
Coling 2010: Poster Volume, pages 144–152,
Beijing, August 2010

The True Score of Statistical Paraphrase Generation

Jonathan Chevelu1,2 Ghislain Putois2 Yves Lepage3

(1) GREYC, université de Caen Basse-Normandie
(2) Orange Labs

(3) Waseda University
{jonathan.chevelu,ghislain.putois}@orange-ftgroup.com,

yves.lepage@aoni.waseda.jp

Abstract

This article delves into the scoring func-
tion of the statistical paraphrase genera-
tion model. It presents an algorithm for
exact computation and two applicative ex-
periments. The first experiment analyses
the behaviour of a statistical paraphrase
generation decoder, and raises some is-
sues with the ordering of n-best outputs.
The second experiment shows that a major
boost of performance can be obtained by
embedding a true score computation in-
side a Monte-Carlo sampling based para-
phrase generator.

1 Introduction

A paraphrase generator is a program which, given
a source sentence, produces a new sentence with
almost the same meaning. The modification place
is not imposed but the paraphrase has to differ
from the original sentence.

Paraphrase generation is useful in applications
where it is needed to choose between different
forms to keep the most fit. For instance, automatic
summary can be seen as a particular paraphras-
ing task (Barzilay and Lee, 2003) by selecting the
shortest paraphrase. They can help human writers
by proposing alternatives and having them choose
the most appropriate (Max and Zock, 2008).

Paraphrases can also be used to improve nat-
ural language processing (NLP) systems. In
this direction, (Callison-Burch et al., 2006) tried
to improve machine translations by enlarging
the coverage of patterns that can be translated.
In the same way, most NLP systems like in-
formation retrieval (Sekine, 2005) or question-

answering (Duclaye et al., 2003), based on pat-
tern recognition, can be improved by a paraphrase
generator.

Most of these applications need a n-best set of
solutions in order to rerank them according to a
task-specific criterion.

In order to produce the paraphrases, a promis-
ing approach is to see the paraphrase genera-
tion problem as a statistical translation problem.
In that approach, the target language becomes
the same as the source language (Quirk et al.,
2004; Bannard and Callison-Burch, 2005; Max
and Zock, 2008).

The first difficulty of this approach is the need
of a paraphrase table. A paraphrase table is a
monolingual version of a translation table in the
statistical machine translation (SMT) field. In this
field, the difficulty is basically overcome by us-
ing huge aligned bilingual corpora like the Eu-
roparl (Koehn, 2005) corpus. In the paraphrase
generation field, one needs a huge aligned mono-
lingual corpus to build a paraphrase table.

The low availability of such monolingual cor-
pora nurtures researches in order to find heuris-
tics to produce them (Barzilay and Lee, 2003;
Quirk et al., 2004). On the other hand, an interest-
ing method proposed by (Bannard and Callison-
Burch, 2005) tries to make a paraphrase table us-
ing a translation table learned on bilingual cor-
pora. The method uses a well-known heuris-
tic (Lepage and Denoual, 2005) which says that
if two sentences have the same translation, then
they should be paraphrases of each others.

Another aspect, less studied, is the generation
process of paraphrases, i.e. the decoding process
in SMT. This process is subject to combinatorial

144

explosions. Heuristics are then frequently used to
drive the exploration process in the a priori in-
tractable high dimensional spaces. On the one
hand, these heuristics are used to build a para-
phrase step by step according to the paraphrase
table. On the other hand, they try to evaluate the
relevance of a step according to the global para-
phrase generation model. The SMT model score
is related to the path followed to generate a para-
phrase. Because of the step-by-step computation,
different ways can produce the same paraphrase,
but with different scores. Amongst these scores,
the best one is the true score of a paraphrase ac-
cording to the SMT model.

Most paraphrase generators use some standard
SMT decoding algorithms (Quirk et al., 2004) or
some off-the-shelf decoding tools like MOSES.
The goal of these decoders is to find the best path
in the lattice produced by the paraphrase table.
This is basically achieved by using dynamic pro-
gramming – especially the Viterbi algorithm – and
beam searching (Koehn et al., 2007). The best
paraphrase proposed by these programs is known
not to be the optimal paraphrase. One can even
question if the score returned is the true score.

