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Abstract sentences containing uncertainty; the objective of
_ Task 2 idearning to resolve the in-sentence scope
We show how the use Pf syntactic struc-  f hedge cues (Farkas, Vincze, Mora, Csirik, &
ture enables the resolution of hedge scope  5zarvas, 2010). The organizers further suggest:
in a hybrid, two-stage approach t0 un-  Thjstask falls within the scope of semantic analy-
certainty analysis. In the first stage, a g of sentences exploiting syntactic patterns|...].
Maximum Entropy classifier, combining The utility of syntactic information within var-
surface-oriented and syntactic features, joys approaches to sentiment analysis in natu-
identifies cue words. With a small set of 5 |anguage has been an issue of some debate
hand-crafted rules operating over depen- (Wilson, Wiebe, & Hwa, 2006; Ng, Dasgupta,
dency representations in stage two, we at- g Arifin, 2006), and the potential contribution of
tain the best overall result (in terms of  gyntax clearly varies with the specifics of the task.
both combined ranks and averagg) i Previous work in the hedging realm has largely
the 2010CoNLL Shared Task. been concerned with cue detection, i.e. identify-
ing uncertainty cues such asay in (1), which
are predominantly individual tokens (Medlock &
Recent years have withessed an increased inter&tscoe, 2007; Kilicoglu & Bergler, 2008). There
in the analysis of various aspects of sentiment ihas been little previous work aimed at actually
natural language (Pang & Lee, 2008). The sulresolving the scope of such hedge cues, which
task ofhedge resolution deals with the analysis of presumably constitutes a somewhat different and
uncertainty as expressed in natural language, atiklely more difficult problem. Morante and Daele-
the linguistic means (so-called hedges) by whicmans (2009) present a machine-learning approach
speculation or uncertainty are expressed. Infote this task, using token-level, lexical informa-
mation of this kind is of importance for varioustion only. To this endcoNLL 2010 enters largely
mining tasks which aim at extracting factual datauncharted territory, and it remains to be seen (a)
Example (1), taken from the BioScope corpusvhether syntactic analysis indeed is a necessary
(Vincze, Szarvas, Farkas, Méra, & Csirik, 2008)component in approaching this task and, more
shows a sentence where uncertainty is signaled lggnerally, (b) to what degree the specific task
the modal verbmay.! setup can inform us about the strong and weak
(1) {The unknown amino aci¢inay) be used by these points i_n cur_rent appr_oachgs and teChnOIO_gy' .
specie$. In this article, we investigate the contribution
of syntax to hedge resolution, by reflecting on our
The topic of the Shared Task at the 2010 Congyperience in theoNLL 2010 task® Our CONLL
ference for Natural Language LearningoiLL)  system submission ranked fourth (of 24) on Task 1
is hedge detection in biomedical literature—in & third (of 15) on Task 2, for an overall best av-
sense ‘zooming in" on one particular aspect of thgrage result (there appears to be very limited over-
broader BioNLP Shared Task in 2009 (Kim, Ohta|ap among top performers for the two subtasks).

Pyysalo, Kano, & Tsujii, 2009). It involves two
subtasks: Task 1 is describedlearning to detect 2It turns out, in fact, that all the top-performing systems
’ in Task 2 of theconLL Shared Task rely on syntactic informa-

11n examples throughout this paper, angle brackets higﬁi-on provided by parsers, either in features for machinmlea

light hedge cues, and curly braces indicate the scope of/39 Or @s input to manually crafted rules (Morante, Asch, &
given cue, as annotated in BioScope. Daelemans, 2010; Rei & Briscoe, 2010).

