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Abstract

We show how the use of syntactic struc-
ture enables the resolution of hedge scope
in a hybrid, two-stage approach to un-
certainty analysis. In the first stage, a
Maximum Entropy classifier, combining
surface-oriented and syntactic features,
identifies cue words. With a small set of
hand-crafted rules operating over depen-
dency representations in stage two, we at-
tain the best overall result (in terms of
both combined ranks and average F1) in
the 2010CoNLL Shared Task.

1 Background—Motivation

Recent years have witnessed an increased interest
in the analysis of various aspects of sentiment in
natural language (Pang & Lee, 2008). The sub-
task ofhedge resolution deals with the analysis of
uncertainty as expressed in natural language, and
the linguistic means (so-called hedges) by which
speculation or uncertainty are expressed. Infor-
mation of this kind is of importance for various
mining tasks which aim at extracting factual data.
Example (1), taken from the BioScope corpus
(Vincze, Szarvas, Farkas, Móra, & Csirik, 2008),
shows a sentence where uncertainty is signaled by
the modal verbmay.1

(1) {The unknown amino acid〈may〉 be used by these
species}.

The topic of the Shared Task at the 2010 Con-
ference for Natural Language Learning (CoNLL)
is hedge detection in biomedical literature—in a
sense ‘zooming in’ on one particular aspect of the
broader BioNLP Shared Task in 2009 (Kim, Ohta,
Pyysalo, Kano, & Tsujii, 2009). It involves two
subtasks: Task 1 is described aslearning to detect

1In examples throughout this paper, angle brackets high-
light hedge cues, and curly braces indicate the scope of a
given cue, as annotated in BioScope.

sentences containing uncertainty; the objective of
Task 2 islearning to resolve the in-sentence scope
of hedge cues (Farkas, Vincze, Mora, Csirik, &
Szarvas, 2010). The organizers further suggest:
This task falls within the scope of semantic analy-
sis of sentences exploiting syntactic patterns [...].

The utility of syntactic information within var-
ious approaches to sentiment analysis in natu-
ral language has been an issue of some debate
(Wilson, Wiebe, & Hwa, 2006; Ng, Dasgupta,
& Arifin, 2006), and the potential contribution of
syntax clearly varies with the specifics of the task.
Previous work in the hedging realm has largely
been concerned with cue detection, i.e. identify-
ing uncertainty cues such asmay in (1), which
are predominantly individual tokens (Medlock &
Briscoe, 2007; Kilicoglu & Bergler, 2008). There
has been little previous work aimed at actually
resolving the scope of such hedge cues, which
presumably constitutes a somewhat different and
likely more difficult problem. Morante and Daele-
mans (2009) present a machine-learning approach
to this task, using token-level, lexical informa-
tion only. To this end,CoNLL 2010 enters largely
uncharted territory, and it remains to be seen (a)
whether syntactic analysis indeed is a necessary
component in approaching this task and, more
generally, (b) to what degree the specific task
setup can inform us about the strong and weak
points in current approaches and technology.

In this article, we investigate the contribution
of syntax to hedge resolution, by reflecting on our
experience in theCoNLL 2010 task.2 Our CoNLL

system submission ranked fourth (of 24) on Task 1
and third (of 15) on Task 2, for an overall best av-
erage result (there appears to be very limited over-
lap among top performers for the two subtasks).

2It turns out, in fact, that all the top-performing systems
in Task 2 of theCoNLLShared Task rely on syntactic informa-
tion provided by parsers, either in features for machine learn-
ing or as input to manually crafted rules (Morante, Asch, &
Daelemans, 2010; Rei & Briscoe, 2010).
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Sentences Hedged Cues Multi-Word Tokens Cue Tokens
Sentences Cues

Abstracts 11871 2101 2659 364 309634 3056
Articles 2670 519 668 84 68579 782
Total 14541 2620 3327 448 378213 3838

Table 1: Summary statistics for the Shared Task training data.

