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Abstract

As tokenization is usually ambiguous for
many natural languages such as Chinese
and Korean, tokenization errors might po-
tentially introduce translation mistakes for
translation systems that rely on 1-best to-
kenizations. While using lattices to of-
fer more alternatives to translation sys-
tems have elegantly alleviated this prob-
lem, we take a further step to tokenize
and translate jointly. Taking a sequence
of atomic units that can be combined to
form words in different ways as input, our
joint decoder produces a tokenization on
the source side and a translation on the
target side simultaneously. By integrat-
ing tokenization and translation features
in a discriminative framework, our joint
decoder outperforms the baseline trans-
lation systems using 1-best tokenizations
and lattices significantly on both Chinese-
English and Korean-Chinese tasks. In-
terestingly, as a tokenizer, our joint de-
coder achieves significant improvements
over monolingual Chinese tokenizers.
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Figure 1: (a) Separate tokenization and translation and (b)
joint tokenization and translation.

2006; Shen et al., 2008) that take a string as input
andtree-basedystems (Liu et al., 2006; Mi et al.,
2008) that take a tree as input. Note that a tree-
based system still needs to first tokenize the input
sentence and then obtain a parse tree or forest of
the sentence. As shown in Figure 1(a), we refer to
this pipeline asepar ate tokenization and transla-
tion because they are divided into single steps.

As tokenization for many languages is usually
ambiguous, SMT systems that separate tokeniza-
tion and translation suffer from a major drawback:
tokenization errors potentially introduce transla-
tion mistakes. As some languages such as Chi-
nese have no spaces in their writing systems, how

Tokenization plays an important role in statisticato segment sentences into appropriate words has
machine translation (SMT) because tokenizing a direct impact on translation performance (Xu et
source-language sentence is always the first stap, 2005; Chang et al., 2008; Zhang et al., 2008).
in SMT systems. Based on the type of input, Min addition, although agglutinative languages such
and Huang (2008) distinguish between two catas Korean incorporate spaces between “words”,
egories of SMT systems string-basedsystems which consist of multiple morphemes, the gran-
(Koehn et al., 2003; Chiang, 2007; Galley et al.ularity is too coarse and makes the training data
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considerably sparse. Studies reveal that seg® 1 | , o o B R
menting “words” into morphemes effectively im- taio fei ke you wang duo fen
proves translating morphologically rich languages
(Oflazer, 2008). More importantly, a tokenization
close to a gold standard does not necessarily Iead§ tao-fei-ke (3 vouwang duofen
to better translation quality (Chang et al., 2008;

Zhang et al., 2008). Therefore, it is necessary)~ o feike § duo-f
’ : . ’ (:) <1> 3 you-wang 5 uo-fen
to offer more tokenizations to SMT systems to @

. o . tao-fei-ke duo-fen
alleviate the tokenization error propagation prob-(d
lem. Recently, many researchers have shown that 0 ou-wang 0
replacing 1-best tokenizations with lattices im- O o e e @
proves translation performance significantly (Xu o o .
etal, 2005; Dyer etal., 2008; Dyer, 2009).  HOL1e % Chinese oenizaton: (o) character sequerde: (-

We take a next step towards the direction ofind (c). We insert “-” between characters in a word just for
offering more tokenizations to SMT systems bylarity.
proposingjoint tokenization and translation. As
shown in Figure 1(b), our approach tokenizeS;, tao-fei-ke—Taufik
and translates jointly to find a tokenization and vz  duo fen— gain a point
a translation for a source-language string simul-12—1You-wangrs — z will have the chance o
taneously. We integrate translation and tokenizarable 1: An SCFG derivation given the tokenization of Fig-
tion models into a discriminative framework (Ochure 2(b).
and Ney, 2002), within which tokenization and
translation models interact with each other. Ex-
periments show that joint tokenization and transeptimal for machine translation. Firstly, optimal
lation outperforms its separate counterparts (Jgranularity is unclear for machine translation. We
best tokenizations and lattices) significantly onmight face severe data sparseness problem by us-
the NIST 2004 and 2005 Chinese-English tedng large granularity, while losing much useful in-
sets. Our joint decoder also reports positive resulfermation with small one. Consider the example
on Korean-Chinese translation. As a tokenizein Figure 2. It is reasonable to sptiuo feninto
our joint decoder achieves significantly better totwo words asduo andfen since they have one-
kenization accuracy than three monolingual Chito-one alignments to the target side. Nevertheless,
nese tokenizers. while you andwangalso have one-to-one align-

ments, it is risky to segment them into two words.