1 Background—Motivation
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Sentences Hedged Cues Multi-Word Tokens Cue Tokens

Sentences Cues
Abstracts 11871 2101 2659 364 309634 3056
Articles 2670 519 668 84 68579 782
Total 14541 2620 3327 448 378213 3838

Table 1. Summary statistics for the Shared Task training.dat

This article transcends o@oNLL system descrip- uation does not tease apart these two aspects of
tion (Velldal, @vrelid, & Oepen, 2010) in severalthe problem, however: Only an exact match of
respects, presenting updated and improved cue dmth the cue and scope bracketing (in terms of
tection results (8 3 and §4), focusing on the rolsubstring positions) will be counted as a success,
of syntactic information rather than on machineagain quantified in terms of precision, recall, and
learning specifics (8 5 and 8§ 6), providing an analF;. Discussing our results below, we report cue
ysis and discussion of Task 2 errors (8 7), and gemtetection and scope resolution performance sepa-
erally aiming to gauge the value of available annorately, and further put scope results into perspec-
tated data and processing tools (§8). We presetite against an upper bound based on the gold-
a hybrid, two-level approach for hedge resolutionstandard cue annotation.

where a statistical classifier detects cue words, andBesides the primary biomedical domain data,
a small set of manually crafted rules operatingome annotated Wikipedia data was provided
over syntactic structures resolve scope. We shofer Task 1, and participating systems are classi-
how syntactic information—produced by a datafied asin-domain (using exclusively the domain-
driven dependency parser complemented with irspecific data), cross-domain (combining both
formation from a ‘deep’, hand-crafted grammar—types of training data), oopen (utilizing addi-
contributes to the resolution of in-sentence scoponal uncertainty-related resources). In our work,
of hedge cues, discussing various types of synve focus on the interplay of syntax and the more
tactic constructions and associated scope detethallenging Task 2; we ignored the Wikipedia
tion rules in considerable detail. We furthermordrack in Task 1. Despite our using generalP
present a manual error analysis, which reveals résols (see below), our system falls into the most
maining challenges in our scope resolution ruleeestrictive,in-domain category.

as well as several relevant idiosyncrasies of t

preexisting BioScope annotation h'?raining and Evaluation Data The training

data for thecoNLL 2010 Shared Task is taken from
2 Task, Data, and System Basics the BioScope corpus (Vincze et al., 2008) and
o _ _ consists of 14,541 ‘sentences’ (or other root-level
Task Definiton and Evaluation Metrics tterances) from biomedical abstracts and articles
Task 1 is a binary sentence classification tasl(see Table 1}. The BioScope corpus provides
identifying utterances as beirggrtain or uncer-  annotation for hedge cues as well as their scope.
tain.  Following common practice, this subtaskaccording to the annotation guidelines (Vincze et
is evaluated in terms of precision, recall, andy, 2008), the annotation adheres to a principle
F, for the ‘positive’ class, i.euncertain. In  of minimalism when it comes to hedge cues, i.e.
our work, we approach Task 1 as a byprodughe minimal unit expressing hedging is annotated.
of the full hedge resolution problem, labeling athe jnverse is true of scope annotations, which ad-

the sentence-level evaluation for Task 1, we also———— _

present precision, recall, and for the cue-level. As it was known beforehand that evaluation would draw
. ) . on full articles only, we put more emphasis on the article

Task 2 comprises two subtasks: cue detectiofupset of the training data, for example in cross validation

and scope resolution. The officiabNLL eval- testing and manual diagnosis of errors.

1380



D FORM LEMVA  PCS FEATS HEAD DEPREL XHEAD XDEP

|

1 The the DT _ 4 NMOD 4 SPECDET
2 unknown unknown JJ degree:attributive 4 NMOD 4 ADJUNCT
3 amno amno JJ degree:attributive 4 NMOD 4 ADJUNCT
4 acid aci d NN pers: 3| case: nonf num sg| nt ype: conmon 5 SBJ 3 SUBJ

5 my may MD nood: i nd| subcat: MODAL| t ense: pres| cl auseType: decl 0 ROOT O ROOT

