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Abstract 

This paper describes how to cluster to-
gether the phrases of a phrase-based sta-

tistical machine translation (SMT) sys-

tem, using information in the phrase table 
itself. The clustering is symmetric and 

recursive: it is applied both to source-

language and target-language phrases, 

and the clustering in one language helps 
determine the clustering in the other. The 

phrase clusters have many possible uses. 

This paper looks at one of these uses: 
smoothing the conditional translation 

model (TM) probabilities employed by 

the SMT system. We incorporated 
phrase-cluster-derived probability esti-

mates into a baseline loglinear feature 

combination that included relative fre-

quency and lexically-weighted condition-
al probability estimates. In Chinese-

English (C-E) and French-English (F-E) 

learning curve experiments, we obtained 
a gain over the baseline in 29 of 30 tests, 

with a maximum gain of 0.55 BLEU 

points (though most gains were fairly 
small). The largest gains came with me-

dium (200-400K sentence pairs) rather 

than with small (less than 100K sentence 

pairs) amounts of training data, contrary 
to what one would expect from the pa-

raphrasing literature. We have only be-

gun to explore the original smoothing 
approach described here.  

1 Introduction and Related Work 

The source-language and target-language “phras-

es” employed by many statistical machine trans-

lation (SMT) systems are anomalous: they are 

arbitrary sequences of contiguous words ex-

tracted by complex heuristics from a bilingual 
corpus, satisfying no formal linguistic criteria. 

Nevertheless, phrase-based systems perform bet-

ter than word-based systems (Koehn 2010, pp. 
127-129). In this paper, we look at what happens 

when we cluster together these anomalous but 

useful entities.  
Here, we apply phrase clustering to obtain bet-

ter estimates for “backward” probability P(s|t) 

and “forward” probability P(t|s), where s is a 

source-language phrase, t is a target-language 
phrase, and phrase pair (s,t) was seen at least 

once in training data. The current work is thus 

related to work on smoothing P(s|t) and P(t|s) – 
see (Foster et al., 2006). The relative frequency 

estimates for P(s|t) and P(t|s) are  

ttstsPRF /#),(#)|( = and stsstPRF /#),(#)|( = , 

where #(s,t) denotes the number of times phrase 
pair (s,t) was observed, etc. These estimates are 

typically smoothed with “lexical” estimates 

found by breaking phrases s and t into words. 
We adopt a different idea, that of smoothing 

PRF(s|t) and PRF(t|s) with estimates obtained from 

phrases that have similar meanings to s and t. In 

our experiments, the two methods were com-
bined, yielding an improvement over lexical 

smoothing alone – this indicates they provide 

complementary information. E.g., lexical esti-
mates don’t work well for non-compositional 

phrases like “kick the bucket” - our method 

might cluster this phrase with “die” and “expire” 
and thus provide better smoothing. The research 

that comes closest to ours is the work of 

Schwenk et al. (2007) on continuous space N-

gram models, where a neural network is em-
ployed to smooth translation probabilities. How-

ever, both Schwenk et al.’s smoothing technique 
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and the system to which it is applied are quite 

different from ours. 

Phrase clustering is also somewhat related to 

work on paraphrases for SMT. Key papers in this 
area include (Bannard and Callison-Burch, 2005), 

which pioneered the extraction of paraphrases 

from bilingual parallel corpora, (Callison-Burch 
et al., 2006) which showed that paraphrase gen-

eration could improve SMT performance, (Calli-

son-Burch, 2008) and (Zhao et al., 2008) which 
showed how to improve the quality of paraphras-

es, and (Marton et al., 2009) which derived pa-

raphrases from monolingual data using distribu-

tional information. Paraphrases typically help 
SMT systems trained on under 100K sentence 

pairs the most.  

The phrase clustering algorithm in this paper 
outputs groups of source-language and target-

language phrases with similar meanings: paraph-

rases. However, previous work on paraphrases 
for SMT has aimed at finding translations for 

source-language phrases in the system’s input 

that weren’t seen during system training. Our 

approach is completely useless in this situation: 
it only generates new information for target or 

source phrases that are already in the system’s 

phrase table. Thus, we find paraphrases for many 
of the source and target phrases that are in the 

phrase table, while the work cited above looks 

for paraphrases of source phrases that are not in 

the phrase table.  
Our work also differs from most work on pa-

raphrases in that information is extracted not 

from sources outside the SMT system (e.g., pivot 
languages or thesauri) but from the system’s 

phrase table. In this respect if no other, it is simi-

lar to Chiang’s classic work on hierarchical 
phrase-based systems (Chiang, 2005), though 

Chiang was mining a very different type of in-

formation from phrase tables. 