2 Separate Tokenization and Translation  Because the decoder is prone to transieaegas

Tokenization is to split a string of characters intd® VerP100k without the contextyou Secondly,

meaningful elements, which are often referred 16" may be tokenization errors.  In Figure2(c),
as words. Typically, machine translation sepat-ao fei keis recognized as a Chinese person name

rates tokenization from decoding as a preproces¥/ith the second nartaoand the first namtei-ke

ing step. An input string is first preprocessed by Ut the whole stringao fei keshould be a name of
tokenizer, and then is translated based on the tok!€ 'ndonesian badminton player.
enized result. Take the SCFG-based model (Chi- Therefore, it is necessary to offer more tok-
ang, 2007) as an example. Given the charactenizations to SMT systems to alleviate the tok-
sequence of Figure 2(a), a tokenizer first splits &nization error propagation problem. Recently,
into the word sequence as shown in Figure 2(bjnany researchers have shown that replacing 1-
then the decoder translates the word sequence st tokenizations with lattices improves transla-
ing the rules in Table 1. tion performance significantly. In this approach, a
This approach makes the translation procedattice compactly encodes many tokenizations and
simple and efficient. However, it may not beis fixed before decoding.

7

Taufik will have the chance to gain a point
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X[0,7] e 8 traditional translation features (Chiang,
A ... you-wang ...
M ... will have the chance to ...

2007):4 rule scores (direct and reverse trans-
lation scores; direct and reverse lexical trans-
T lation scores); language model of the target
a G0 fen side; 3 penalties for word count, extracted
M gain a point rule and glue rule.

X[0.,3]
A tao-fei-ke
B Taufik

e 8 tokenization features: maximum entropy
you  wang model, language model and word count of

the source side (Section 3.2). To handle
Figure 3: A derivation of the joint model for the tokenizatio t.he Out Of Vocabu.lary (OOV) problem (Se_c_
in Figure 2(b) and the translation in Figure 2 by using the tion 3.3), we also introducg OQV features:
rules in Table 1.A means tokenization whilll represents OOV character count and OOV discount
translation. features

Since our model is still a string-based model, the
CKY algorithm and cube pruning are still applica-
31 Mode ble for our model to find the derivation with max
core.

3 Joint Tokenization and Trandation

o S
We take a next step towards the direction of of-
fering more tokenizations to SMT systems by3.2 Adding Tokenization Features

proposingjoint tokenization and translation. As M aximum Entropy model (ME). We first intro-
shown in Figure 1(b), the decoder takes an unce ME model feature for tokenization by cast-
tokenized string as input, and then tokenizes tf“a]g it as a labeling problem (Xue and Shen, 2003;

source side string while building the corresponng and Low, 2004). We label a character with the
ing translation of the target side. Since the tradifollowing 4 types:

tional rules like those in Table 1 natively include
tokenization information, we can directly apply ® b: thebegin of a word
them for simultaneous construction of tokeniza-
tion and translation by the source side and target
side of rules respectively. In Figure 3, our joint e e: theend of a word
model takes the character sequence in Figure 2(a)
as input, and synchronously conducts both trans-
lation and tokenization using the rules in Table 1. Taking the tokenizatioryou-wangof the string
As our model conducts tokenization during deyou wangfor example, we first create a label se-
coding, we can integrate tokenization models aguenceb efor the tokenizatioryou-wangand then
features together with translation features underalculate the probability of tokenization by
the discriminative framework. We expect tok-
enization and translation could collaborate with

¢ m: themiddle of a word

e s asingle-character word

P(you-wang you wang

each other. Tokenization offers translation with = P(be|youwang
good tokenized results, while translation helps to- = P(b | you you wang
kenization to eliminate ambiguity. Formally, the x P(e | wang you wang

probability of a derivationD is represented as
Given a tokenizationo? with L words for a

P(D) H b (D) (1) character sequencd, we firstly create labels;
; for every characters and then calculate the proba-
bility by
where ¢; are features defined on derivations in- N
cluding translation and tokenization, ang are P(wh|eh) = P17 = HP(lz’ICz',C’f) @)

feature weights. We totally use& features: ey
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Under the ME framework, the probability of as-the tokenizationyou-wangwill never be consid-
signing the character with the labell is repre- ered under this way. However, the decoder may

sented as: still create a derivation by splitting the string as
" small as possible with tokenizatigrou wangand
P(lle,c) = exp[d i Aihills ¢, f )] (3) translatingyouwith a andwangwith look, which
2o expd2; Aihi(lls ¢, )] may hurt the translation performance. This case

where h; is feature function,)\; is the feature happens frequently for named entity especially.
) ! v Overall, it is necessary to assure that the de-

weight of h;. We use the feature templates the . . .
Pder can derive all potential tokenizations (Sec-

same as Jiang et al., (2008) to extract features féon 413).