We first show in Section 2 that in the particular
domain of statistical paraphrase generation, one
can compute true a posteriori scores of generated
paraphrases. We then explore some applications
of the true score algorithm in the paraphrase gen-
eration field. In Section 3, we show that scores re-
turned by SMT decoders are not always true scores
and they plague the ranking of output n-best solu-
tions. In Section 4, we show that the true score can
give a major boost for holistic paraphrases gener-
ators which do not rely on decoding approaches.

2 True Score Computing

2.1 Context
The phrase based SMT model (Koehn et al., 2003)
can be transposed to paraphrase generation as fol-
lows:

t∗ = arg max
t
P (t)× P (s|t, B)

where s is the source sentence, t the target sen-
tence i.e. the paraphrase, t∗ the best paraphrase
and B a model of the noisy channel between the

source and target languages i.e. the paraphrase ta-
ble. This can be decomposed into:

t∗ ≈ arg max
t,I

P (t)
∏

i∈I
P (sIi |tIi , B)

where I is a partition of the source sentence and
xIi the ith segment in the sentence x. For a given
couple of s, t sentences, it exists several segmen-
tations I with different probabilities.

This is illustrated in Example 1. Depending on
the quality of the paraphrase table, one can find up
to thousands of paraphrase segments for a source
sentence. Note that the generated paraphrases are
not always semantically or even syntactically cor-
rect, as in P2. P3 illustrates the score evaluation
problem: it can be generated by applying to the
source sentence the sequences of transformations
{T1, T2} , {T1, T4, T5} or even {T5, T1, T4}
. . .

Example 1 Decoding

Source sentence:

The dog runs after the young cat.

Paraphrase table excerpt:

T1: P(the beast | the dog) = 0.8

T2: P(the kitten | the young cat) = 0.7

T3: P(after it | after the) = 0.4

T4: P(the | the young) = 0.05

T5: P(cat | kitten) = 0.1

Some possible generated paraphrases:

P1: the beast runs after the young cat.

P2: *the dog runs after it young cat.

P3: the beast runs after the kitten.

We define the score of a potential paraphrase t
following a segmentation I as:

ZI
t = P (t)

∏

i∈I
P (sIi |tIi , B)

The true score of a potential paraphrase t is de-
fined as:

Z∗t = max
I
ZI
t

145

Because of high-dimension problems, decoders
apply sub-optimal algorithms to search for t∗.
They produce estimated solutions over all possible
paraphrases t and over all possible segmentations
I . Actually, for a given paraphrase t, they con-
sider only some ZI

t where they should estimate
Z∗I . SMT decoders are overlooking the partition-
ing step in their computations.

There is no reason for the decoder solution to
reach the true score. Troubles arise when one
needs the scores of generated paraphrases, for in-
stance when the system must produce an ordered
n-best solution. What is the relevance of the es-
timated scores – and orders – with respect to the
true scores – and orders – of the model? Is the true
score able to help the generation process?

2.2 Algorithm

Let us first adopt the point of view proposed
in (Chevelu et al., 2009). The paraphrase gener-
ation problem can be seen as an exploration prob-
lem. We seek the best paraphrase according to a
scoring function in a space to search by applying
successive transformations. This space is com-
posed of states connected by actions. An action
is a transformation rule with a place where it ap-
plies in the sentence. States are a sentence with
a set of possible actions. Applying an action in
a given state consists in transforming the sentence
of the state and removing all rules that are no more
applicable. In this framework, each state, except
the root, can be a final state.

The SMT approach fits within this point of view.
However, generation and evaluation need not to be
coupled any longer. Computing the true score of
a generated paraphrase is in reality a task com-
putationally easier than generating the best para-
phrases. Once the target result is fixed, the num-
ber of sequences transforming the source sentence
into the target paraphrase becomes computation-
ally tractable under a reasonable set of assump-
tions:

A1: the transformation rules have disjoint sup-
ports (meaning that no rule in the sequence
should transform a segment of the sentence
already transformed by one of of the previ-
ous applied rules) ;

A2: no reordering model is applied during the
paraphrasing transformation.

