigl-1" type="nonterm">
<name></name>
<info>first group
indicative</info>
<op type="add">
<item value="vlip"/>
<item value="v1ii"/>
<item value="vlips"/>
<item value="vlifs"/>
</op>
</flex>
To the previous definitions we need to modify
the code in order to add a prefix operation: remove
the ’er’ at the end of the lemma. So we added the
possibility of code concatenation to a previously
defined group. In the example bellow the pos
attribute determines if the code to be added is a
prefix (p) or a suffix (s). The value attribute in-
dicates the identifier of the structure upon which
the operation is applied.

<flex id="v1" type="final">
<name></name>
<info>"er" verb</info>
<op type="conc" value="vigl-1">
<item pos="p">\re\</item>
</op>
</flex>
In some cases, modification has to be per-
formed on a particular inflection. This is done
via the application of a mask which operates on a
group of inflections and changes, possibly selec-
tively, codes of inflexion. A mask is a set of rules
applied on code. A regular expression on the iden-
tifier (ervalue attribute) performs the selection.
We use Proteus code to modify Proteus code. This
mise en abyme seems inconsistent, since Proteus
has been designed to apply on a language element.
But it seemed inappropriate to introduce a new
syntax.
The definition below allows to add the letter e
to a form in order to maintain its pronunciation

[3].

<mask id="m-ge">
<info>add e after a g</info>
<item ervalue="vlip\.plnp">
15D/e/ [</item>
<item ervalue="v1ii\.p([123]ns|3np)">
15D/e/ [</item>
<item ervalue="v1if\.p([12]n[ps]|3np)">
15D/e/ [</item>
</mask>

The previous definition transforms code as
\er\/ons/ in \er\/eons/, \re\/ais/ in
\re\/eais/, ...The mask is used in combina-
tion with the attribute ma sk in a inflection defini-
tion, as in the conc attribute.

<flex id="v1" type="final">

<name></name>

<info>verbes en "er"</info>

<op type="mask" value="vigl-1">
<item value="m-ge"/>

</op>
</flex>

You can build a complex inflection by using a
base and applying masks successively. The inflec-
tion of the French verb neiger (to snow) can be ex-
pressed using two masks. First a mask to take into
account the pronunciation of the [3] and a second
one, the weather verb mask, which is only used in
the third singular person.

5.3 Applications

The examples bellow show the different capabili-
ties of the model.

5.3.1 Neologisms in French

The formation of French inflections should not
create significant problems. For the most com-
mon languages, simple forms are less than 1 mil-
lion. Therefore, most systems use this set of in-
flected forms and supply modules to guess un-
known words, only when they arise. This experi-
ment is used to validate the model and to analyse
unknown forms.

The example below shows how we analyse an
unknown form.

anticonservationnistes =(/s/)=>
anticonservationniste =(]/anti/[)=>
conservationniste =(/niste/)=>
conservation =(\e\/ation/)=>
conserve

The algorithm tries to apply a code and reiter-
ates the process on the result until we obtain an

495

attested form. The set of rules provides a poten-
tial analysis of the unknown word. Note that the
rules used allow to determine the part of speech.
In the example, the analysed word can be a plural
noun or an adjective.

5.3.2 Arabic verbs

Arabic is a Semitic language ; it uses a semitic
root to derive all the words used. For example
from the root S (which refers to the writing) it

is possible to produce verb (write), noun (desk) or
adjective (written).

With these lemmas it is possible to agglutinate
prefixes and suffixes. The rules are very regular
in morphology but also very productive. We build
all inflexion from the semitic root. So we have the
schema: root — radical — inflected form. We
then define inflexion for prefix/suffix (identifier
passlterm), a mask for the radical (identifier
passlradical) and a definition which com-
bine both.

<mask id="passlradical">

<info>add radical past</info>

<item ervalue=".">
1/2P\/"\/D\/’\/D/ [+

</item>

</mask>

<flex id="passl" type="nonterm">
<name>Vis</name>

<info>passe</info>

<op type="mask" value="passlterm">

<item value="passlradical"/>

</op>
</flex>

The problem encounter with arab text is the
possible non use of all vowels. In fact they are
rarely used, generally in pedagogical or religious
text. This mean that the context is fundamental
to interpret a text, a vowel is added only to re-
move an ambiguity. However we decide to de-
scribe language fully vowelled and to manage this
specificity in an earlier stage.

The objective is to provide a resource used dur-
ing an lexical analysis. This can be done in two
ways!:

"'We used here a transliteration version of arab writing to
be more clear.