6 be be VB _ 5 VvC 7 PHI

7 used use VBN subcat : V- SUBJ- OBJ| vt ype: mai n| passi ve: + 6 VC 5 XCowP

8 by by IN _ 7 LGS 9 PHI

9 these these DT dei xi s: proxi mal 10 NMOD 10 SPECDET
10 species specie NNS num pl | pers: 3| case: obl | conmon: count | nt ype: conmon 8 PMOD 7 OBL- AG
11 . . . P 0 PUNC

Table 2: Stacked dependency representation of exampleifh)MaltParser ankLE annotations.

unit possible. tory in order to guide parsing and may easily be
For evaluation purposes, the task organizemxtended to take additional features into account.
provided newly annotated biomedical articles, folThe procedure to enable the data-driven parser
lowing the same general BioScope principles. Th® learn from the grammar-driven parser is quite
CONLL 2010 evaluation data comprises 5,003 adcsimple. We parse a treebank with thee plat-
ditional utterances (138,276 tokens), of which 79@rm (Crouch et al., 2008) and the English gram-
are annotated as hedged. The data contains a toar developed within the ParGram project (Butt,
tal of 1033 cues, of which 87 are so-called multiDyvik, King, Masuichi, & Rohrer, 2002). We
word cues (i.e. cues spanning multiple tokensthen convert theFG output to dependency struc-
comprising 1148 cue tokens altogether. tures, so that we have two parallel versions of the
treebank—one gold standard and one wite

Stacke_d Dependency Parsing For syntactic annotation. We extend the gold standard treebank
analysis we employ the open-source MaltParser

. . with additional information from the correspond-
(Nivre, _HaII, & Nilsson, 2006.)’ a platfqrm for ing LFG analysis and train MaltParser on the en-
data-driven dependency parsing. For |mproveH

anced data set.

accuracy and portability across domains and gen- Table 2 shows the enhanced dependency rep-

fes, We make our parser incorporate the Pl esentation of example (1) above, taken from the
dictions of a large-scale, general-purpolsSec

parser—following the work of @vrelid, Kuhn, and training data. For each token, the parsed data con-

. tains information on the word form, lemma, and
Spreyer (2009). A technique dubbyparser stack- art of speechrps), as well as on the head and

ing enables the data-driven parser to Igarn, n((El)tependency relation in columns 6 and 7. The
only from gold standard treebank annotations, but

¢ th tout of th Nivre & M addedxLE information resides in theEATS col-
rom the output of anotner parser (Nivre C'umn, and in thexLe-specific head and depen-
Donald, 2008). This technique has been shown téa .
) L ) . ency columns 8 and 9. Parser outputs, which in
provide significant improvements in accuracy for,

; ) turn form the basis for our scope resolution rules
both English and German (Qvrelid et al., 2009),,. . . P .
2 i tiscussed in Section 5, also take this same form.
and a similar setup employing a#PsSG gram-

mar has been shown to incr domain ind The parser employed in this work is trained on
arhas been sno 0 Increase doma €Pelke Wall Street Journal sections 2 — 24 of the Penn

dence in data-driven dependency parsing (Zhanlgreebank ©TB), converted to dependency format

& Wang, 2909)' The stacked parser co mbme&lohansson & Nugues, 2007) and extended with
two quite different approaches—data-driven de

endency parsing and ‘deen’ parsing with a hanci-ELE features, as described above. Parsing uses the
b yp 9 pp 9 arc-eager mode of MaltParser and svmM with

crafted grammar_—and thus prov_|des_ us W'th 3 polynomial kernel. When tested using 10-fold
broad range of different types of linguistic infor-

. i cross validation on the enhancets, the parser
mation for the hedge resolution task.

