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Abstract

As tokenization is usually ambiguous for
many natural languages such as Chinese
and Korean, tokenization errors might po-
tentially introduce translation mistakes for
translation systems that rely on 1-best to-
kenizations. While using lattices to of-
fer more alternatives to translation sys-
tems have elegantly alleviated this prob-
lem, we take a further step to tokenize
and translate jointly. Taking a sequence
of atomic units that can be combined to
form words in different ways as input, our
joint decoder produces a tokenization on
the source side and a translation on the
target side simultaneously. By integrat-
ing tokenization and translation features
in a discriminative framework, our joint
decoder outperforms the baseline trans-
lation systems using 1-best tokenizations
and lattices significantly on both Chinese-
English and Korean-Chinese tasks. In-
terestingly, as a tokenizer, our joint de-
coder achieves significant improvements
over monolingual Chinese tokenizers.

1 Introduction

Tokenization plays an important role in statistical
machine translation (SMT) because tokenizing a
source-language sentence is always the first step
in SMT systems. Based on the type of input, Mi
and Huang (2008) distinguish between two cat-
egories of SMT systems :string-basedsystems
(Koehn et al., 2003; Chiang, 2007; Galley et al.,
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Figure 1: (a) Separate tokenization and translation and (b)
joint tokenization and translation.

2006; Shen et al., 2008) that take a string as input
andtree-basedsystems (Liu et al., 2006; Mi et al.,
2008) that take a tree as input. Note that a tree-
based system still needs to first tokenize the input
sentence and then obtain a parse tree or forest of
the sentence. As shown in Figure 1(a), we refer to
this pipeline asseparate tokenization and transla-
tion because they are divided into single steps.

As tokenization for many languages is usually
ambiguous, SMT systems that separate tokeniza-
tion and translation suffer from a major drawback:
tokenization errors potentially introduce transla-
tion mistakes. As some languages such as Chi-
nese have no spaces in their writing systems, how
to segment sentences into appropriate words has
a direct impact on translation performance (Xu et
al., 2005; Chang et al., 2008; Zhang et al., 2008).
In addition, although agglutinative languages such
as Korean incorporate spaces between “words”,
which consist of multiple morphemes, the gran-
ularity is too coarse and makes the training data
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considerably sparse. Studies reveal that seg-
menting “words” into morphemes effectively im-
proves translating morphologically rich languages
(Oflazer, 2008). More importantly, a tokenization
close to a gold standard does not necessarily leads
to better translation quality (Chang et al., 2008;
Zhang et al., 2008). Therefore, it is necessary
to offer more tokenizations to SMT systems to
alleviate the tokenization error propagation prob-
lem. Recently, many researchers have shown that
replacing 1-best tokenizations with lattices im-
proves translation performance significantly (Xu
et al., 2005; Dyer et al., 2008; Dyer, 2009).

We take a next step towards the direction of
offering more tokenizations to SMT systems by
proposingjoint tokenization and translation. As
shown in Figure 1(b), our approach tokenizes
and translates jointly to find a tokenization and
a translation for a source-language string simul-
taneously. We integrate translation and tokeniza-
tion models into a discriminative framework (Och
and Ney, 2002), within which tokenization and
translation models interact with each other. Ex-
periments show that joint tokenization and trans-
lation outperforms its separate counterparts (1-
best tokenizations and lattices) significantly on
the NIST 2004 and 2005 Chinese-English test
sets. Our joint decoder also reports positive results
on Korean-Chinese translation. As a tokenizer,
our joint decoder achieves significantly better to-
kenization accuracy than three monolingual Chi-
nese tokenizers.

2 Separate Tokenization and Translation

Tokenization is to split a string of characters into
meaningful elements, which are often referred to
as words. Typically, machine translation sepa-
rates tokenization from decoding as a preprocess-
ing step. An input string is first preprocessed by a
tokenizer, and then is translated based on the tok-
enized result. Take the SCFG-based model (Chi-
ang, 2007) as an example. Given the character
sequence of Figure 2(a), a tokenizer first splits it
into the word sequence as shown in Figure 2(b),
then the decoder translates the word sequence us-
ing the rules in Table 1.