Under this set of assumptions, the sequence (or-
dered) of transformation rules becomes a set (un-
ordered) of transformation rules. One can there-
fore easily determine all the sets of transforma-
tion rules from the source sentence to the tar-
get paraphrase: they are a subset of the cross-
product set of every transformation rule with a
source included in the source sentence and with
a result included in the target paraphrase. And
this cross-product set remains computationally
tractable. Note that to guarantee a solution, the
corpus of all rules should be augmented with an
identity rule for each word of the source sentence
(with an associated probability of applicability set
to 1) missing in the paraphrase table.

The algorithm for computing ex post the true
score is given on algorithm 1.

Algorithm 1 Algorithm for true score
Let S be the source sentence.
Let T be the target sentence.
Let R : sR → tR be a transformation rule

Let map : (S, T)→ C be a function

Let C = {∅}

∀shead|S = shead.stail,

∀R ∈ {Ω|sR = shead, T = tR.ttail}
C = C ∪ ({R}⊗map(Stail, Ttail))

return C

Let score be the scoring function for a transfor-
mation rule set

truescoreS,Ω(T) = arg max
c∈map(S,T)

(score(c))

For our toy example, we would get the steps
shown in Example 2.

3 True Score of SMT Decoders

We have shown that it is possible to compute
the true score according to the paraphrase model.
We now evaluate scores from a state-of-the-art

146

Example 2 True Score Computation

Generated sets:

{R1}, {R1, R3}, {R1, R2},

{R1, R4}, {R1, R4, R5},

{R3},

{R2},

{R4}, {R4, R5},

{R5}

For a better readability, all identity rules are omitted.

The true scores are computed as in the following examples:

score(”the dog runs after the small cat.” →
”the beast runs after it small cat”)

= score({R1})

score(”the dog runs after the small cat.” →
”the beast runs after the kitten”)

= max(score({R1, R2}), score({R1, R4, R5}))

decoder against this baseline. In particular, we
are interested in the order of n-best outputs. We
use the MOSES decoder (Koehn et al., 2007) as a
representative SMT decoder inside the system de-
scribed below.

3.1 System description

Paraphrase generation tools based on SMT meth-
ods need a language model and a paraphrase table.
Both are computed on a training corpus.

The language models we use are n-gram lan-
guage models with back-off. We use SRILM (Stol-
cke, 2002) with its default parameters for this pur-
pose. The length of the n-grams is five.

To build a paraphrase table, we use a variant
of the construction method via a pivot language
proposed in (Bannard and Callison-Burch, 2005).
The first step consists in building a bilingual trans-
lation table from the aligned corpus. Given a
source phrase si and another phrase ti in a differ-
ent language, a bilingual translation table provides
the two probabilities p(si|ti) and p(ti|si). We use
GIZA++ (Och and Ney, 2003) with its default pa-
rameters to produce phrase alignments. The para-
phrase table is then built from the phrase transla-
tion table. The probability for a phrase si to be

paraphrased by a phrase s′i in the same language
is estimated by the sum of each round-trip from si

to s′i through any phrase ti of a pivot language.
The construction of this table is very simple.

Given a bilingual translation table sorted by pivot
phrases, the algorithm retrieves all the phrases
linked with the same pivot (named a pivot clus-
ter). For each ordered pair of phrases, the program
assigns a probability that is the product of there
probabilities. This process realizes a self-join of
the bilingual translation table. It produces a para-
phrase table composed of tokens, instead of items.
The program just needs to sum up all probabilities
for all entries with identical paraphrase tokens to
produce the final paraphrase table.

Three heuristics are used to prune the para-
phrase table. The first heuristic prunes any entry
in the paraphrase table composed of tokens with a
probability lower than a threshold ε. The second,
called pruning pivot heuristic, consists in deleting
all pivot clusters larger than a threshold τ . The
last heuristic keeps only the κmost probable para-
phrases for each source phrase in the final para-
phrase table. For this study, we empirically fix
ε = 10−5, τ = 200 and κ = 20.