. o achieves a labeled accuracy score of 89.8.
MaltParser is based on a deterministic pars- y

ing strategy in combination with treebank-induced?oS Tagging and Domain Variation Our
classifiers for predicting parse transitions. It supparser is trained on financial news, and although
ports a rich feature representation of the parse histacking with a general-purpos€G parser is ex-
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pected to aid domain portability, substantial dif-3 Stage 1: Identifying Hedge Cues

ferences in domain and genre are bound to neg- . .
g %or the task of identifying hedge cues, we devel-

atively affect syntactic analysis (Gildea, 2001). . .
: oped a binary maximum entropy (MaxEnt) clas-
MaltParser presupposes that inputs have lresn ' . e :
sifier. The identification of cue words is used

tagged, leaving room for variation in preprocess: o : :
99 g prep :Err (a) classifying sentences as certain/uncertain

ing. On the one hand, we aim to make parse e

. . o . . . ask 1), and (b) providing input to the syntac-

inputs maximally similar to its training data (i.e. . . .
tic rules that we later apply for resolving the in-

the conventions established in tR&B); on the

. . . sentence scope of the cues (Task 2). We also re-
other hand we wish to benefit from specialized re= :
sources for the biomedical domain port evaluation scores for the sub-task of cue de-

._tection in isolation.
The GENIA tagger (Tsuruoka et al., 2005) is ) . . .
gger ( ) As annotated in the training data, it is possible

?or a hedge cue to span multiple tokens, e.g. as in

the GENIA Treebank propé). However, we o .
found thatGENIA tokenization does not match theWheth.er or not._ T he majority of the multi-word
cues in the training data are very infrequent, how-

PTB conventions in about one out of five sen- ) .
. . _ever, most occurring only once, and the classifier
tences (for example wrongly splitting tokens Ilkeit If is not sensitive to the notion of multi-word
‘390, 926’ or ' Ca( 2+) "); also in tagging proper S€Ils not sensitive o the notion of mu °
; : cues. Instead, the task of determining whether a
nouns, GENIA systematically deviates from the

. ._ cue word forms part of a larger multi-word cue, is
PTB. Hence, we adapted an in-house tokenizer P 9

(using cascaded finite-state rules) to theNLL performed in a separate post-processing step (ap-

task, run twopos taggers in parallel, and eclec- plying a heuristic rule targeted at only the most

. ) : . frequently occurring patterns of multi-word cues
tically combine annotations across the various -
In the training data).

preprocessing components—predominantly giv- . . -
: o During development, we trained cue classifiers
ing precedence tGENIA lemmatization andros . : :

using a wide variety of feature types, both syn-

hypotheses. . .
. : . tactic and surface-oriented. In the end, however,
To assess the impact of improved, domain-

. . we foundn-gram-based lexical features to have
adapted inputs on our hedge resolution syste

we contrast two configurations: first, running thgt}] e greatest contr!butlon to_(?la53|f|er perforr‘ngnce,:.

. . Our best-performing classifier so far (see ‘Final
parser in the exact same manner as @vrelid, Kuhln,_l_ ble 3) includes the following feature t ]
and Spreyer (2010), we use TreeTagger (Schmicﬁ‘ able 3) includes the following feature types:

1994) and its standard model for English (traineéll '9:222 %ve;rrfct;;rzz (]%F;r:)sz tok(i(r;s ;Otgllinnsgrl]gf’t
on thepTB) for preprocessing; second, we give ad gral v (up o
nd right), Pos (from GENIA), subcategorization

inputs to the parser our refined tokenization an :
. rames (fromXLE), and phrase-structural coordi-

mergedpros tags, as described above. When eval- "
nation level (fromxLE). Our CONLL system de-

uating the two modes of preprocessing onthear- .~ . . .

. o . cription includes more details of the various other

ticles subset of the training data, and using gold:- . .
. eature types that we experimented with (Velldal

standard cues, our system for resolving cue SCOpgtSal 2010)

(presented in §85) achieves an Bf 66.31 with " '