This approach makes the translation process
simple and efficient. However, it may not be

0 1 2 3 4 5 6 7

Figure 2: Chinese tokenization: (a) character sequence; (b)
and (c) tokenization instances; (d) lattice created from (b)
and (c). We insert “-” between characters in a word just for
clarity.

r1 tao-fei-ke→Taufik
r2 duo fen→ gain a point
r3 x1 you-wangx2 → x1 will have the chance tox2

Table 1: An SCFG derivation given the tokenization of Fig-
ure 2(b).

optimal for machine translation. Firstly, optimal
granularity is unclear for machine translation. We
might face severe data sparseness problem by us-
ing large granularity, while losing much useful in-
formation with small one. Consider the example
in Figure 2. It is reasonable to splitduo feninto
two words asduo and fen, since they have one-
to-one alignments to the target side. Nevertheless,
while you andwangalso have one-to-one align-
ments, it is risky to segment them into two words.
Because the decoder is prone to translatewangas
a verb look without the contextyou. Secondly,
there may be tokenization errors. In Figure2(c),
tao fei keis recognized as a Chinese person name
with the second nametaoand the first namefei-ke,
but the whole stringtao fei keshould be a name of
the Indonesian badminton player.

Therefore, it is necessary to offer more tok-
enizations to SMT systems to alleviate the tok-
enization error propagation problem. Recently,
many researchers have shown that replacing 1-
best tokenizations with lattices improves transla-
tion performance significantly. In this approach, a
lattice compactly encodes many tokenizations and
is fixed before decoding.
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Figure 3: A derivation of the joint model for the tokenization
in Figure 2(b) and the translation in Figure 2 by using the
rules in Table 1.N means tokenization while� represents
translation.

3 Joint Tokenization and Translation

3.1 Model

We take a next step towards the direction of of-
fering more tokenizations to SMT systems by
proposingjoint tokenization and translation. As
shown in Figure 1(b), the decoder takes an un-
tokenized string as input, and then tokenizes the
source side string while building the correspond-
ing translation of the target side. Since the tradi-
tional rules like those in Table 1 natively include
tokenization information, we can directly apply
them for simultaneous construction of tokeniza-
tion and translation by the source side and target
side of rules respectively. In Figure 3, our joint
model takes the character sequence in Figure 2(a)
as input, and synchronously conducts both trans-
lation and tokenization using the rules in Table 1.

As our model conducts tokenization during de-
coding, we can integrate tokenization models as
features together with translation features under
the discriminative framework. We expect tok-
enization and translation could collaborate with
each other. Tokenization offers translation with
good tokenized results, while translation helps to-
kenization to eliminate ambiguity. Formally, the
probability of a derivationD is represented as

P (D) ∝
∏

i

φi(D)λi (1)

whereφi are features defined on derivations in-
cluding translation and tokenization, andλi are
feature weights. We totally use16 features:

• 8 traditional translation features (Chiang,
2007):4 rule scores (direct and reverse trans-
lation scores; direct and reverse lexical trans-
lation scores); language model of the target
side; 3 penalties for word count, extracted
rule and glue rule.

• 8 tokenization features: maximum entropy
model, language model and word count of
the source side (Section 3.2). To handle
the Out Of Vocabulary (OOV) problem (Sec-
tion 3.3), we also introduce5 OOV features:
OOV character count and4 OOV discount
features.

Since our model is still a string-based model, the
CKY algorithm and cube pruning are still applica-
ble for our model to find the derivation with max
score.

3.2 Adding Tokenization Features

Maximum Entropy model (ME). We first intro-
duce ME model feature for tokenization by cast-
ing it as a labeling problem (Xue and Shen, 2003;
Ng and Low, 2004). We label a character with the
following 4 types:

• b: thebegin of a word

• m: themiddle of a word

• e: theend of a word

• s: a single-character word

Taking the tokenizationyou-wangof the string
you wangfor example, we first create a label se-
quenceb efor the tokenizationyou-wangand then
calculate the probability of tokenization by

P (you-wang| you wang)

= P (b e | you wang)

= P (b | you, you wang)

× P (e | wang, you wang)

Given a tokenizationwL
1 with L words for a

character sequencecn1 , we firstly create labelsln1
for every characters and then calculate the proba-
bility by

P (wL
1 |cn1 ) = P (ln1 |cn1 ) =

n∏

i=1

P (li|ci, cn1 ) (2)
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Under the ME framework, the probability of as-
signing the characterc with the labell is repre-
sented as:

P (l|c, cn1 ) =
exp[

∑
i λihi(l, c, c

n
1 )]∑

l′ exp[
∑

i λihi(l′, c, cn1 )]
(3)

where hi is feature function,λi is the feature
weight of hi. We use the feature templates the
same as Jiang et al., (2008) to extract features for
ME model. Since we directly construct tokeniza-
tion when decoding, it is straight to calculate the
ME model score of a tokenization according to
formula (2) and (3).