Because of all these differences between work 
on paraphrasing and the phrase clustering ap-

proach, both in terms of the input information 

and where they are best applied, we did not expe-
rimentally compare the two approaches.     

2 Deriving Conditional Probabilities 

from Phrase Clusters 

Given phrase clusters in the source and target 

languages, how would one derive estimates for 
conditional probabilities P(s|t) and P(t|s)? We 

assume that the clustering is “hard”: each source 

phrase s belongs to exactly one cluster C(s), and 

each target phrase t belongs to exactly one 

cluster C(t). Some of these clusters will contain 

singleton phrases, and others will contain more 

than one phrase. Let “#” denote the total number 

of observations in the training data associated 
with a phrase or phrase cluster. E.g., suppose the 

English cluster CS contains the three phrases 

“red”, “dark red”, and “burgundy”, with 50, 25, 
and 10 observations in the training data 

respectively – then #(CS) = 85. Also, let #(CS,CT) 

be the number of co-occurrences in the training 
data of source-language cluster CS and target-

language cluster CT.  

The phrase-cluster-based probabilities PPC are: 

)(#

))(),((#

)(#

)(#

))(|)(())(|()|(

tC

tCsC

sC

s

tCsCPsCsPtsPPC

×=

×=

  (1) 

and 

)(#

))(),((#

)(#

)(#

))(|)(())(|()|(

sC

tCsC

tC

t

sCtCPtCtPstP
PC

×=

×=

   (2) 

Note that the PPC will often be non-zero where 
the corresponding relative frequency estimates 

PRF were zero (the opposite can’t happen). Also, 

the PPC will be most useful where the phrase be-
ing conditioned on was seldom seen in the train-

ing data. If t was seen 1,000 times during train-

ing, the PRF(s|t) are reliable and don’t need 

smoothing; but if t was seen 6 times,  PPC(s|t) 
may yield valuable extra information. The same 

kind of argument applies to estimation of P(t|s). 

3 Clustering Phrases 

We used only information “native” to phrase 

tables to cluster phrases. Two types of similarity 

metric between phrases or phrase clusters were 
employed: count-based metrics and edit-based 

metrics. The former are based on phrase co-

occurrence counts; the latter are based on the 
word sequences that make up the phrases. Each 

has its advantages. Count-based metrics can de-

duce from the similar translations of two phrases 
that they have similar meanings, despite dissimi-

larity between the two word sequences – e.g., 

they can deduce that “red” and “burgundy” be-

long in the same cluster. However, these metrics 
are unreliable when total counts are low, since 

phrase co-occurrences are determined by a noisy 

alignment process. Edit-based metrics are inde-
pendent of how often phrases were observed. 

However, sometimes they can be fooled by 

phrases that have similar word sequences but 

different meanings (e.g., “the dog bit the man” 
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and “the man bit the dog”, or “walk on the 

beach” and “don’t walk on the beach”). In our 

experiments, we used a combination of count-
based and edit-based metrics to cluster phrases 

(by simply multiplying the metrics together). 

However, we invested most of our effort in per-
fecting the count-based component: our edit-

based metric was fairly naïve.  

If we rely mainly on count-based similarity 

between phrases to cluster them, and this kind of 
similarity is most reliable when phrases have 

high counts, yet we need phrase-cluster-based 

estimates most for phrases with low counts, 
aren’t we carrying out clustering on the phrases 

that need it least? Our hope was that there is a 

class of phrases with intermediate counts (e.g., 
with 3-15 observations in the training data) that 

can be clustered reliably, but still benefit from 

phrase-cluster-based probability estimates.  

3.1 Count-based clustering: overview  

Figure 1 shows count-based phrase clustering. 
One first arbitrarily picks a language (either 

source or target) and then clusters together some 

of the phrases in that language. One then switch-
es to the other language and clusters phrases in 

that language, then switches back to the first one, 

and so on until enough clustering has taken place.  