This article transcends ourCoNLL system descrip-
tion (Velldal, Øvrelid, & Oepen, 2010) in several
respects, presenting updated and improved cue de-
tection results (§ 3 and § 4), focusing on the role
of syntactic information rather than on machine
learning specifics (§ 5 and § 6), providing an anal-
ysis and discussion of Task 2 errors (§ 7), and gen-
erally aiming to gauge the value of available anno-
tated data and processing tools (§ 8). We present
a hybrid, two-level approach for hedge resolution,
where a statistical classifier detects cue words, and
a small set of manually crafted rules operating
over syntactic structures resolve scope. We show
how syntactic information—produced by a data-
driven dependency parser complemented with in-
formation from a ‘deep’, hand-crafted grammar—
contributes to the resolution of in-sentence scope
of hedge cues, discussing various types of syn-
tactic constructions and associated scope detec-
tion rules in considerable detail. We furthermore
present a manual error analysis, which reveals re-
maining challenges in our scope resolution rules
as well as several relevant idiosyncrasies of the
preexisting BioScope annotation.

2 Task, Data, and System Basics

Task Definition and Evaluation Metrics
Task 1 is a binary sentence classification task:
identifying utterances as beingcertain or uncer-
tain. Following common practice, this subtask
is evaluated in terms of precision, recall, and
F1 for the ‘positive’ class, i.e.uncertain. In
our work, we approach Task 1 as a byproduct
of the full hedge resolution problem, labeling a
sentence asuncertain if it contains at least one
token classified as a hedge cue. In addition to
the sentence-level evaluation for Task 1, we also
present precision, recall, and F1 for the cue-level.

Task 2 comprises two subtasks: cue detection
and scope resolution. The officialCoNLL eval-

uation does not tease apart these two aspects of
the problem, however: Only an exact match of
both the cue and scope bracketing (in terms of
substring positions) will be counted as a success,
again quantified in terms of precision, recall, and
F1. Discussing our results below, we report cue
detection and scope resolution performance sepa-
rately, and further put scope results into perspec-
tive against an upper bound based on the gold-
standard cue annotation.

Besides the primary biomedical domain data,
some annotated Wikipedia data was provided
for Task 1, and participating systems are classi-
fied asin-domain (using exclusively the domain-
specific data), cross-domain (combining both
types of training data), oropen (utilizing addi-
tional uncertainty-related resources). In our work,
we focus on the interplay of syntax and the more
challenging Task 2; we ignored the Wikipedia
track in Task 1. Despite our using generalNLP

tools (see below), our system falls into the most
restrictive,in-domain category.

Training and Evaluation Data The training
data for theCoNLL 2010 Shared Task is taken from
the BioScope corpus (Vincze et al., 2008) and
consists of 14,541 ‘sentences’ (or other root-level
utterances) from biomedical abstracts and articles
(see Table 1).3 The BioScope corpus provides
annotation for hedge cues as well as their scope.
According to the annotation guidelines (Vincze et
al., 2008), the annotation adheres to a principle
of minimalism when it comes to hedge cues, i.e.
the minimal unit expressing hedging is annotated.
The inverse is true of scope annotations, which ad-
here to a principle of maximal scope—meaning
that scope should be set to the largest syntactic

3As it was known beforehand that evaluation would draw
on full articles only, we put more emphasis on the article
subset of the training data, for example in cross validation
testing and manual diagnosis of errors.
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ID FORM LEMMA POS FEATS HEAD DEPREL XHEAD XDEP
1 The the DT _ 4 NMOD 4 SPECDET
2 unknown unknown JJ degree:attributive 4 NMOD 4 ADJUNCT
3 amino amino JJ degree:attributive 4 NMOD 4 ADJUNCT
4 acid acid NN pers:3|case:nom|num:sg|ntype:common 5 SBJ 3 SUBJ
5 may may MD mood:ind|subcat:MODAL|tense:pres|clauseType:decl 0 ROOT 0 ROOT
6 be be VB _ 5 VC 7 PHI
7 used use VBN subcat:V-SUBJ-OBJ|vtype:main|passive:+ 6 VC 5 XCOMP
8 by by IN _ 7 LGS 9 PHI
9 these these DT deixis:proximal 10 NMOD 10 SPECDET
10 species specie NNS num:pl|pers:3|case:obl|common:count|ntype:common 8 PMOD 7 OBL-AG
11 . . . _ 5 P 0 PUNC

Table 2: Stacked dependency representation of example (1),with MaltParser andXLE annotations.

unit possible.
For evaluation purposes, the task organizers

provided newly annotated biomedical articles, fol-
lowing the same general BioScope principles. The
CoNLL 2010 evaluation data comprises 5,003 ad-
ditional utterances (138,276 tokens), of which 790
are annotated as hedged. The data contains a to-
tal of 1033 cues, of which 87 are so-called multi-
word cues (i.e. cues spanning multiple tokens),
comprising 1148 cue tokens altogether.