ME model. Since we directly construct tokeniza- T that. wh is not tokenized int
tion when decoding, it is straight to calculate the 0assure thal, when a span IS not fokenized into
ME model score of a tokenization according td single word by the extracted rules, we will add
formula (2) and (3) an operation, which is considering the entire span
L anguage Modell (LM). We also use the n- as an OQV. That is, we tokenize the entire span
gram language model to calculate the probabilit)'/mO a single wor_d with a translapon that is the
of a tokenizationw’: copy of source side. We can define the set of all
v potential tokenizations (') for the character se-
I qguencec! in a recursive way by
P(wi) = [ [ Plwilwi=;, 1) 4) .
T(ef) = U{T(01)® {w(c1)}} ©)
For instance, we compute the probability of the i
tokenization shown in Figure 2(b) under a 3-grarrp1

erew(c? means a word contains characters
model by (1)

ci1 and @ means the times of two sets. Ac-
cording to this recursive definition, it is easy to

P(tao-fei-ke S i )
) prove that all tokenizations is reachable by using
x P(you-wang tao-fei-kg the glue rule § = SX, SX) and the added op-
x P(duo| tao-fei-ke you-wang eration. Here, glue rule is used to concatenate the
x P(fen| you-wangduo) translation and tokenization of the two variables

and X, which acts the role of the operat@ in

Word Count (WC). This feature counts the equation (5).
number of words in a tokenization. Language Consequently, this introduces a large number
model is prone to assign higher probabilities t@f OOVs. In order to control the generation of
short sentences in a biased way. This feature c@OVs, we introduce the following OOV features:
compensate this bias by encouraging long sen- OOV Character Count (OCC). This feature
tences. Furthermore, using this feature, we catbunts the number of characters covered by OOV.
optimize the granularity of tokenization for trans-We can control the number of OOV characters by
lation. If larger granularity is preferable for trans-this feature. It count8 whentao-fei-keis an OOV,
lation, then we can use this feature to punish thsincetao-fei-kehas3 characters.
tokenization containing more words. OOQV Discount (OD). The chances to be OOVs
vary for words with different counts of characters.
We can directly attack this problem by adding
Obviously, we can construct the potential tokfeaturesOD; that reward or punish OOV words
enizations and translations by only using the exwhich contains withi characters, 00D, ; for
tracted rules, in line with traditional translationOQOVs contains with to j characters4 OD fea-
decoding. However, it may limits the potential to-tures are used in this paper: 1, 2, 3 and 4+. For
kenization space. Consider a stripgu wang If  example, 0O D5 countsl when the wordao-fei-ke
you-wangis not reachable by the extracted rulesis an OOV.

3.3 Considering All Tokenizations
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[ Method | Train  #Rule| Test | TFs] MT04 MTO5 [ Speed)|

ICT_15IM | ICT < 13482 3306 | 248
SF 148M| SF x | 3520 3322 | 255
Separate| ME 141M | ME x 3371 30091 | 234
: < 13579 3395 [3.83
Al 219M Lattice J | 3585 33.76 6.79
ICT__ 151M 3692 3469 | 17.66
. SF 148M 3702 3456 | 17.37
Joint | e qaqm | Character v/l ague 3477 | 17.23
Al 219M 37.25% 3488 | 17.52

Table 2: Comparison of Separate and Joint methods in terrBd.BfJ and speed (second per sentence). Colufras
and Testrepresents the tokenization methods for training andngsespectively. ColumifFs stands for whether the
tokenization features is use¢/) or not (x). ICT, SFandME are segmenter names for preprocessilyjmeans combined
corpus processed by the three segmenters. Lattice reptbgenystem implemented as Dyer et al., (2008). ** means
significantly (Koehn, 2004) better than Lattige< 0.01).

4 Experiments SRILM toolkit (Stolcke, 2002¥. Case insensitive
NIST BLEU (Papineni et al., 2002) was used to
measure translation performance.