Language Model (LM). We also use the n-
gram language model to calculate the probability
of a tokenizationwL

1 :

P (wL
1 ) =

L∏

i=1

P (wi|wi−1
i−n+1) (4)

For instance, we compute the probability of the
tokenization shown in Figure 2(b) under a 3-gram
model by

P (tao-fei-ke)

×P (you-wang| tao-fei-ke)

×P (duo| tao-fei-ke, you-wang)

×P (fen| you-wang,duo)

Word Count (WC). This feature counts the
number of words in a tokenization. Language
model is prone to assign higher probabilities to
short sentences in a biased way. This feature can
compensate this bias by encouraging long sen-
tences. Furthermore, using this feature, we can
optimize the granularity of tokenization for trans-
lation. If larger granularity is preferable for trans-
lation, then we can use this feature to punish the
tokenization containing more words.

3.3 Considering All Tokenizations

Obviously, we can construct the potential tok-
enizations and translations by only using the ex-
tracted rules, in line with traditional translation
decoding. However, it may limits the potential to-
kenization space. Consider a stringyou wang. If
you-wangis not reachable by the extracted rules,

the tokenizationyou-wangwill never be consid-
ered under this way. However, the decoder may
still create a derivation by splitting the string as
small as possible with tokenizationyou wangand
translatingyouwith a andwangwith look, which
may hurt the translation performance. This case
happens frequently for named entity especially.
Overall, it is necessary to assure that the de-
coder can derive all potential tokenizations (Sec-
tion 4.1.3).

To assure that, when a span is not tokenized into
a single word by the extracted rules, we will add
an operation, which is considering the entire span
as an OOV. That is, we tokenize the entire span
into a single word with a translation that is the
copy of source side. We can define the set of all
potential tokenizationsτ(cn1 ) for the character se-
quencecn1 in a recursive way by

τ(cn1 ) =
n−1⋃

i

{τ(ci1)
⊗

{w(cni+1)}} (5)

herew(cni+1) means a word contains characters
cni+1 and

⊗
means the times of two sets. Ac-

cording to this recursive definition, it is easy to
prove that all tokenizations is reachable by using
the glue rule (S ⇒ SX,SX) and the added op-
eration. Here, glue rule is used to concatenate the
translation and tokenization of the two variablesS
andX, which acts the role of the operator

⊗
in

equation (5).
Consequently, this introduces a large number

of OOVs. In order to control the generation of
OOVs, we introduce the following OOV features:

OOV Character Count (OCC). This feature
counts the number of characters covered by OOV.
We can control the number of OOV characters by
this feature. It counts3whentao-fei-keis an OOV,
sincetao-fei-kehas3 characters.

OOV Discount (OD). The chances to be OOVs
vary for words with different counts of characters.
We can directly attack this problem by adding
featuresODi that reward or punish OOV words
which contains withi characters, orODi,j for
OOVs contains withi to j characters.4 OD fea-
tures are used in this paper: 1, 2, 3 and 4+. For
example,OD3 counts1 when the wordtao-fei-ke
is an OOV.
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Method Train #Rule Test TFs MT04 MT05 Speed

Separate

ICT 151M ICT × 34.82 33.06 2.48
SF 148M SF × 35.29 33.22 2.55
ME 141M ME × 33.71 30.91 2.34

All 219M Lattice × 35.79 33.95 3.83√
35.85 33.76 6.79

Joint

ICT 151M

Character
√

36.92 34.69 17.66
SF 148M 37.02 34.56 17.37
ME 141M 36.78 34.17 17.23
All 219M 37.25** 34.88** 17.52

Table 2: Comparison of Separate and Joint methods in terms ofBLEU and speed (second per sentence). ColumnsTrain
and Test represents the tokenization methods for training and testing respectively. ColumnTFs stands for whether the8
tokenization features is used (

√
) or not (×). ICT, SFandME are segmenter names for preprocessing.All means combined

corpus processed by the three segmenters. Lattice represent the system implemented as Dyer et al., (2008). ** means
significantly (Koehn, 2004) better than Lattice (p < 0.01).