Stacked Dependency Parsing For syntactic
analysis we employ the open-source MaltParser
(Nivre, Hall, & Nilsson, 2006), a platform for
data-driven dependency parsing. For improved
accuracy and portability across domains and gen-
res, we make our parser incorporate the pre-
dictions of a large-scale, general-purposeLFG

parser—following the work of Øvrelid, Kuhn, and
Spreyer (2009). A technique dubbedparser stack-
ing enables the data-driven parser to learn, not
only from gold standard treebank annotations, but
from the output of another parser (Nivre & Mc-
Donald, 2008). This technique has been shown to
provide significant improvements in accuracy for
both English and German (Øvrelid et al., 2009),
and a similar setup employing anHPSG gram-
mar has been shown to increase domain indepen-
dence in data-driven dependency parsing (Zhang
& Wang, 2009). The stacked parser combines
two quite different approaches—data-driven de-
pendency parsing and ‘deep’ parsing with a hand-
crafted grammar—and thus provides us with a
broad range of different types of linguistic infor-
mation for the hedge resolution task.

MaltParser is based on a deterministic pars-
ing strategy in combination with treebank-induced
classifiers for predicting parse transitions. It sup-
ports a rich feature representation of the parse his-

tory in order to guide parsing and may easily be
extended to take additional features into account.
The procedure to enable the data-driven parser
to learn from the grammar-driven parser is quite
simple. We parse a treebank with theXLE plat-
form (Crouch et al., 2008) and the English gram-
mar developed within the ParGram project (Butt,
Dyvik, King, Masuichi, & Rohrer, 2002). We
then convert theLFG output to dependency struc-
tures, so that we have two parallel versions of the
treebank—one gold standard and one withLFG

annotation. We extend the gold standard treebank
with additional information from the correspond-
ing LFG analysis and train MaltParser on the en-
hanced data set.

Table 2 shows the enhanced dependency rep-
resentation of example (1) above, taken from the
training data. For each token, the parsed data con-
tains information on the word form, lemma, and
part of speech (PoS), as well as on the head and
dependency relation in columns 6 and 7. The
addedXLE information resides in theFEATS col-
umn, and in theXLE-specific head and depen-
dency columns 8 and 9. Parser outputs, which in
turn form the basis for our scope resolution rules
discussed in Section 5, also take this same form.
The parser employed in this work is trained on
the Wall Street Journal sections 2 – 24 of the Penn
Treebank (PTB), converted to dependency format
(Johansson & Nugues, 2007) and extended with
XLE features, as described above. Parsing uses the
arc-eager mode of MaltParser and anSVM with
a polynomial kernel. When tested using 10-fold
cross validation on the enhancedPTB, the parser
achieves a labeled accuracy score of 89.8.

PoS Tagging and Domain Variation Our
parser is trained on financial news, and although
stacking with a general-purposeLFG parser is ex-
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pected to aid domain portability, substantial dif-
ferences in domain and genre are bound to neg-
atively affect syntactic analysis (Gildea, 2001).
MaltParser presupposes that inputs have beenPoS

tagged, leaving room for variation in preprocess-
ing. On the one hand, we aim to make parser
inputs maximally similar to its training data (i.e.
the conventions established in thePTB); on the
other hand we wish to benefit from specialized re-
sources for the biomedical domain.

The GENIA tagger (Tsuruoka et al., 2005) is
particularly relevant in this respect (as could be
the GENIA Treebank proper4). However, we
found thatGENIA tokenization does not match the
PTB conventions in about one out of five sen-
tences (for example wrongly splitting tokens like
‘390,926’ or ‘Ca(2+)’); also in tagging proper
nouns, GENIA systematically deviates from the
PTB. Hence, we adapted an in-house tokenizer
(using cascaded finite-state rules) to theCoNLL

task, run twoPoS taggers in parallel, and eclec-
tically combine annotations across the various
preprocessing components—predominantly giv-
ing precedence toGENIA lemmatization andPoS

hypotheses.
To assess the impact of improved, domain-

adapted inputs on our hedge resolution system,
we contrast two configurations: first, running the
parser in the exact same manner as Øvrelid, Kuhn,
and Spreyer (2010), we use TreeTagger (Schmid,
1994) and its standard model for English (trained
on thePTB) for preprocessing; second, we give as
inputs to the parser our refined tokenization and
mergedPoS tags, as described above. When eval-
uating the two modes of preprocessing on the ar-
ticles subset of the training data, and using gold-
standard cues, our system for resolving cue scopes
(presented in § 5) achieves an F1 of 66.31 with
TreeTagger inputs, and 72.30 using our refined to-
kenization and tagger combination. These results
underline the importance of domain adaptation for
accurate syntactic analysis, and in the following
we assume our hybrid in-house setup.