Tokenization Part. We used the toolkit imple-

1. Does the joint method outperform conveninented by Zhang (2004) to train the ME model.
tional methods that separate tokenizatiodhree Chinese word segmenters were used for

from decoding. (Section 4.1) comparing: ICTCLAS ICT) developed by insti-
tute of Computing Technology Chinese Academy

2. How about the tokenization performance 0bf Sciences (Zhang et al., 2005F developed at
the joint decoder? (Section 4.2) Stanford University (Huihsin et al., 2005) aME

41 Trandation Evaluation \(A:Ighlzc)h exploits the ME model described in section

We use the SCFG model (Chiang, 2007) for our
experiments. We firstly work on the Chinese4.1.1 Joint Vs. Separate
English translation task. The bilingual training We compared our joint tokenization and trans-
data contains 1.5M sentence pairs coming fronation with the conventional separate methods.
LDC data’ The monolingual data for training The input of separate tokenization and translation
English language model includes Xinhua portiortan either be a single segmentation or a lattice.
of the GIGAWORD corpus, which contains 238MThe lattice combines the 1-best segmentations of
English words. We use the NIST evaluation setsegmenters. Same as Dyer et al., (2008), we also
of 2002 (MTO02) as our development data set, angxtracted rules from a combined bilingual corpus
sets of 2004(MT04) and 2005(MTO05) as test setsvhich contains three copies from different seg-
We use the corpus derived from the People’s Dailynenters. We refer to this version of rules/ls
(Renmin Ribao) in Feb. to Jun. 1998 containing Table 2 shows the resuit. Using all rule ta-
6M words for training LM and ME tokenization ble, our joint method significantly outperforms the
models. best single syster8Fby +1.96 and-+1.66 points
Trandation Part. We used GIZA++ (Och and on MT04 and MTO5 respectively, and also out-
Ney, 2003) to perform word alignment in both di-performs the lattice-based system ¥y.46 and
rections, and grow-diag-final-and (Koehn et al.,;+0.93 points. However, the tokenization fea-
2003) to generate symmetric word alignment. Weures have small impact on the lattice system,
extracted the SCFG rules as describing in Chiangrobably because the tokenization space limited
(2007). The language model were trained by th

In this section, we try to answer the following
guestions:

The calculation of LM probabilities for OOVs is done

lincluding LDC2002E18, LDC2003E07, LDC2003E14, by the SRILM without special treatment by ourself.
Hansards portion of LDC2004T07, LDC2004T08 and >The weights are retrained for different test conditions, so
LDC2005T06 do the experiments in other sections.
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[[ME [ LM | WC | OCC [ OD | MT05 | [[Method | BLEU [ #Word | Grau | #OOV |
[ x | x [ x | x | x [2497] ICT 33.06 | 30,602 1.65 644
T x [ x| x | < 2530 SF 33.22 | 30,119 1.68 | 882
TV T < T % | x 2470 ME 3091 | 29,717| 1.70 | 1,614
X | X |/ | X | x | 2484 [TLattice | 33.95 | 30,315] 1.66 | 494
X X X vV x | 25.51 Jointcr | 34.69 | 29,723 1.70 996
X X X X v | 25.34 Joints 3456 | 29,839 | 1.69 972
X N4 N4 X X 25.74 Jointy g 34.17 | 29,771 | 1.70 1,062
Y/ V V v/ Vv | 26.37 Jointyy; 34.88 | 29,644 1.70 883

Table 3: Effect of tokenization features on Chinese-Ehglis Table 4: Granularity (Grau, counts of character per word)
translation task. v/ denotes using a tokenization featureand counts of OOV words of different methods on MT05.
while “x” denotes that it is inactive. The subscript of joint means the type of rule table.

by lattice has been created from good tokenizaever, these two features have complementary ad-
tion. Not surprisingly, our decoding method isvantages and collaborate well when using them to-
about2.6 times slower than lattice method with gether (line 8). The OCC and OD features also
tokenization features, since the joint decoder takeontribute improvements which reflects the fact
character sequences as input, which is aldouit that handling the generation of OOV is important
times longer than the corresponding word sefor the joint model.
guences tokenized by segmenters. (Section 4.1.4). o L