The MOSES scoring function is set by four
weighting factors αΦ, αLM , αD, αW . Conven-
tionally, these four weights are adjusted during a
tuning step on a training corpus. The tuning step is
inappropriate for paraphrasing because there is no
such tuning corpus available. We empirically set
αΦ = 1, αLM = 1, αD = 10 and αW = 0. This
means that the paraphrase table and the language
model are given the same weight, no reordering is
allowed and no specific sentence length is favored.

3.2 Experimental Protocol

For experiments reported in this paper, we use
one of the largest, multi-lingual, freely available
aligned corpus, Europarl (Koehn, 2005). It con-
sists of European parliament debates. We choose
French as the language for paraphrases and En-
glish as the pivot language. For this pair of
languages, the corpus consists of 1,723,705 sen-
tences. Note that the sentences in this corpus
are long, with an average length of 30 words per
French sentence and 27.8 for English. We ran-
domly extract 100 French sentences as a test cor-

147

pus.
For each source sentence from the test corpus,

the SMT decoder tries to produce a 100-best dis-
tinct paraphrase sequence. Using the algorithm 1,
we compute the true score of each paraphrase and
rerank them. We then compare orders output by
the decoder with the true score order by using the
Kendall rank correlation coefficient (τA) (Kendall,
1938). In this context, the Kendall rank corre-
lation coefficient considers each couple of para-
phrases and checks if their relative order is pre-
served by the reranking. The τA formula is:

τA =
np − ni

1
2n(n− 1)

where np the number of preserved orders, nd the
number of inverted orders and n the number of el-
ements in the sequence. The coefficient provides a
score – between -1 and 1 – that can be interpreted
as a correlation coefficient between the two or-
ders. In order to compare same length sequences,
we filter out source sentences when MOSES can
not produce enough distinct paraphrases. The test
corpus is therefore reduced to 94 sentences.

3.3 Results
The evolution of τA means relative to the length
of the n-best sequence is given Figure 1. The τA
means drops to 0.73 with a standard deviation of
0.41 for a 5-best sequence which means that the
orders are clearly different but not decorrelated.

A finer study of the results reveals that amongst
the generated paraphrases, 32% have seen their
score modified. 18% of the MOSES 1-best para-
phrases were not optimal anymore after the true
score reranking. After reranking, the old top best
solutions have dropped to a mean rank of 2.0 ±
17.7 (40th rank at worse). When considering
only the paraphrases no longer optimal, they have
dropped to a mean rank of 6.8± 12.9.

From the opposite point of view, new top para-
phrases after reranking have come from a mean
rank of 4.4 ± 12.1. When considering only the
paraphrases that were not optimal, they have come
from a mean rank of 21.2±23.5. Some have come
from the 67th rank. Even an a posteriori rerank-
ing would not have retrieved this top solution if
the size of MOSES n-best list were too short. This

n-best paraphrase sequence size
m

ea
ns

K
en

da
ll

ra
nk

co
rr

el
at

io
n

co
ef

fic
ie

nt

10 20 30 40 50 60 70 80 90 100
0.7

0.75

0.8

0.85

0.9

0.95

Figure 1: Evolution of τA means relative to the
length of the n-best sequence

advocates for a direct embedding of the true score
function inside the generation process.

In this section we have shown that MOSES

scores are not consistent with the true score as
expected from the paraphrase model. In partic-
ular, the n-best paraphrase sequence computed by
MOSES is not trustworthy while it is an input for
the task system.

4 True Score to boost Monte-Carlo
based Paraphrase Generation

There exist other less common approaches more
lenient than the Viterbi algorithm, which are holis-
tic, i.e. they work on the whole sentence rather
than step-by-step. The Monte-Carlo based Para-
phrase Generation algorithm (MCPG) proposed
in (Chevelu et al., 2009) turns out to be an inter-
esting algorithm for the study of paraphrase gen-
eration. It does not constraint the scoring function
to be incremental. In this section, we embed the
non incremental true score function in MCPG to
drive the generation step and produce n-best or-
ders compliant with the paraphrase model, and
show that the true score function can be used to
provide a major boost to the performance of such

148

an algorithm.