4Although theGENIA Treebank provides syntactic anno-
tation in a form inspired by thePTB, it does not provide func-
tion labels. Therefore, our procedure for converting from
constituency to dependency requires non-trivial adaptation
before we can investigate the effects of retraining the parser
againstGENIA.

3 Stage 1: Identifying Hedge Cues

For the task of identifying hedge cues, we devel-
oped a binary maximum entropy (MaxEnt) clas-
sifier. The identification of cue words is used
for (a) classifying sentences as certain/uncertain
(Task 1), and (b) providing input to the syntac-
tic rules that we later apply for resolving the in-
sentence scope of the cues (Task 2). We also re-
port evaluation scores for the sub-task of cue de-
tection in isolation.

As annotated in the training data, it is possible
for a hedge cue to span multiple tokens, e.g. as in
whether or not. The majority of the multi-word
cues in the training data are very infrequent, how-
ever, most occurring only once, and the classifier
itself is not sensitive to the notion of multi-word
cues. Instead, the task of determining whether a
cue word forms part of a larger multi-word cue, is
performed in a separate post-processing step (ap-
plying a heuristic rule targeted at only the most
frequently occurring patterns of multi-word cues
in the training data).

During development, we trained cue classifiers
using a wide variety of feature types, both syn-
tactic and surface-oriented. In the end, however,
we foundn-gram-based lexical features to have
the greatest contribution to classifier performance.
Our best-performing classifier so far (see ‘Final’
in Table 3) includes the following feature types:
n-grams over forms (up to 2 tokens to the right),
n-grams over base forms (up to 3 tokens left
and right), PoS (from GENIA), subcategorization
frames (fromXLE), and phrase-structural coordi-
nation level (fromXLE). Our CoNLL system de-
scription includes more details of the various other
feature types that we experimented with (Velldal
et al., 2010).

4 Cue Detection Evaluation

Table 3 summarizes the performance of our Max-
Ent hedge cue classifier in terms of precision, re-
call and F1, computed using the official Shared
Task scorer script. The sentence-level scores cor-
respond to Task 1 of the Shared Task, and the cue-
level scores are based on the exact-match counts
for full hedge cues (possibly spanning multiple to-
kens).
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Sentence Level Cue Level
Configuration Prec Rec F1 Prec Rec F1

Baseline, Development 79.25 79.45 79.20 77.37 71.70 74.43
Final, Development 91.39 86.78 89.00 90.18 79.47 84.49
Final, Held-Out 85.61 85.06 85.33 81.97 76.41 79.10

Table 3: Isolated evaluation of the hedge cue classifier.

As theCoNLL test data was known beforehand
to consist of articles only, in 10-fold cross vali-
dation for classifier development we tested exclu-
sively against the articles segment, while always
including all sentences from the abstracts in the
training set. This corresponds to the development
results in Table 3, while the held-out results are
for the official Shared Task evaluation data (train-
ing on all the available training data). A model
using only unigram features serves as a baseline.

5 Stage 2: Resolving Scope

Hedge scope may vary quite a lot depending on
linguistic properties of the cue in question. In our
approach to scope resolution we rely heavily on
syntactic information, taken from the dependency
structures proposed by both MaltParser andXLE,
as well as on various additional features relating
to specific syntactic constructions.

We constructed a small set of heuristic rules
which define the scope for each cue detected in
Stage 1. In developing these rules, we made use
of the information provided by the guidelines for
scope annotation in the BioScope corpus (Vincze
et al., 2008), combined with manual inspection of
the training data in order to further generalize over
the phenomena discussed by Vincze et al. (2008)
and work out interactions of constructions for var-
ious types of cues.