5.3.3 Old French

We are developping (author reference) an Old
French resource, as exhaustive as possible. One
difficulty is to consider the various alterna-
tives, dialectal or chronological. This proto-
morphological problem complicates the develop-
ment of the dictionary nomenclature. We solved
this problem by introducing an arbitrary “lan-
guage Phantom” and by adding one level to the
composition of the nomenclature, in the form of
a label named hyperlemma. All derivations are
from this entity using Proteus rules. All variants
are generated from this item by application of suc-
cessive masks.

The example below shows the successive masks
applied on the inflection rules to account for the
variations of the imperfect tense. Each mask is
named modifxxx and corresponds to the modifica-
tion of the Proteus rule for each century xxx.

<flex id="vgli-5" type="final">
<name>Vii</name>
<info>first group

imparfait</info>
<op type="mask" value="v1ii">

<item value="modifXI"/>
<item value="modifXII"/>
<item value="modifXIII"/>
<item value="modifXIIIa"/>
<item value="vrber"/>
</op>
</flex>

6 Implementation

This framework is not only a theoretical tool ; it is
designed to be implemented in a tagging software
as an autonomous module. Based on abstract de-
scriptions (Proteus code and XML language), it
allows the resource creator to focus on linguistic
aspects. It is simple enough to be easily expressed
in any computational language.

The platform described here is developed in
Python, which allows a very compact coding and
can be used for both generation and analysis.

7 Conclusion

Our work is part of a set of tools and resources
dedicated to the analysis of natural language. We
have presented a model for the representation of
inflections coupled with a language to structure
the transformation rules. Compound words are

496

handled in the same way as simple words. The
proposed model also allows simple word identi-
fication in both analysis and resource generation
functionality. We have presented three examples
of the use of the model, each introducing a speci-
ficity: French, Old French and Arabic. In the near
future we expect to begin work on the Korean,
Polish and Greek.

The best way to improve the framework is to
create real, i.e. exhaustive linguistic resources.
The development of the framework can be con-
sidered from several ways.

The Proteus code and the XML language de-
scription need stability. In our opinion, addition
of operations to take into account some language
specificities would complicate the model without
adding any significant improvement. These modi-
fications will take place during the third stage, the
word level, where post-treatments are applied. For
instance, the tonic accent in Greek can move along
the last three syllables of a word and affects the
use of the diaeresis mark in diphthongs.

As far as the analysis functionnality is con-
cerned, we are considering to develop specific
heuristics for each language in order to guide the
choice of rules.

References

Buvet, Pierre-André, Emmanuel Cartier, Fabrice Issac,
and Salah Mejri. 2007. Dictionnaires électroniques
et étiquetage syntactico-sémantique. In Hathout,
Nabil and Philippe Muller, editors, Actes des
14e journées sur le Traitement Automatique des
Langues Naturelles, pages 239248, Toulouse. IRIT
Press.

Evans, Roger and Gerald Gazdar. 1996. Datr: A lan-
guage for lexical knowledge representation. Com-
putational Linguistics, 22(2):167-216.

Namer, F. 2000. Flemm : Un analyseur flexionnel
du frangais a base de regles. Revue Traitement Au-
tomatique des Langues, 41(2).

New, Boris. 2006. Lexique 3 : Une nouvelle base de
données lexicales. In Mertens, P., C. Fairon, A. Dis-
ter, and P. Watrin, editors, Verbum ex machina.
Actes de la 13e conférence sur le Traitement au-
tomatique des langues naturelles, Cahiers du Cen-
tal 2,2, Louvain-la-Neuve. Presses universitaires de
Louvain.

Paumier, Sébastien, 2002. Manuel d’utilisation du
logiciel Unitex. Université de Marne-la-Vallée.

Romary, Laurent, Susanne Salmon-Alt, and Gil Fran-
copoulo. 2004. Standards going concrete : from
Imf to morphalou. In Zock, Michael, editor, COL-
ING 2004 Enhancing and using electronic dictio-
naries, pages 22-28, Geneva, Switzerland, August
29th. COLING.

Sagot, Benoit, Lionel Clément, Eric Villemonte de la
Clergerie, and Pierre Boullier. 2006. The lefff 2
syntactic lexicon for french: architecture, acquisi-
tion, use. In LREC’06, Génes.

Silberztein, Max. 2005. NoolJ’s dictionaries. In Ve-
tulani, Zygmunt, editor, LTC’05, pages 291-295,
Poznan, Poland, April.

497