4.1 Description

The MCPG algorithm is a derivative of the Up-
per Confidence bound applied to Tree algorithm
(UCT). UCT (Kocsis and Szepesvári, 2006), a
Monte-Carlo planning algorithm, has recently be-
come popular in two-player game problems.

UCT has some interesting properties:

• it expands the search tree non-uniformly and
favours the most promising sequences, with-
out pruning branch;

• it can deal with high branching factors;

• it is an any-time algorithm and returns best
solutions found so far when interrupted;

• it does not require expert domain knowledge
to evaluate states.

These properties make it ideally suited for prob-
lems with high branching factors and for which
there is no strong evaluation function.

For the same reasons, this algorithm is inter-
esting for paraphrase generation. In particular, it
does not put constraint on the scoring function. A
diagram of the MCPG algorithm is presented Fig-
ure 2.

The main part of the algorithm is the sampling
step. An episode of this step is a sequence of
states and actions, s1, a1, s2, a2, . . . , sT , from the
root state to a final state. Basically, a state is a
partially generated paraphrase associated with a
set of available actions. A final state is a poten-
tial paraphrase. An action is a transformation rule
from the paraphrase table. During an episode con-
struction, there are two ways to select the action ai
to perform from a state si.

If the current state was already explored in a
previous episode, the action is selected accord-
ing to a compromise between exploration and ex-
ploitation. This compromise is computed using
the UCB-Tunned formula (Auer et al., 2001) as-
sociated with the RAVE heuristic (Gelly and Sil-
ver, 2007). If the current state is explored for
the first time, its score is estimated using Monte-
Carlo sampling. In other words, to complete the

Source sentence

Exploration/exploitation
compromise

State
already

explored?

Monte-Carlo sampling

Enough
iterations?

New root selection step

Final
state?

Output paraphrase

Sampling step

Yes

No

Yes

No

No

Yes

Figure 2: The MCPG algorithm.

149

episode, the actions ai, ai+1, . . . , aT−1, aT are se-
lected randomly until reaching a final state.

At the end of each episode, a reward is com-
puted for the final state sT using a scoring func-
tion, and the value of each (state, action) pair of
the episode is updated. Then, the algorithm com-
putes another episode with the new values.

Periodically, the sampling step is stopped and
the best action at the root state is selected. This
action is then definitively applied and a sampling
is restarted from the new root state. The action
sequence is incrementally built and selected after
being sufficiently sampled. For our experiment,
we have chosen to stop sampling regularly after a
fixed amount η of episodes.

The adaptation of the original algorithm takes
place in the (state, action) value updating proce-
dure. Since the goal of the algorithm is to max-
imise a scoring function, it uses the maximum
reachable score from a state as value instead of
the score expectation. This algorithm suits the
paradigm recalled in Section 2 for paraphrase gen-
eration.

To provide scores comparable with the para-
phrase model scores, the standard version of
MCPG has to apply rules until the whole source
sentence is covered. With this behaviour, MCPG

acts in a monolingual “translator” mode.
The embedding of the true score algorithm in

MCPG has given meaningful scores to all states.
The algorithm needs not to “translate” the whole
sentence to get a potential paraphrase and its
score. This MCPG algorithm in “true-score” mode
can choose to stop its processing with segments
still unchanged, which solves, amongst others,
out-of-vocabulary questions found in decoder-
based approaches.

4.2 Experimental Protocol

For this experiment, we reuse the paraphrase ta-
ble and the corpora generated for the experiment
presented in Section 3.2;

We compare the 1-best outputs from MOSES

reranked by the true score function and from
MCPG in both “translator” and “true-score”
modes. For MCPG systems, we set the following
parameters: η = 100,000 iterations.