The rules take as input a parsed sentence which
has been further tagged with hedge cues. They
operate over the dependency structures and ad-
ditional features provided by the parser. Default
scope is set to start at the cue word and span to
the end of the sentence (modulo punctuation), and
this scope also provides the baseline for the eval-
uation of our rules. In the following, we discuss
broad classes of rules, organized by categories of
hedge cues. As there is no explicit representa-
tion of phrase or clause boundaries in our depen-

dency universe, we assume a set of functions over
dependency graphs, for example finding the left-
or rightmost (direct)dependent of a given node,
or transitively selecting left- or rightmostdescen-
dants.

Coordination The dependency analysis of co-
ordination provided by our parser makes the first
conjunct the head of the coordination. For cues
that are coordinating conjunctions (PoS tag CC),
such asor, we define the scope as spanning the
whole coordinate structure, i.e. start scope is set
to the leftmost dependent of the head of the coor-
dination, e.g.,roX in (2), and end scope is set to
its rightmost dependent (conjunct), e.g.,RNAs in
(2). This analysis provides us with coordinations
at various syntactic levels, such asNP andN (2),
AP andAdvP, or VP (3):

(2) [...] the{roX genes〈or〉 RNAs} recruit the entire set
of MSL proteins [...]

(3) [...] the binding interfaces are more often{kept〈or〉
even reused} rather than lost in the course of
evolution.

Adjectives We distinguish between adjectives
(JJ) in attributive (NMOD) function and adjectives
in predicative (PRD) function. Attributive adjec-
tives take scope over their (nominal) head, with all
its dependents, as in (4) and (5):

(4) The{〈possible〉 selenocysteine residues} are shown
in red, [...]

(5) Extensive analysis of the flanks failed to show any
hallmarks of{〈putative〉 transposons that might be
associated with this RAG1-like protein}, [...]

For adjectives in a predicative function the scope
includes the subject argument of the head verb
(the copula), as well as a (possible) clausal argu-
ment, as in (6). The scope does not, however, in-
clude expletive subjects, as in (7).
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(6) Therefore,{the unknown amino acid, if it is encoded
by a stop codon, is〈unlikely〉 to exist in the current
databases of microbial genomes}.

(7) For example, it is quite{〈likely〉 that there exists an
extremely long sequence that is entirely unique to U}.

Verbs The scope of verbal cues is a bit more
complex and depends on several factors. In our
rules, we distinguishpassive usages from active
usages,raising verbs from non-raising verbs, and
the presence or absence of a subject-control em-
bedding context. The scopes of both passive and
raising verbs include the subject argument of their
head verb, as in (8) and (9), unless it is an exple-
tive pronoun, as in (10).

(8) {Interactions determined by high-throughput methods
are generally〈considered〉 to be less reliable than
those obtained by low-throughput studies} 1314 and
as a consequence [...]

(9) {Genomes of plants and vertebrates〈seem〉 to be free
of any recognizable Transib transposons} (Figure 1).

(10) It has been{〈suggested〉 that unstructured regions of
proteins are often involved in binding interactions,
particularly in the case of transient interactions} 77.

In the case of subject control involving a hedge
cue, specifically modals, subject arguments are in-
cluded in scopes where the controller heads a pas-
sive construction or a raising verb, as in exam-
ple (1) above, repeated here for convenience:

(11) {The unknown amino acid〈may〉 be used by these
species}.

In general, the end scope of verbs should ex-
tend over the minimal clause that contains the verb
in question. In terms of dependency structures,
we define the clause boundary as comprising the
chain of descendants of a verb which is not inter-
vened by a token with a higher attachment in the
graph than the verb in question. In example (8)
for instance, the sentence-level conjunctionand
marks the end of the clause following the cuecon-
sidered.

Prepositions and Adverbs Cues that are tagged
as prepositions (including some complementizers)
take scope over their argument, with all its de-
scendants, (12). Adverbs take scope over their
head with all its (non-subject) syntactic descen-
dants (13).

Configuration F1

B
S

P Default, Gold Cues 45.21
Rules, Gold Cues 72.31
Rules, System Cues 64.77

B
S

E Rules, Gold Cues 66.73
Rules, System Cues 55.75

Table 4: Evaluation of scope resolution rules.

(12) {〈Whether〉 the codon aligned to the inframe stop
codon is a nonsense codon or not} was neglected at
this stage.

(13) These effects are{〈probably〉 mediated through the
1,25(OH)2D3 receptor}.

Multi-Word Cues In the case of multi-word
cues, such asindicate that or either ... or, we need
to determine the head of the multi-word unit. We
then set the scope of the whole unit to the scope
of the head token.