TreeTagger inputs, and 72.30 using our refined gy cye Detection Evaluation

kenization and tagger combination. These results _

underline the importance of domain adaptation fofable 3 summarizes the performance of our Max-

accurate syntactic analysis, and in the following=nt hedge cue classifier in terms of precision, re-
we assume our hybrid in-house setup. call and R, computed using the official Shared

iAo Treebank _d i Task scorer script. The sentence-level scores cor-
ough thecenia Treebank provides syntactic anno- )
tation in a form inspired by theTs, it does not provide func- respond to Task 1 of the Shared Task, and the cue

tion labels. Therefore, our procedure for converting fronlevel scores are based on the exact-match counts

constituency to dependency requires non-trivial adaptati for fyll hedge cues (possibly spanning multiple to-
before we can investigate the effects of retraining thegrars kens)

againsiGENIA.
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Cue Level
Rec R

77.37 71.70 74.43
90.18 79.47 84.49
81.97 76.41 79.10

Sentence Level
Prec Rec R

79.25 79.45 79.20
91.39 86.78 89.00
85.61 85.06 85.33

Configuration Prec

Baseline, Development
Final, Development
Final, Held-Out

Table 3: Isolated evaluation of the hedge cue classifier.

As the CoNLL test data was known beforehanddency universe, we assume a set of functions over
to consist of articles only, in 10-fold cross vali-dependency graphs, for example finding the left-
dation for classifier development we tested excluer rightmost (direct)}dependent of a given node,
sively against the articles segment, while alwayser transitively selecting left- or rightmosiescen-
including all sentences from the abstracts in thdants.

training set. This corresponds to the developmerB

results in Table 3, while the held-out results are oordination ~ The dependency analysis of co-

for the official Shared Task evaluation data (train9 rdination provided by our parser makes the first

. . o conjunct the head of the coordination. For cues
ing on all the available training data). A model o . .

; : . _that are coordinating conjunctionso§ tag cc),
using only unigram features serves as a baseline. : .

such asor, we define the scope as spanning the

whole coordinate structure, i.e. start scope is set
) ] to the leftmost dependent of the head of the coor-
Hedge scope may vary quite a lot depending Ogination, e.g.roX in (2), and end scope is set to
linguistic properties of the cue in question. In our rightmost dependent (conjunct), e.BNAs in

approa(_:h_to scope resolution we rely heavily 02). This analysis provides us with coordinations
syntactic information, taken from the dependency; \arious syntactic levels, such &B andN (2)
structures proposed by both MaltParser &8,  Ap 3ndadve. or vP 3):

as well as on various additional features relating
to specific syntactic constructions. @

We constructed a small set of heuristic rules
which define the scope for each cue detected i)
Stage 1. In developing these rules, we made use
of the information provided by the guidelines for
scope annotation in the BioScope corpus (VinczAdjectives We distinguish between adjectives
et al., 2008), combined with manual inspection ofJJ in attributive (NmMoD) function and adjectives
the training data in order to further generalize ovein predicative (PRD) function. Attributive adjec-
the phenomena discussed by Vincze et al. (2008yes take scope over their (nominal) head, with all
and work out interactions of constructions for varits dependents, as in (4) and (5):

5 Stage 2: Resolving Scope

[...] the{roX genes(or) RNAs} recruit the entire set
of MSL proteins [...]

[...] the binding interfaces are more oft€kept (or)
even reusefrather than lost in the course of
evolution.

ious types of cues. @
The rules take as input a parsed sentence which
has been further tagged with hedge cues. The
operate over the dependency structures and ag-
ditional features provided by the parser. Default
scope is set to start at the cue word and span to

The{(possiblé¢ selenocysteine residueare shown
inred, [...]

Extensive analysis of the flanks failed to show any
hallmarks of{(putative transposons that might be
associated with this RAG1-like protein|...]

the end of the sentence (modulo punctuation), ar]:(]or adjectives in a predicative function the scope

this scope also provides the baseline for the evd
uation of our rules. In the following, we discuss
broad classes of rules, organized by categories
hedge cues. As there is no explicit represent
tion of phrase or clause boundaries in our depen-
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pcludes the subject argument of the head verb
(the copula), as well as a (possible) clausal argu-
gent, as in (6). The scope does not, however, in-
g_lude expletive subjects, as in (7).