1-best paraphrase index
(ordered byMOSESreranked scores)

P
ar

ap
hr

as
e

sc
or

e
(i

n
lo

g)

20 40 60 80 100
-500

-400

-300

-200

-100

0

Figure 3: Comparison of paraphrase generators.
Top: the MOSES baseline; middle and bold: the
“true-score” MCPG; down: the “translator” MCPG.
The use of “true-score” improves the MCPG per-
formances. MCPG reaches MOSES performance
level.

4.3 Results

Figure 3 presents a comparison between the
scores from each systems, ordered by MOSES

reranked scores.
The boost of performance gained by using true

scores inside the MCPG algorithm reaches a means
of 28.79 with a standard deviation of 34.19. The
mean difference between “true-score” MCPG and
MOSES is −14.13 (standard deviation 19.99). Al-
though the performance remains inferior to the
MOSES true score baseline, it still leads to an
improvement over the “translator” MCPG system.
The later system has a mean difference of perfor-
mance with MOSES of−42.92 (standard deviation
of 40.14).

The true score reduces the number of transfor-
mations needed to generate a paraphrase, which
simplifies the exploration task. Moreover, it re-
duces the number of states in the exploration
space: two sets of transformations producing the
same paraphrase now leads to the same state.
These points explain why MCPG has become more
efficient.

Although MCPG is improved by embedding the

150

true score algorithm, there is still room for im-
provement. In its current version, MCPG does not
adapt the number of exploration episodes to the
input sentence.

5 Conclusion and perspectives

In this paper, we have developed a true scoring al-
gorithm adapted to the statistical paraphrase gen-
eration model. We have studied its impacts on a
common SMT decoder and a Monte-Carlo sam-
pling based paraphrase generator. It has revealed
that the n-best outputs by SMT decoders were not
viable. It has also proved useful in simplifying the
exploration task and in improving holistic para-
phrase generators.

Thanks to the boost introduced by the true score
algorithm in holistic paraphrase generators, their
performances are now on a par with scores pro-
duced by statistical translation decoders. More-
over, they produce guaranteed ordering, and en-
able the integration of a global task scoring func-
tion, which seems still out of reach for decoder-
based systems.

A more general problem remains open: what
do the scores and the orders output by the model
mean when compared to a human subjective eval-
uation?

In preliminary results on our test corpus, less
than 37% of the MOSES generated paraphrases can
be considered both syntactically correct and se-
mantically a paraphrase of their original sentence.
One could study the relations between scores from
the model and subjective evaluations to create pre-
dictive regression models. The true score algo-
rithm can autonomously score existing paraphrase
corpora which could be used to adapt the SMT tun-
ing step for paraphrase generation.

We note that the hundredth best paraphrases
from MOSES have a score close to the best para-
phrase: the mean difference is 5.9 (standard de-
viation 4.5) on our test corpus. This is smaller
than the mean difference score between MOSES

and MCPG. In (Chevelu et al., 2009), both systems
were rated similar by a subjective evaluation. One
could question the relevance of small score differ-
ences and why the best paraphrase should be se-
lected instead of the hundred next ones. Given the
current state of the art, the next step to improve

paraphrase generation does not lie in score opti-
misation but in refining the model and its com-
ponents: the language model and the paraphrase
table.

Human based evaluations reveal that the current
most important issue of paraphrase generation lies
in the syntax (Chevelu et al., 2009). It seems dif-
ficult to assess the syntax of a potential paraphrase
while not considering it as a whole, which is im-
possible with a local scoring function inherent to
the SMT decoding paradigm. Holistic paraphrase
generators have now reached a level of perfor-
mance comparable to SMT decoders, without suf-
fering from their limitations. They are paving the
way for experiments with more complex semantic
and linguistic models to improve paraphrase gen-
eration.

151

References
Auer, P., N. Cesa-Bianchi, and C. Gentile. 2001.

Adaptive and self-confident on-line learning algo-
rithms. Machine Learning.

Bannard, Colin and Chris Callison-Burch. 2005. Para-
phrasing with bilingual parallel corpora. In ACL
’05: Proceedings of the 43rd Annual Meeting on
Association for Computational Linguistics, pages
597–604, Morristown, NJ, USA. Association for
Computational Linguistics.