As an illustration of rule processing, consider
our running example (11), with its syntactic anal-
ysis as shown in Table 2 above. This example
invokes a variety of syntactic properties, includ-
ing parts of speech, argumenthood, voice etc. Ini-
tially, the scope of the hedge cue is set to default
scope. Then the subject control rule is applied,
which checks the properties of the verbal argu-
mentused, going through a chain of verbal depen-
dents from the modal verb. Since it is marked as
passive in theLFG analysis, the start scope is set to
include the subject of the cue word (the leftmost
descendant in itsSBJ dependent).

6 Rule Evaluation

Table 4 summarizes scope resolution performance
(viewed as a an isolated subtask) for various con-
figurations, both against the articles section of the
CoNLL training data (dubbedBSP) and against the
held-out evaluation data (BSE). First of all, we note
that the ‘default scope’ baseline is quite strong:
unconditionally extending the scope of a cue to
the end of the sentence yields an F1 of 45.21.
Given gold standard cue information, our scope
rules improve on the baseline by 27 points on the
articles section of the data set, for an F1 of 72.31;
with system-assigned hedge cues, our rules still
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achieve an F1 of 64.77. Note that scope resolu-
tion scores based on classified cues also yield the
end-to-end system evaluation for Task 2.

The bottom rows of Table 4 show the evaluation
of scope rules on theCoNLL held-out test data. Us-
ing system cues, scope resolution on the held-out
data scores at 55.75 F1. Comparing to the result
on the (articles portion of the) training data, we
observe a substantial drop in performance (of six
points with gold-standard cues, nine points with
system cues). There are several possible explana-
tions for this effect. First of all, there may well
be a certain degree of overfitting of our rules to
the training data. The held-out data may contain
hedging constructions that are not covered by our
current set of scope rules, or annotation of parallel
constructions may in some cases differ in subtle
ways (see § 7 below). Moreover, scope resolution
performance is of course influenced by cue detec-
tion (see Table 3). The cue-level F1 of our sys-
tem on the held-out data set is 79.10, compared to
84.49 (using cross validation) on the training data.
This drop in cue-level performance appears to af-
fect classification precision far more than recall.
Of course, given that our heuristics for identifying
multi-word cues were based on patterns extracted
from the training data, some loss in the cue-level
score was expected.

7 Error Analysis

To start shedding some light on the significance
of our results, we performed a manual error anal-
ysis on the article portion of the training material
(BSP), with two of the authors (trained linguists)
working in tandem. Using gold-standard cues,
our scope resolution rules fail to exactly replicate
the target annotation in 185 (of 668) cases, corre-
sponding to 72.31 F1 in Table 4 above. Our eval-
uators reviewed and discussed these 185 cases,
classifying 156 (84%) as genuine system errors,
22 (12%) as likely5 annotation errors, and a re-

5In some cases, there is no doubt that annotation is er-
roneous, i.e. in violation of the available annotation guide-
lines (Vincze et al., 2008) or in conflict with otherwise un-
ambiguous patterns. In other cases, however, judgments are
necessarily based on generalizations made by the evaluators,
i.e. assumptions about the underlying system and syntactic
analyses implicit in the BioScope annotations. Furthermore,
selecting items for manual analysis that do not align with the

maining seven cases as involving controversial or
seemingly arbitrary decisions.

The two most frequent classes of system er-
rors pertain (a) to the recognition of phrase and
clause boundaries and (b) to not dealing success-
fully with relatively superficial properties of the
text. Examples (14) and (15) illustrate the first
class of errors, where in addition to the gold-
standard annotation we use vertical bars (‘|’) to
indicate scope predictions of our system.

(14) [...]{the reverse complement|mR of m will be
〈considered〉 to be [...]|}

(15) This|{〈might〉 affect the results} if there is a
systematic bias on the composition of a protein
interaction set|.

In our syntax-driven approach to scope resolution,
system errors will almost always correspond to a
failure in determining constituent boundaries, in a
very general sense. However, specifically exam-
ple (15) is indicative of a key challenge in this
task, where adverbials of condition, reason, or
contrast frequently attach within the dependency
domain of a hedge cue, yet are rarely included in
the scope annotation.