Each phrase or phrase cluster is represented by 
the vector of its co-occurrence counts. To calcu-

late the similarity between two phrase clusters, 

one first normalizes their count vectors. At the 

top of Figure 1, source phrase s1 occurred 9 

times: 7 times aligned with target phrase t1, 2 

times aligned with t4. For source similarity com-
putation, the entry for (s1,t1) is normalized to 7/9 

= 0.78 and the entry for (s1,t4) is normalized to 

2/9 = 0.22 (these normalized values are shown in 
brackets and italics after the counts).  

The two most similar normalized vectors at 

the top of Figure 1 are those associated with 

phrases s1 and s2. These phrases are merged by 
adding corresponding counts, yielding a new 

vector associated with the new phrase cluster {s1, 

s2}. In real life, one would now do more source-
language clustering on the source language side; 

in this example, we immediately proceed to tar-

get-language clustering (carried out in target lan-
guage space). Note that the target similarity cal-

culations are affected by the previous source 

clustering (because s1 and s2 are now 

represented by the same coordinate, t3 and t4 are 
now closer than they were in the initial table). In 

this manner, we can iterate back and forth be-

tween the two languages. The final output is a 
table of joint phrase cluster counts, which is used 

to estimate the PPC (see previous section).   

3.2 Count-based clustering: details 

Count-based similarity is computed as follows:   

1. Phrase alignment is a noisy process, so 
we first apply a transformation analogous 

to tf-idf in information retrieval (Salton 

and McGill, 1986) to phrase cluster 

 
Figure 1: Example of phrase clustering 
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counts. For source similarity computation, 

each co-occurrence count #(CS,CT) be-

tween source cluster CS and target cluster 

CT is multiplied by a factor that reflects 
the information content of CT. Let 

#diff(CS) be number of clusters on the 

source side, and let #[CT>0] for a par-
ticular target cluster CT be the number of 

source clusters CS that co-occur with CT. 

Then let 

])0[/#)(log(#),(#),('# >×= TSTSTS CCdiffCCCC .   

Similarly, for target similarity computa-

tion, let 

])0[/#)(log(#),(#),('# >×=
STTSTS

CCdiffCCCC .   

E.g., in source similarity computation, if 

CT co-occurs with all source clusters, its 

contribution will be set to zero (because 

it carries little information).  
2. We normalize by dividing each vector of 

tf-idf counts ),('#
TS

CC  by the total num-

ber of observations in the vector. 
3. We compute the similarity between each 

pair of tf-idf vectors using either the co-

sine measure (Salton and McGill, 1986) 

or one of a family of probabilistic metrics 
described below.  

4. We cluster together the most similar vec-

tors; this involves summing the unmodi-
fied counts #(CS,CT) of the vectors (i.e., 

the tf-idf transformation is only applied 

for the purposes of similarity calculation 
and is not retained).  

Now, we’ll describe the probabilistic metrics 

we considered. For a count vector of dimension 

D, u = (u1, u2, …, uD), define a function 

)/log(...)/log()( 11 ∑∑ ×++×=
i iDDi i uuuuuuI u . 

I(u) is a measure of how well the data in u are 

modeled by the normalized vector (u1/Σiui,  …, 

uD/Σiui).  Thus, when two count vectors u and v 

are merged (by adding them) we have the follow-

ing measure of the loss in modeling accuracy:  

 

Probability Loss (PL): 

 )()()(),( vuvuvu +−+= IIIPL .   (3) 

 

However, if we choose merges with the lowest 
PL, we will usually merge only vectors with 

small counts. We are more interested in the aver-

age impact of a merge, so we define 
 

Average Probability Loss (APL):  

  )/())()()((),( ∑∑ ++−+=
i ii i vuIIIAPL vuvuvu . (4) 

In our initial experiments, APL worked better 

than PL. However, APL had a strange side-effect. 

Most of the phrase clusters it induced made intui-

tive sense, but there were typically three or four 
clusters with large numbers of observations on 

both language sides that grouped together phras-

es with wildly disparate meanings. Why does 
APL induce these “monster clusters”? 