4 Experiments

In this section, we try to answer the following
questions:

1. Does the joint method outperform conven-
tional methods that separate tokenization
from decoding. (Section 4.1)

2. How about the tokenization performance of
the joint decoder? (Section 4.2)

4.1 Translation Evaluation

We use the SCFG model (Chiang, 2007) for our
experiments. We firstly work on the Chinese-
English translation task. The bilingual training
data contains 1.5M sentence pairs coming from
LDC data.1 The monolingual data for training
English language model includes Xinhua portion
of the GIGAWORD corpus, which contains 238M
English words. We use the NIST evaluation sets
of 2002 (MT02) as our development data set, and
sets of 2004(MT04) and 2005(MT05) as test sets.
We use the corpus derived from the People’s Daily
(Renmin Ribao) in Feb. to Jun. 1998 containing
6M words for training LM and ME tokenization
models.

Translation Part. We used GIZA++ (Och and
Ney, 2003) to perform word alignment in both di-
rections, and grow-diag-final-and (Koehn et al.,
2003) to generate symmetric word alignment. We
extracted the SCFG rules as describing in Chiang
(2007). The language model were trained by the

1including LDC2002E18, LDC2003E07, LDC2003E14,
Hansards portion of LDC2004T07, LDC2004T08 and
LDC2005T06

SRILM toolkit (Stolcke, 2002).2 Case insensitive
NIST BLEU (Papineni et al., 2002) was used to
measure translation performance.

Tokenization Part. We used the toolkit imple-
mented by Zhang (2004) to train the ME model.
Three Chinese word segmenters were used for
comparing: ICTCLAS (ICT) developed by insti-
tute of Computing Technology Chinese Academy
of Sciences (Zhang et al., 2003);SFdeveloped at
Stanford University (Huihsin et al., 2005) andME
which exploits the ME model described in section
(3.2).

4.1.1 Joint Vs. Separate

We compared our joint tokenization and trans-
lation with the conventional separate methods.
The input of separate tokenization and translation
can either be a single segmentation or a lattice.
The lattice combines the 1-best segmentations of
segmenters. Same as Dyer et al., (2008), we also
extracted rules from a combined bilingual corpus
which contains three copies from different seg-
menters. We refer to this version of rules asAll.

Table 2 shows the result.3 Using all rule ta-
ble, our joint method significantly outperforms the
best single systemSFby+1.96 and+1.66 points
on MT04 and MT05 respectively, and also out-
performs the lattice-based system by+1.46 and
+0.93 points. However, the8 tokenization fea-
tures have small impact on the lattice system,
probably because the tokenization space limited

2The calculation of LM probabilities for OOVs is done
by the SRILM without special treatment by ourself.

3The weights are retrained for different test conditions, so
do the experiments in other sections.
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ME LM WC OCC OD MT05
× × × × × 24.97√ × × × × 25.30
× √ × × × 24.70
× × √ × × 24.84
× × × √ × 25.51
× × × × √

25.34
× √ √ × × 25.74√ √ √ √ √

26.37

Table 3: Effect of tokenization features on Chinese-English
translation task. “

√
” denotes using a tokenization feature

while “×” denotes that it is inactive.

by lattice has been created from good tokeniza-
tion. Not surprisingly, our decoding method is
about2.6 times slower than lattice method with
tokenization features, since the joint decoder takes
character sequences as input, which is about1.7
times longer than the corresponding word se-
quences tokenized by segmenters. (Section 4.1.4).

The number of extracted rules with different
segment methods are quite close, while theAll
version contains about45% more rules than the
single systems. With the same rule table, our joint
method improves the performance over separate
method up to+3.03 and+3.26 points (ME). In-
terestingly, comparing with the separate method,
the tokenization of training data has smaller effect
on joint method. The BLEU scores of MT04 and
MT05 fluctuate about0.5 and0.7 points when ap-
plying the joint method, while the difference of
separate method is up to2 and 3 points respec-
tively. It shows that the joint method is more ro-
bust to segmentation performance.

4.1.2 Effect of Tokenization Model

We also investigated the effect of tokenization
features on translation. In order to reduce the time
for tuning weights and decoding, we extracted
rules from the FBIS part of the bilingual corpus,
and trained a 4-gram English language model on
the English side of FBIS.