(6) Therefore{the unknown amino acid, if it is encoded Configuration Fq
by a stop codon, igunlikely) to exist in the current

databases of microbial genomes o Default, Gold Cues 45.21
7
(7) For example, itis quité¢(likely) that there exists an m Rules, Gold Cues 72.31
extremely long sequence that is entirely unique o U Rules, System Cues 64.77
Verbs The scope of verbal cues is a bit more w  Rules, Gold Cues 66.73

complex and depends on several factors. In our Rules, System Cues  55.75

rules, we distinguisipassive usages from active
usagesraising verbs from non-raising verbs, and
the p_resence or absence of a subject-cont_rol €M) {(Whethe} the codon aligned to the inframe stop
bedding context. The scopes of both passive and  codon is a nonsense codon or hutas neglected at
raising verbs include the subject argument of their  this stage.

head verb, as in (8) and (9), unless it is an explg13) These effects arf(probably mediated through the
tive pronoun, as in (10). 1,25(0OH)2D3 receptdr

Table 4: Evaluation of scope resolution rules.

(8) {Interactions determined by high-throughput methoddMulti-Word Cues In the case of multi-word
are generallyconsiderelito be less reliable than ST :
those obtained by low-throughput studieks14 and ~ CUES" such asdicate that or either .. OF, We n_eed
as a consequence [...] to determine the head of the multi-word unit. We
then set the scope of the whole unit to the scope

9 G f plants and verteb to be f
(9) {Genomes of plants and vertebrat{esen) to be free of the head token.

of any recognizable Transib transpospi(Bigure 1).

(10) It has beer (suggestedthat unstructured regions of As an illustration of rule processing, consider
proteins are often involved in binding interactions,  our running example (11), with its syntactic anal-

particularly in the case of transient interactipr. ysis as shown in Table 2 above. This example

In the case of subject control involving a hedgénVOkes a variety of syntactic properties, includ-

cue, specifically modals, subject arguments are inhd parts of speech, argumenthood, voice etc. Ini-

cluded in scopes where the controller heads a paté@”y' theTiCOpthf thg'hetdge (EU(T 1S Isef[ o de;"alélt
sive construction or a raising verb, as in exam>COP€- en the subject control rule 1S applied,

- . hich checks the properties of the verbal argu-
le (1) above, repeated here for convenience: "V
ple (1) P mentused, going through a chain of verbal depen-

(11) {The unknown amino acidmay) be used by these  dents from the modal verb. Since it is marked as
species. passive in theFG analysis, the start scope is set to
In general, the end scope of verbs should extclude the subject of the cue word (the leftmost

tend over the minimal clause that contains the verfiescendant in itssJ dependent).

in question. In terms of dependency structure :

weqdefine the clause boundapry as coymprising tt?6e Rule Evaluation

chain of descendants of a verb which is not intertable 4 summarizes scope resolution performance
vened by a token with a higher attachment in thg¢viewed as a an isolated subtask) for various con-
graph than the verb in question. In example (8jigurations, both against the articles section of the
for instance, the sentence-level conjunct@ml coNLL training data (dubbedspP) and against the
marks the end of the clause following the aoe-  held-out evaluation data$E). First of all, we note
sidered. that the ‘default scope’ baseline is quite strong:

" unconditionally extending the scope of a cue to
Prepositions and Adverbs Cues that are tagged .
POSH v n 99 the end of the sentence yields an & 45.21.

as prepositions (including some complementizers iven qold standard cue information. our scope
take scope over their argument, with all its de- 9 : P

scendants, (12). Adverbs take scope over therilr‘”feS improv_e on the baseline by 27 points on the
head with all its (non-subject) syntactic descen"flr.tICIes section qf the data set, for andt 72.31; ,
dants (13). with system-assigned hedge cues, our rules still
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achieve an Fof 64.77. Note that scope resolu-maining seven cases as involving controversial or

tion scores based on classified cues also yield tlseemingly arbitrary decisions.