Consider two count vectors u and v. If Σiui is 

very big and Σivi is small, then I(u) and I(u + v) 

will be very similar, and APL will be approx-

imately I(v) /[Σiui + Σivi ] which will be close to 

zero. Thus, the decision will probably be made to 

merge u and v, even if they have quite different 
semantics. The resulting cluster, whose counts 

are represented by u + v, is now even bigger and 

even more likely to swallow up other small count 

vectors in the next rounds of merging: it becomes 
a kind of black hole.  

To deal with this problem, we devised another 

metric. Let 

)/log(...)/log()|( 11 ∑∑ ×++×=
i iDDi i vvuvvuI vu . 

This is a measure of how well the counts in v 

predict the distribution of counts in u. Then let  

 

Maximum Average Probability Loss (MAPL):  

)
)|()(

,
)|()(

max(),(
∑∑

+−+−
=

i ii i
v

II

u

II
MAPL

vuvvvuuu
vu

 .(5) 

 

The first term inside the maximum indicates the 
average probability loss for an observation in u 

when it is modeled by u+v instead of u; similarly, 

the second term indicates the average probability 
loss for an observation in v. If we merge vector 

pairs with the lowest values of MAPL, we will 

never merge vectors in a way that will cause a 

large loss to either of the two parents.  
In practice, we found that all these metrics 

worked better when multiplied by the Dice coef-

ficient based distance. For u and v, this is 

||||

||2
1),(

vu

vu
vu

+

∩×
−=Dice , where “|u|” means 

the number of non-zero count entries in u, and 

“| vu ∩ |” is the number of count entries that are 

non-zero in u and v. 

3.3 Edit-based similarity 

In most of our experiments, count-based metrics 

were combined with edit-based metrics; we put 

little effort into optimizing the edit metrics. Let 
MCWS stand for “maximum common word se-

quence”. For phrases p1 and p2, we define  
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ppEdit

+

×
−= .        (6) 

where len() returns the number of  words. This 

metric doesn’t take word identities into account; 
in future work, we may weight differences in-

volving content words more heavily.  

We also defined an edit-based metric for dis-
tance between phrase clusters. Let cluster 1 have 

phrases “red” (10); “burgundy” (5); “resembling 

scarlet” (2) and cluster 2 have “dark burgundy” 
(7); “scarlet” (3) (number of observations in 

brackets). What is the edit distance between clus-

ters 1 and 2? We defined the distance as that be-

tween the two phrases with the most observa-
tions in each cluster. Thus, distance between 

clusters 1 and 2 would be Edit(“red”, “dark bur-

gundy”)=1.0. Other definitions are possible.  

3.4 Examples of phrase clusters 

Figure 2 shows an English phrase cluster learned 

during C-E experiments by a metric combining 

count-based and edit-based information. Each 

phrase is followed by its count in brackets; we 
don’t show phrases with low counts. Since our 

edit distance sees words as atoms (it doesn’t 

know about morphology), the phrases containing 
“emancipating” were clustered with phrases con-

taining “emancipation” based on count informa-

tion, rather than because of the common stem.  
Figure 3 shows part of a French phrase cluster 

learned during F-E experiments by the same 

mixed metric. The surface forms are quite varied, 

but most of the phrases mean “to assure or to 
guarantee that something will happen”. An inter-

esting exception is “pas faire” – it means not to 

do something (“pas” is negative). This illustrates 
why we need a better edit distance that heavily 

weights negative words.  

 
emancipating (247), emancipate 

(167), emancipate our (73), emanci-

pating thinking (67), emancipate 

our minds (46), further emancipate 

(45), emancipate the (38), emanci-

pate the mind (38), emancipating 

minds (33), emancipate their (32), 

emancipate their minds (27), eman-

cipating our minds (24), emancipat-

ing our (21), emancipate our mind 

(21), further emancipate our (19), 

emancipate our thinking (14), fur-

ther emancipate their (11), emanci-

pating the minds (9), emancipate 

thinking (8), unfettering (8) ...  