Table 3 shows the result. Only using the8 trans-
lation features, our system achieves a BLEU score
of 24.97. By activating all tokenization features,
the joint decoder obtains an absolute improve-
ment by1.4 BLEU points. When only adding
one single tokenization feature, theLM and WC
fail to show improvement, which may result from
their bias to short or long tokenizations. How-

Method BLEU #Word Grau #OOV
ICT 33.06 30,602 1.65 644
SF 33.22 30,119 1.68 882
ME 30.91 29,717 1.70 1,614
Lattice 33.95 30,315 1.66 494
JointICT 34.69 29,723 1.70 996
JointSF 34.56 29,839 1.69 972
JointME 34.17 29,771 1.70 1,062
JointAll 34.88 29,644 1.70 883

Table 4: Granularity (Grau, counts of character per word)
and counts of OOV words of different methods on MT05.
The subscript of joint means the type of rule table.

ever, these two features have complementary ad-
vantages and collaborate well when using them to-
gether (line 8). The OCC and OD features also
contribute improvements which reflects the fact
that handling the generation of OOV is important
for the joint model.

4.1.3 Considering All Tokenizations?

In order to explain the necessary of considering
all potential tokenizations, we compare the perfor-
mances of whether to tokenize a span as a single
word or not as illustrated in section 3.3. When
only tokenizing by the extracted rules, we obtain
34.37 BLEU on MT05, which is about0.5 points
lower than considering all tokenizations shown in
Table 2. This indicates that spuriously limitation
of the tokenization space may degenerate transla-
tion performance.

4.1.4 Results Analysis

To better understand why the joint method can
improve the translation quality, this section shows
some details of the results on the MT05 data set.

Table 4 shows the granularity and OOV word
counts of different configurations. The lattice
method reduces the OOV words quite a lot which
is 23% and70% comparing with ICT and ME. In
contrast, the joint method gain an absolute im-
provement even thought the OOV count do not
decrease. It seems the lattice method prefers to
translate more characters (since smaller granular-
ity and less OOVs), while our method is inclined
to maintain integrity of words (since larger granu-
larity and more OOVs). This also explains the dif-
ficulty of deciding optimal tokenization for trans-
lation before decoding.

There are some named entities or idioms that
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Method Type F1 Time

Monolingual
ICT 97.47 0.010
SF 97.48 0.007
ME 95.53 0.008

Joint

ICT 97.68 9.382
SF 97.68 10.454
ME 97.60 10.451
All 97.70 9.248

Table 5: Comparison of segmentation performance in terms
of F1 score and speed (second per sentence).Typecolumn
means the segmenter for monolingual method, while repre-
sents the rule tables used by joint method.

are split into smaller granularity by the seg-
menters. For example:“¤À” which is an English
name “Stone” or “Î-g 
-u” which means
“teenage”. Although the separate method is possi-
ble to translate them using smaller granularity, the
translation results are in fact wrong. In contrast,
the joint method tokenizes them as entire OOV
words, however, it may result a better translation
for the whole sentence.

We also count the overlap of the segments
used by theJointAll system towards the single
segmentation systems. The tokenization result
of JointAll contains29, 644 words, and shares
28, 159 , 27, 772 and 27, 407 words with ICT ,
SF andME respectively. And46 unique words
appear only in the joint method, where most of
them are named entity.

4.2 Chinese Word Segmentation Evaluation

We also test the tokenization performance of our
model on Chinese word segmentation task. We
randomly selected 3k sentences from the corpus
of People’s Daily in Jan. 1998. 1k sentences
were used for tuning weights, while the other 2k
sentences were for testing. We use MERT (Och,
2003) to tune the weights by minimizing the error
measured byF1 score.

As shown in Table 5, with all features activated,
our joint decoder achieves anF1 score of97.70
which reduces the tokenization error comparing
with the best single segmenterICT by 8.7%. Sim-
ilar to the translation performance evaluation, our
joint decoder outperforms the best segmenter with
any version of rule tables.

Feature F1

TFs 97.37
TFs + RS 97.65
TFs + LM 97.67
TFs + RS + LM 97.62
All 97.70

Table 6: Effect of the target side information on Chinese
word segmentation.TFs stands for the 8 tokenization fea-
tures.All represents all the16 features.