end-to-end system evaluation for Task 2. The two most frequent classes of system er-
The bottom rows of Table 4 show the evaluatiorrors pertain (a) to the recognition of phrase and

of scope rules on theoNLL held-out test data. Us- clause boundaries and (b) to not dealing success-

ing system cues, scope resolution on the held-ofully with relatively superficial properties of the

data scores at 55.75 FComparing to the result text. Examples (14) and (15) illustrate the first

on the (articles portion of the) training data, weclass of errors, where in addition to the gold-

observe a substantial drop in performance (of sistandard annotation we use vertical bat§ (o

points with gold-standard cues, nine points withindicate scope predictions of our system.

§ystem cue_s). There are several possible explan&a) L] {the reverse complemefinR of m will be

tions for this effect. First of all, there may well (considerelito be [...]}

be a certain degree of overfitting of our rules t015) This|{ (might affect the resultsif there is a

the training data. The held-out data may contaifl systematic bias on the composition of a protein

hedging constructions that are not covered by our interaction set

current set of scope rules, or annotation of parallel

constructions may in some cases differ in subti OUr syntax-driven approach to scope resolution,
ways (see § 7 below). Moreover, scope resolutiofyStem errors will aimost always correspond to a
performance is of course influenced by cue deted@ilUre in determining constituent boundaries, in a
tion (see Table 3). The cue-levej Bf our sys- Very general sense. However, specifically exam-
tem on the held-out data set is 79.10, compared fi¢ (15) is indicative of a key challenge in this

84.49 (using cross validation) on the training datd@Sk: where adverbials of condition, reason, or

This drop in cue-level performance appears to afontrast frequently attach within the dependency

fect classification precision far more than recalldomain of a hedge cue, yet are rarely included in
Of course, given that our heuristics for identifying!h® SCOPe annotation.
multi-word cues were based on patterns extracted EX@mple (16) demonstrates our second fre-

from the training data, some loss in the cue-levéfuént class of system errors. One in six items
score was expected in the BsPtraining data contains a sentence-final

parenthesized element or trailing number, as for
7 Error Analysis example (2), (9), or (10) above; most of these are

_ _ o bibliographic or other in-text references, which
To start shedding some light on the significancg e pever included in scope annotation. Hence,

of our results, we peff‘?fmed a maqugl error ar_'abur system includes a rule to ‘back out’ from trail-
ysis on the article portion of the training materlaling parentheticals; in examples like (16), how-

(BSP)_, wit_h two of the athors (trained linguists) ever, syntax does not make explicit the contrast
working in tandem. Using .gold-standard CUCShetween an in-text reference vs. another type of
our scope resolution rules fail to exactly rep“catebarenthetical
the target annotation in 185 (of 668) cases, corre-
sponding to 72.31 Fin Table 4 above. Our eval- (16) More specifically{|the bristle and leg phenotypes are
. . (likely) to result from reduced signaling by Band

uators reviewed and discussed these 185 cases, ot py ser).
classifying 156 §4 %) as genuine system errors,
22 (12%) as likely> annotation errors, and a re- Moving on to apparent annotation errors, the
— _ . rules for inclusion (or not) of the subject in

In some cases, there is no doubt that annotation is e{h R bal hed d decisi
roneous, i.e. in violation of the available annotation guid € scope or verbal hedge cues an ecisions

lines (Vincze et al., 2008) or in conflict with otherwise un-on boundaries (or internal structure) of nominals
ambiguous patterns. In other cases, however, judgments are———— ) o
necessarily based on generalizations made by the evayatdpredictions made by our scope resolution rules is likely to
i.e. assumptions about the underlying system and syntactii@s our sample, such that our estimated proportioreéh
analyses implicit in the BioScope annotations. Furtheemor @nnotation errors cannot be used to project an overall error
selecting items for manual analysis that do not align with thrate.
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seem problematic—as illustrated in examples (1)oubtless there is room for straightforward exten-

to (22)8 sion: for example retraining our parser on the

(17) [...] and[this is also{(though} to be true for the full NIA Tre_et_)ank’ further |mprQV|ng the (?ue cla_55|f|er,
protein interaction networks we are modenmg and ref|n|ng SCOpe reSOIUUOn I‘uleS n the I|ght Of

the error analysis above.