The number of extracted rules with different™1-3 Considering All Tokenizations?
segment methods are quite close, while &l In order to explain the necessary of considering
version contains about5% more rules than the all potential tokenizations, we compare the perfor-
single systems. With the same rule table, our joifnances of whether to tokenize a span as a single
method improves the performance over separaword or not as illustrated in section 3.3. When
method up to+3.03 and+3.26 points ME). In-  only tokenizing by the extracted rules, we obtain
terestingly, comparing with the separate method4.37 BLEU on MT05, which is abou.5 points
the tokenization of training data has smaller effedower than considering all tokenizations shown in
on joint method. The BLEU scores of MT04 andTable 2. This indicates that spuriously limitation
MTO5 fluctuate aboud.5 and0.7 points when ap- Of the tokenization space may degenerate transla-
plying the joint method, while the difference oftion performance.
separate method is up thand 3 points respec- .
tively. It shows that the joint method is more ro—4'1'4 Results Analysis

bust to segmentation performance. . To better understz_amd Why the jpint mgthod can
o improve the translation quality, this section shows
4.1.2 Effect of Tokenization Model some details of the results on the MTO5 data set.

We also investigated the effect of tokenization Table 4 shows the granularity and OOV word
features on translation. In order to reduce the timeounts of different configurations. The lattice
for tuning weights and decoding, we extractednethod reduces the OOV words quite a lot which
rules from the FBIS part of the bilingual corpus,is 23% and70% comparing with ICT and ME. In
and trained a 4-gram English language model otontrast, the joint method gain an absolute im-
the English side of FBIS. provement even thought the OOV count do not

Table 3 shows the result. Only using thrans- decrease. It seems the lattice method prefers to
lation features, our system achieves a BLEU scoitganslate more characters (since smaller granular-
of 24.97. By activating all tokenization features, ity and less OOVs), while our method is inclined
the joint decoder obtains an absolute improveto maintain integrity of words (since larger granu-
ment by 1.4 BLEU points. When only adding larity and more OOVSs). This also explains the dif-
one single tokenization feature, th& and WC ficulty of deciding optimal tokenization for trans-
fail to show improvement, which may result fromlation before decoding.
their bias to short or long tokenizations. How- There are some named entities or idioms that
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[ Method [Type| Fi | Time | | Feature | ]

ICT | 97.47| 0.010 TFs 97.37
Monolingual | SF 97.48 | 0.007 TFs + RS 97.65
ME 95.53| 0.008 TFs+ LM 97.67
ICT 97.68] 9.382 TFs+ RS+ LM | 97.62
Joint SF 97.68 | 10.454 All 97.70
ME 97.60 | 10.451
All 97.70 | 9.248 Table 6: Effect of the target side information on Chinese

word segmentation.TFs stands for the 8 tokenization fea-

Table 5: Comparison of segmentation performance in ternfsires.All represents all the6 features.
of F; score and speed (second per sententgpecolumn
means the segmenter for monolingual method, while repre-

sents the rule tables used by joint method. 4.2.1 Effect of Target Side Information

We compared the effect of the Rule Scores
o _ (RS), target side Language Model (LM) on tok-
are split into smaller granularity by the Seg-gni;ation. Table 6 shows the effect on Chinese
4 A H H H
menters. For examplef! 4" which is an English word segmentation. When only use tokenization

?ame “S’:[one" or &i-% - which MeaNs  faatures, our joint decoder achieves Bnscore
teenage”. Although the separate method is possis; g7 37 only integrating language model or rule
ble to translate them using smaller granularity, thEcores, the joint decoder achieves an absolute im-
translation results are in fact wrong. In ContraStprovement ob.3 point in F, score, which reduces
the joint method tokenizes them as entire OO\(he error rate byl 1.4%. However, when combin-
words, however, it may result a better translatioqhg them together, thé, score deduces slightly,
for the whole sentence. which may result from the weight tuning. Us-
We also count the overlap of the segmentig all feature, the performance comes9@70.
used by theJoint 4;; system towards the single Overall, our experiment shows that the target side
segmentation systems. The tokenization restuitformation can improve the source side tokeniza-
of Joint 4, contains29,644 words, and shares tion under a supervised way, and outperform state-
28,159 , 27,772 and 27,407 words with ICT, of-the-art systems.
SF and M E respectively. Andi6 unique words o _
appear only in the joint method, where most of+2-2 Best Tokenization = Best Translation?
them are named entity. Previous works (Zhang et al., 2008; Chang et
al., 2008) have shown that preprocessing the in-
put string for decoder by better segmenters do
4.2 ChineseWord Segmentation Evaluation ot glways improve the translation quality, we re-
o verify this by testing whether the joint decoder
We also test the tokenization performance of 0yg,qyces good tokenization and good translation
model on Chinese word segmentation task. Bt the same time. To answer the question, we
randomly selecj[ed. 3k sentences from the corpygeq the feature weights optimized by maximiz-
of People’s Daily in Jan. 1998. 1k sentenceg,q g) gy for tokenization and used the weights
were used for tuning weights, while the other ZI%ptimized by maximizingF, for translation. We
sentences were for testing. We use MERT (OChegt Bl EU on MT05 and?, score on the test data
2003) to tune the weights by minimizing the error,seq jn segmentation evaluation experiments. By
measured by score. tuning weights regarding to BLEU (the configura-
As shown in Table 5, with all features activatedtion for Jointy;; in table 2), our decoder achieves
our joint decoder achieves af, score of97.70 a BLEU score 084.88 and anF; score 0f92.49.
which reduces the tokenization error comparingimilarly, maximizing F; (the configuration for
with the best single segment@T by 8.7%. Sim- the last line in table 6) leads to a much lower
ilar to the translation performance evaluation, ouBLEU of 27.43, although theF} is up t097.70.
joint decoder outperforms the best segmenter withhis suggests that better tokenization may not al-
any version of rule tables. ways lead to better translations and vice versa
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[ Rule #Rule| Method | Test | Time | 5 Redated Work