4.2.1 Effect of Target Side Information

We compared the effect of the4 Rule Scores
(RS), target side Language Model (LM) on tok-
enization. Table 6 shows the effect on Chinese
word segmentation. When only use tokenization
features, our joint decoder achieves anF1 score
of 97.37. Only integrating language model or rule
scores, the joint decoder achieves an absolute im-
provement of0.3 point inF1 score, which reduces
the error rate by11.4%. However, when combin-
ing them together, theF1 score deduces slightly,
which may result from the weight tuning. Us-
ing all feature, the performance comes to97.70.
Overall, our experiment shows that the target side
information can improve the source side tokeniza-
tion under a supervised way, and outperform state-
of-the-art systems.

4.2.2 Best Tokenization = Best Translation?

Previous works (Zhang et al., 2008; Chang et
al., 2008) have shown that preprocessing the in-
put string for decoder by better segmenters do
not always improve the translation quality, we re-
verify this by testing whether the joint decoder
produces good tokenization and good translation
at the same time. To answer the question, we
used the feature weights optimized by maximiz-
ing BLEU for tokenization and used the weights
optimized by maximizingF1 for translation. We
test BLEU on MT05 andF1 score on the test data
used in segmentation evaluation experiments. By
tuning weights regarding to BLEU (the configura-
tion for JointAll in table 2), our decoder achieves
a BLEU score of34.88 and anF1 score of92.49.
Similarly, maximizingF1 (the configuration for
the last line in table 6) leads to a much lower
BLEU of 27.43, although theF1 is up to97.70.
This suggests that better tokenization may not al-
ways lead to better translations and vice versa
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Rule #Rule Method Test Time
Morph 46M Separate 21.61 4.12
Refined 55M 21.21 4.63
All 74M Joint 21.93* 5.10

Table 7: Comparison of Separate and Joint method in terms
of BLEU score and decoding speed (second per sentence) on
Korean-Chinese translation task.

even by the joint decoding. This also indicates the
hard of artificially defining the best tokenization
for translation.

4.3 Korean-Chinese Translation

We also test our model on a quite different task:
Korean-Chinese. Korean is an agglutinative lan-
guage, which comes from different language fam-
ily comparing with Chinese.

We used a newswire corpus containing 256k
sentence pairs as training data. The development
and test data set contain 1K sentence each with
one single reference. We used the target side of
training set for language model training. The Ko-
rean part of these data were tokenized into mor-
pheme sequence as atomic unit for our experi-
ments.

We compared three methods. First is directly
use morpheme sequence (Morph). The second
one is refined data (Refined), where we use selec-
tive morphological segmentation (Oflazer, 2008)
for combining morpheme together on the training
data. Since the selective method needs alignment
information which is unavailable in the decod-
ing, the test data is still of morpheme sequence.
These two methods still used traditional decoding
method. The third one extracting rules from com-
bined (All) data of methods 1 and 2, and using
joint decoder to exploit the different granularity
of rules.

Table 7 shows the result. Since there is no gold
standard data for tokenization, we do not use ME
and LM tokenization features here. However, our
joint method can still significantly (p < 0.05) im-
prove the performance by about +0.3 points. This
also reflects the importance of optimizing granu-
larity for morphological complex languages.

5 Related Work

Methods have been proposed to optimize tok-
enization for word alignment. For example, word
alignment can be simplified by packing (Ma et al.,
2007) several consecutive words together. Word
alignment and tokenization can also be optimized
by maximizing the likelihood of bilingual corpus
(Chung and Gildea, 2009; Xu et al., 2008). In fact,
these work are orthogonal to our joint method,
since they focus on training step while we are con-
cerned of decoding. We believe we can further
the performance by combining these two kinds of
work.

Our work also has connections to multilingual
tokenization (Snyder and Barzilay, 2008). While
they have verified that tokenization can be im-
proved by multilingual learning, our work shows
that we can also improve tokenization by collabo-
rating with translation task in a supervised way.

More recently, Liu and Liu (2010) also shows
the effect of joint method. They integrate parsing
and translation into a single step and improve the
performance of translation significantly.

6 Conclusion

We have presented a novel method for joint tok-
enization and translation which directly combines
the tokenization model into the decoding phase.
Allowing tokenization and translation to collab-
orate with each other, tokenization can be opti-
mized for translation, while translation also makes
contribution to tokenization performance under a
supervised way. We believe that our approach can
be applied to other string-based model such as
phrase-based model (Koehn et al., 2003), string-
to-tree model (Galley et al., 2006) and string-to-
dependency model (Shen et al., 2008).
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