At the same time, we remain mildly am-

(19) |Some of the domain paifgseem to mediate a large bivalent about the long-term impact of some of

number of protein interactions, thus acting as reusablfhe specifics of the 201@oNLL task. Shared

(18) [...]{Neur|{can promote Ser signaling.

connectory|. ) )
tasks (i.e. system bake-offs) have become increas-
(20) One{|(possible explanationis functional ingly popular in past years, and in some sub-
redundancy with the mouse Neur2 ggne fields (e.g.E, SMT, or dependency parsing) high-
(21) [...]|redefinition of{one of them igfeasiblg}|. visibility competitions can shape community re-

search agendas. Hence, even at this early stage, it
seems appropriate to reflect on the possible con-
Finally, the difficult corner cases invoke non-clusions to be drawn from the 2010 hedge res-
constituent coordination, ellipsis, or NP-initial fo- olution task. First, we believe the harsh ‘exact
cus adverbs—and of course interactions of thsubstring match’ evaluation metric underestimates
phenomena discussed above. Without making thike degree to which current technology can solve
syntactic structures assumed explicit, it is oftemhis problem; furthermore, idiosyncratic, string-

(22) |The{Bcl-2 family (appearsto function [...J}|.

very difficult to judge such items. level properties (e.g. the exact treatment of punc-
_ tuation or parentheticals) may partly obscure the
8 Reflections — Outlook interpretation of methods used and corresponding

Our combination of stacked dependency parsingyStém performance.
and hand-crafted scope resolution rules proved These effects are compounded by some con-
adequate for the€oNLL 2010 competition, con- C€MS about the quality of available annotation.
firming the central role of syntax in this task.Even though we tried fine-tuning our cross vali-
With a comparatively small set of rules (imple-dation testing to the nature of the evaluation data
mented in a few hundred lines of code), Con(compris_ing only articles), our system performs
structed through roughly two full weeks of ef_substantla_lly worse on the newly _annotatmnhLL
fort (studying BioScope annotations and develop©St data, in both stagésin our view, the anno-
ing rules), ourconLL system achieved an end-to-tation of hedge cues and scopes ideally would be
end F of 55.33 on Task 2. The two submis- overtly related to at least some level of syntactic
sions with better results (at 57.32 and 55.63 F @nnotation—as would in principle be possible for
represent groups who have pioneered the hedee segment of BioScope drawing on the abstracts
analysis task in previous years (Morante et alOf théGENIA Treebank.
2010; Rei & Briscoe, 2010). Scores for other ‘in-
' . ’ Acknowledgements
domain’ participants range from 52.24t0 2.15 F 9
ST . . We are grateful to the organizers of the 2010
Like in the presentation of system errors, we include .
scope predictions of our own rules here too, which we beCONLL Shared Task and creators of the BioScope
Iiev?:‘_ tc(Jj bre] correct_in thlese cases. _Also ir} this clr?sfs ofgrrorresource; first, for engaging in these kinds of com-
we find the occasiona ‘unlnterestlng’ mismatch, for exam- : . H H
ple related to punctuation marks and inconsistencies drourmum_ty service, and _Second for many !n-depth dis-
parentheses. cussions of annotation and task details. We thank
’In §4 and § 6 above, we report scores for a slightly imour colleagues at the Universities of Oslo and

proved version of our system, where (after the officialLL :
submission date) we eliminated a bug related to the treatmeﬁOtSdam for their comments and support.

of sentence-initial whitespace in th@L annotations. At an

end-to-end I of 55.75, this system would outrank the sec-—

ond best performer in Task 2. 8We are leaving open the possibility to further refine our
system; we have therefore abstained from an error analysis
on the evaluation data so far.
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