Morph —46M [ g o o[ 2161 [4.12
Refined 55M 21.21 | 4.63 Methods have been proposed to optimize tok-
All 74M | Joint 21.93* | 5.10

enization for word alignment. For example, word
Table 7: Comparison of Separate and Joint method in tern@ignment can be simplified by packing (Ma et al.,
of BLEU score and decoding speed (second per sentence) 2007) several consecutive words together. Word
Korean-Chinese translation task. alignment and tokenization can also be optimized
by maximizing the likelihood of bilingual corpus

. _ _ o (Chung and Gildea, 2009; Xu et al., 2008). In fact,
even by the joint decoding. This also indicates thﬂ1ese work are orthogonal to our joint method,

hard of artificially defining the best tokenlzatlonsince they focus on training step while we are con-

for translation. cerned of decoding. We believe we can further
the performance by combining these two kinds of
work.

Our work also has connections to multilingual

o tokenization (Snyder and Barzilay, 2008). While
We also test our model on a quite different taSkthey have verified that tokenization can be im-

Korean-Chinese. Korean is an agglutinative lans,,eq by multilingual learning, our work shows

guage, Wh_'Ch comes from different language famt’hat we can also improve tokenization by collabo-

lly comparing with Chinese. rating with translation task in a supervised way.
We used a newswire corpus containing 256k More recently, Liu and Liu (2010) also shows

sentence pairs as training data. The developmeihie effect of joint method. They integrate parsing

and test data set contain 1K sentence each wittnd translation into a single step and improve the

one single reference. We used the target side performance of translation significantly.

training set for language model training. The Ko- )

rean part of these data were tokenized into moR Conclusion

pheme sequence as atomic unit for our experjye have presented a novel method for joint tok-

ments. enization and translation which directly combines
We compared three methods. First is directlghe tokenization model into the decoding phase.
use morpheme sequence (Morph). The secorfdllowing tokenization and translation to collab-
one is refined data (Refined), where we use selegrate with each other, tokenization can be opti-
tive morphological segmentation (Oflazer, 2008nized for translation, while translation also makes
for combining morpheme together on the trainingontribution to tokenization performance under a
data. Since the selective method needs alignmesiipervised way. We believe that our approach can
information which is unavailable in the decod-be applied to other string-based model such as
ing, the test data is still of morpheme sequencghrase-based model (Koehn et al., 2003), string-
These two methods still used traditional decodingp-tree model (Galley et al., 2006) and string-to-
method. The third one extracting rules from comdependency model (Shen et al., 2008).
bined (All) data of methods 1 and 2, and using
joint decoder to exploit the different granuIarity'A‘Cknc’WIedgement

of rules. The authors were supported by SK Telecom C&lI

Table 7 shows the result. Since there is no golBusiness, and National Natural Science Founda-
standard data for tokenization, we do not use Mtion of China, Contracts 60736014 and 60903138.
and LM tokenization features here. However, ou¥Ve thank the anonymous reviewers for their in-
joint method can still significantlyp(< 0.05) im- Sightful comments. We are also grateful to Wen-
prove the performance by about +0.3 points. ThiBin Jiang, Zhiyang Wang and Zongcheng Ji for
also reflects the importance of optimizing granutheir helpful feedback.
larity for morphological complex languages.

4.3 Korean-Chinese Trandation
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