 

Figure 2: partial English phrase cluster 

 

garantir que (64), assurer que 

(46), veiller à ce que (27), afin 

de garantir (24), faire en sorte 

(19), de garantir que (16), afin de 

garantir que (14), faire des (14), 

de veiller à ce (14), s' assurer 

que (13), de veiller à ce que (13), 

pour garantir que (13), de faire en 

sorte (8), de faire en sorte que 

(7), à garantir que (6), pas faire 

(5), de veiller (5)… 

 
Figure 3:  partial French phrase cluster 

4 Experiments  

We carried out experiments on a standard one-

pass phrase-based SMT system with a phrase 
table derived from merged counts of symme-

trized IBM2 and HMM alignments; the system 

has both lexicalized and distance-based distor-

tion components (there is a 7-word distortion 
limit) and employs cube pruning (Huang and 

Chiang, 2007). The baseline is a loglinear feature 

combination that includes language models, the 
distortion components, relative frequency esti-

mators PRF(s|t) and PRF(t|s) and lexical weight 

estimators PLW(s|t) and PLW(t|s). The PLW() com-
ponents are based on (Zens and Ney, 2004); Fos-

ter et al. (2006) found this to be the most effec-

tive lexical smoothing technique. The phrase-

cluster-based components PPC(s|t) and PPC(t|s) 
are incorporated as additional loglinear feature 

functions. Weights on feature functions are 

found by lattice MERT (Macherey et al., 2008).  

4.1 Data 

We evaluated our method on C-E and F-E tasks. 

For each pair, we carried out experiments on 

training corpora of different sizes. C-E data were 

from the NIST
1
 2009 evaluation; all the allowed 

bilingual corpora except the UN corpus, Hong 

Kong Hansard and Hong Kong Law corpus were 

used to estimate the translation model. For C-E, 
we trained two 5-gram language models: the first 

on the English side of the parallel data, and the 

second on the English Gigaword corpus. 
Our C-E development set is made up mainly 

of data from the NIST 2005 test set; it also in-

cludes some balanced-genre web-text from the 

NIST training material. Evaluation was per-
formed on the NIST 2006 and 2008 test sets. 

Table 1 gives figures for training, development 

and test corpora for C-E tasks; |S| is the number 
of sentences, and |W| is the number of words. 

There are four references for dev and test sets. 

                                                
1 http://www.nist.gov/speech/tests/mt 
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   Chi Eng 

All parallel 

Train 

|S| 3.3M 

|W| 68.2M 66.5M 

Dev |S| 1,506 1,506×4 

Test NIST06 |S| 1,664 1,664×4 

NIST08 |S| 1,357 1,357×4 

Gigaword |S| - 11.7M 
 

Table 1: Statistics for Chinese-to-English tasks. 

 

 

   Fre Eng 

Train Europarl |S| 1.6M 

|W| 51.3M 46.6M 

Dev 2008 |S| 2,051 

Test 2009 |S| 2,525 

2010 |S| 2,489 

GigaFrEn |S| - 22.5M 

 
Table 2: Statistics for French-to-English tasks. 

 

 
Lang (#sent) C-E (3.3M) F-E (1.6M) 

  #count-1  #other  #count-1  #other 

 

 

Src 

Before 

clustering 

11.3M 5.7M 28.1M 21.2M 

After  

clustering 

11.3M 5.3M 28.1M 19.3M 

#clustered 0 0.4M 0 1.9M 

 

 

Tgt 

Before 

clustering 

11.9M 6.0M 25.6M 20.4M 

After  

clustering 

11.9M 5.6M 25.6M 18.5M 

#clustered 0 0.4M 0 1.9M 

 
Table 3: # phrase classes before & after clustering. 
 

For F-E tasks, we used WMT 2010
2
 F-E track 

data sets. Parallel Europarl data are used for 

training; WMT Newstest 2008 set is the dev set, 

and WMT Newstest 2009 and 2010 are the test 
sets. One reference is provided for each source 

input sentence. Two language models are used in 

this task: one is the English side of the parallel 

data, and the second is the English side of the 
GigaFrEn corpus. Table 2 summarizes the train-

ing, development and test corpora for F-E tasks. 

4.2 Amount of clustering and metric 

For both C-E and E-F, we assumed that phrases 
seen only once in training data couldn’t be clus-

tered reliably, so we prevented these “count 1” 

phrases from participating in clustering. The key 

                                                
2 http://www.statmt.org/wmt10/ 

clustering parameter is the number of merge op-

erations per iteration, given as a percentage of 

the number of potential same-language phrase 

pairs satisfying a simple criterion (some overlap 
in translations to the other language). Prelimi-

nary tests involving the FBIS corpus (about 8% 

of the C-E data) caused us to set this parameter at 
5%. For C-E, we first clustered Chinese with this 

5% value, then English with the same amount. 