Example (16) demonstrates our second fre-
quent class of system errors. One in six items
in the BSP training data contains a sentence-final
parenthesized element or trailing number, as for
example (2), (9), or (10) above; most of these are
bibliographic or other in-text references, which
are never included in scope annotation. Hence,
our system includes a rule to ‘back out’ from trail-
ing parentheticals; in examples like (16), how-
ever, syntax does not make explicit the contrast
between an in-text reference vs. another type of
parenthetical.

(16) More specifically,{|the bristle and leg phenotypes are
〈likely〉 to result from reduced signaling by Dl| (and
not by Ser)}.

Moving on to apparent annotation errors, the
rules for inclusion (or not) of the subject in
the scope of verbal hedge cues and decisions
on boundaries (or internal structure) of nominals

predictions made by our scope resolution rules is likely to
bias our sample, such that our estimated proportion of12%
annotation errors cannot be used to project an overall error
rate.
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seem problematic—as illustrated in examples (17)
to (22).6

(17) [...] and|this is also{〈thought〉 to be true for the full
protein interaction networks we are modeling}|.

(18) [...]{Neur |〈can〉 promote Ser signaling|}.

(19) |Some of the domain pairs{〈seem〉 to mediate a large
number of protein interactions, thus acting as reusable
connectors}|.

(20) One{|〈possible〉 explanation| is functional
redundancy with the mouse Neur2 gene}.

(21) [...] |redefinition of{one of them is〈feasible〉}|.

(22) |The{Bcl-2 family 〈appears〉 to function [...]}|.

Finally, the difficult corner cases invoke non-
constituent coordination, ellipsis, or NP-initial fo-
cus adverbs—and of course interactions of the
phenomena discussed above. Without making the
syntactic structures assumed explicit, it is often
very difficult to judge such items.

8 Reflections — Outlook

Our combination of stacked dependency parsing
and hand-crafted scope resolution rules proved
adequate for theCoNLL 2010 competition, con-
firming the central role of syntax in this task.
With a comparatively small set of rules (imple-
mented in a few hundred lines of code), con-
structed through roughly two full weeks of ef-
fort (studying BioScope annotations and develop-
ing rules), ourCoNLL system achieved an end-to-
end F1 of 55.33 on Task 2.7 The two submis-
sions with better results (at 57.32 and 55.65 F1)
represent groups who have pioneered the hedge
analysis task in previous years (Morante et al.,
2010; Rei & Briscoe, 2010). Scores for other ‘in-
domain’ participants range from 52.24 to 2.15 F1.

6Like in the presentation of system errors, we include
scope predictions of our own rules here too, which we be-
lieve to be correct in these cases. Also in this class of errors,
we find the occasional ‘uninteresting’ mismatch, for exam-
ple related to punctuation marks and inconsistencies around
parentheses.

7In § 4 and § 6 above, we report scores for a slightly im-
proved version of our system, where (after the officialCoNLL

submission date) we eliminated a bug related to the treatment
of sentence-initial whitespace in theXML annotations. At an
end-to-end F1 of 55.75, this system would outrank the sec-
ond best performer in Task 2.

Doubtless there is room for straightforward exten-
sion: for example retraining our parser on theGE-

NIA Treebank, further improving the cue classifier,
and refining scope resolution rules in the light of
the error analysis above.

At the same time, we remain mildly am-
bivalent about the long-term impact of some of
the specifics of the 2010CoNLL task. Shared
tasks (i.e. system bake-offs) have become increas-
ingly popular in past years, and in some sub-
fields (e.g.IE, SMT, or dependency parsing) high-
visibility competitions can shape community re-
search agendas. Hence, even at this early stage, it
seems appropriate to reflect on the possible con-
clusions to be drawn from the 2010 hedge res-
olution task. First, we believe the harsh ‘exact
substring match’ evaluation metric underestimates
the degree to which current technology can solve
this problem; furthermore, idiosyncratic, string-
level properties (e.g. the exact treatment of punc-
tuation or parentheticals) may partly obscure the
interpretation of methods used and corresponding
system performance.

These effects are compounded by some con-
cerns about the quality of available annotation.
Even though we tried fine-tuning our cross vali-
dation testing to the nature of the evaluation data
(comprising only articles), our system performs
substantially worse on the newly annotatedCoNLL

test data, in both stages.8 In our view, the anno-
tation of hedge cues and scopes ideally would be
overtly related to at least some level of syntactic
annotation—as would in principle be possible for
the segment of BioScope drawing on the abstracts
of theGENIA Treebank.
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