Barzilay, Regina and Lillian Lee. 2003. Learn-
ing to paraphrase: An unsupervised approach us-
ing multiple-sequence alignment. In HLT-NAACL
2003: Main Proceedings, pages 16–23.

Callison-Burch, Chris, Philipp Koehn, and Miles Os-
borne. 2006. Improved statistical machine transla-
tion using paraphrases. In Proceedings of the main
conference on Human Language Technology Con-
ference of the North American Chapter of the As-
sociation of Computational Linguistics, pages 17–
24, Morristown, NJ, USA. Association for Compu-
tational Linguistics.

Chevelu, Jonathan, Thomas Lavergne, Yves Lepage,
and Thierry Moudenc. 2009. Introduction of a new
paraphrase generation tool based on Monte-Carlo
sampling. In Su, Keh-Yih, Jian Su, Janyce Wiebe,
and Haizhou Li, editors, Proceedings of the ACL-
IJCNLP 2009 Conference Short Papers, pages 249–
252, Singapoure, August. Association for Computa-
tional Linguistics.

Duclaye, Florence, François Yvon, and Olivier Collin.
2003. Learning paraphrases to improve a question-
answering system. In In Proceedings of the 10th
Conference of EACL Workshop Natural Language
Processing for Question-Answering, page 3541.

Gelly, Sylvain and David Silver. 2007. Combining on-
line and offline knowledge in UCT. In 24th Interna-
tional Conference on Machine Learning (ICML’07),
pages 273–280, June.

Kendall, Maurice G. 1938. A New Measure of Rank
Correlation. Biometrika, 1–2(30):81–89, June.

Kocsis, Levente and Csaba Szepesvári. 2006. Ban-
dit based monte-carlo planning. In 17th Euro-
pean Conference on Machine Learning, (ECML’06),
pages 282–293, September.

Koehn, Philipp, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In
Proceedings of the Human Language Technology
Conference of the North American Chapter of the
Association for Computational Linguistics (HLT-
NAACL), pages 48–54, Edmonton, May. Associa-
tion for Computational Linguistics.

Koehn, Philipp, Hieu Hoang, Alexandra Birch Mayne,
Christopher Callison-Burch, Marcello Federico,
Nicola Bertoldi, Brooke Cowan, Wade Shen, Chris-
tine Moran, Richard Zens, Chris Dyer, Ondrej Bo-
jar, Alexandra Constantin, and Evan Herbst. 2007.
Moses: Open source toolkit for statistical machine
translation. In Annual Meeting of the Association
for Computation Linguistics (ACL), Demonstration
Session, pages 177–180, June.

Koehn, Philipp. 2005. Europarl: A parallel corpus
for statistical machine translation. In Proceedings
of MT Summit.

Lepage, Yves and Etienne Denoual. 2005. Automatic
generation of paraphrases to be used as translation
references in objective evaluation measures of ma-
chine translation. In IWP2005.

Max, Aurélien and Michael Zock. 2008. Looking
up phrase rephrasings via a pivot language. In
Proceedings of the 22nd International Conference
on Computational Linguistics (Coling 2008), pages
97–104, Manchester, UK, August. Coling 2008 Or-
ganizing Committee.

Och, Franz Josef and Hermann Ney. 2003. A sys-
tematic comparison of various statistical alignment
models. Computational Linguistics, 29(1):19–51.

Quirk, Chris, Chris Brockett, and Bill Dolan. 2004.
Monolingual machine translation for paraphrase
generation. In Lin, Dekang and Dekai Wu, edi-
tors, the 2004 Conference on Empirical Methods
in Natural Language Processing, pages 142–149.,
Barcelona, Spain, 25-26 July. Association for Com-
putational Linguistics.

Sekine, Satoshi. 2005. Automatic paraphrase dis-
covery based on context and keywords between ne
pairs. In Proceedings of International Workshop on
Paraphrase (IWP2005).

Stolcke, Andreas. 2002. Srilm – an extensible lan-
guage modeling toolkit. In Proceedings of Interna-
tional Conference on Spoken Language Processing.

152