For F-E, we first clustered French, then English, 
using 5% in both cases.  

Table 3 shows the results. Only 2-4% of the 

total phrases in each language end up in a cluster 

(that’s 6.5-9% of eligible phrases, i.e., of phrases 
that aren’t “count 1”). However, about 20-25% 

of translation probabilities are smoothed for both 

language pairs. Based on these preliminary tests, 

we decided to use MAPLDiceEdit ××  

( DMAPLEdit × ) as our metric (though 

CosineEdit ×  was a close runner-up).  

4.3 Results and discussion 

Our evaluation metric is IBM BLEU (Papineni et 

al., 2002), which performs case-insensitive 

matching of n-grams up to n = 4. Our first expe-

riment evaluated the effects of the phrase cluster-

ing features given various amounts of training 
data. Figure 4 gives the BLEU score improve-

ments for the two language pairs, with results for 

each pair averaged over two test sets (training 
data size shown as #sentences). The improve-

ment is largest for medium amounts of training 

data. Since the F-E training data has more words 

per sentence than C-E, the two peaks would have 
been closer together if we’d put #words on the x 

axis: improvements for both tasks peak around 6-

8 M English words. For more details, refer to 
Table 4 and Table 5. The biggest improvement 

is 0.55 BLEU for the NIST06 test. More impor-

tantly, cluster features yield gains in 29 of 30 
experiments. Surprisingly, a reviewer asked if 

we’d done significance tests on the individual 

results shown in Tables 4 and 5. Most likely, 

many of these individual results are insignificant, 
but so what? Based on the tables, the probability 

of the null hypothesis that our method has no 

effect is equivalent to that of tossing a fair coin 
30 times and getting 29 heads (if we adopt an 

independence approximation).  

In the research on paraphrases cited earlier, 

paraphrases tend to be most helpful for small 
amounts of training data. By contrast, our 

approach seems to be most helpful for medium 

amounts of training data (200-400K sentence 
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pairs). We attribute this to the properties of 

count-based clustering. When there is little 

training data, clustering is unreliable; when there 
is much data, clustering is reliable but unneeded, 

because most relative frequencies are well-

estimated. In between, phrase cluster probability 

estimates are both reliable and useful. 
 

 
 
Figure 4: Average BLEU improvement for C-E and 

F-E tasks (each averaged over two tests) vs. #training 

sent. 

 

Finally, we carried out experiments to see if 
some of our earlier decisions were correct. Were 

we right to use DMAPL instead of cosine as the 

count-based component of our metric? Experi-

ments with DMAPLEdit ×  vs. 

CosineEdit × on 400K C-E (tested on NIST06 

and NIST08) and on 200K F-E (tested on News-

test2009 and 2010) showed a tiny advantage for 

DMAPLEdit × of about 0.06 BLEU. So we 

probably didn’t make the wrong decision here 

(though it doesn’t matter much). Were we right 
to include the Edit component? Carrying out ana-

logous experiments with DMAPLEdit × vs. 

DMAPL, we found that dropping Edit caused a 

loss of 0.1-0.2 BLEU for all four test sets. Here 
again, we made the right decision.  

In a final experiment, we allowed “count 1” 

phrases to participate in clustering (using 

DMAPLEdit × ). The resulting C-E system had 

somewhat more clustered phrases than the pre-
vious one (for both Chinese and English, about 

3.5% of phrases were in clusters compared to 

2.5% in the previous system). To our surprise, 

this led to a slight improvement in BLEU: the 
400K C-E system now yielded 30.25 on NIST06 

(up 0.09) and 23.88 on NIST08 (up 0.13). The F-

E system where “count 1” clustering is allowed 
also had more phrases in clusters than the system 

where it’s prohibited (the former has just under 

10% of French and English phrases in clusters vs. 

 

Data size 

Nist06 Nist08 

Baseline +phrase-clustering Improv. Baseline +phrase-clustering Improv. 

25K 21.66 21.88 0.22 15.80 15.99 0.19 

50K 23.23 23.43 0.20 17.69 17.84 0.15 

100K 25.83 26.24 0.41 20.08 20.27 0.19 

200K 27.80 28.26 0.46 21.28 21.58 0.30 

400K 29.61 30.16 0.55 23.37 23.75 0.38 

800K 30.87 31.17 0.30 24.41 24.65 0.24 

1.6M 32.94 33.10 0.16 25.61 25.72 0.11 

3.3M 33.59 33.64 0.05 26.84 26.85 0.01 

 

Table 4: BLEU(%) scores for C-E with the various training corpora, including baseline results, results for with 

phrase clustering, and the absolute improvements. Corpus size is measured in sentences. 
 

 

Data size 

Newstest2009 Newstest2010 

Baseline +phrase-clustering Improv. Baseline +phrase-clustering Improv. 

25K 20.21 20.37 0.16 20.54 20.73 0.19 

50K 21.25 21.44 0.19 21.95 22.11 0.16 

100K 22.56 22.86 0.30 23.44 23.69 0.25 

200K 23.67 24.02 0.35 24.31 24.71 0.40 

400K 24.36 24.50 0.14 25.28 25.46 0.18 

800K 24.92 24.97 0.05 25.80 25.90 0.10 

1.6M 25.47 25.47 0.00 26.35 26.37 0.02 

 

Table 5: BLEU(%) scores for F-E with the various training corpora, including baseline results without phrase 

clustering feature, results for phrase clustering, and the absolute improvements. 
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4% for the latter). For F-E, the 200K system al-

lowing “count 1” clustering again yielded a 

slightly higher BLEU: 24.07 on Newstest2009 

and 24.76 on Newstest2010 (up 0.05 in both cas-
es). Thus, our decision not to allow “count 1” 

phrases to participate in clustering in the Table 4 

and 5 experiments appears to have been a mis-
take. We suspect we can greatly improve han-

dling of “count 1” phrases – e.g., by weighting 

the Edit component of the similarity metric more 
heavily when assigning these phrases to clusters.  

5 Conclusion and Future Work 

We have shown that source-language and target-
language phrases in the phrase table can be clus-

tered, and that these clusters can be used to 

smooth “forward” and “backward” estimates 
P(t|s) and P(s|t), yielding modest but consistent 

BLEU gains over a baseline that included lexical 

smoothing. Though our experiments were done 

on a phrase-based system, this method could also 
be applied to hierarchical phrase-based SMT and 

syntactic SMT systems. There are several possi-

bilities for future work based on new applica-
tions for phrase clusters: 

• In the experiments above, we used 

phrase clusters to smooth P(t|s) and P(s|t) 

when the pair (s,t) was observed in train-

ing data. However, the phrase clusters 
often give non-zero probabilities for P(t|s) 

and P(s|t) when s and t were both in the 

training data, but didn’t co-occur. We 
could allow the decoder to consider such 

“invented” phrase pairs (s,t).  

• Phrase clusters could be used to con-

struct target language models (LMs) in 
which the basic unit is a phrase cluster 

rather than a word. For instance, a tri-

cluster model would estimate the proba-

bility of phrase p at time i as a function 
of its phrase cluster, Ci(p), and the two 

preceding phrase clusters Ci-1 and Ci-2: 

)|())(|()( 21 −−
×=

iiii
CCCfCfP ppp

.  

• Lexicalized distortion models could be 

modified so as to condition distortion 
events on phrase clusters.  

• We could build SMT grammars in which 

the terminals are phrases and the parents 

of terminals are phrase clusters.  
The phrase clustering algorithm described 

above could be improved in several ways: 

• In the above, the edit distance between 

phrases and between phrase clusters was 

crudely defined. If we improve edit dis-

tance, it will have an especially large 

impact on “count 1” phrases, for which 

count-based metrics are unreliable and 
which are a large proportion of all phras-

es. The edit distance between two phras-

es weighted all words equally: preferably, 
weights for word substitution, insertion, 

or deletion would be learned from purely 

count-derived phrase clusters (content 
words and negative words might have 

heavier weights than other words). The 

edit distance between two phrase clusters 

was defined as the edit distance between 
the phrases with the most observations in 

each cluster. E.g., distance to the phrase 

cluster in Figure 2 is defined as the 
phrase edit distance to “emancipating”. 

Instead, one could allow a cluster to be 

characterized by (e.g.) up to three phras-
es, and let distance between two clusters 

be the minimum or average pairwise edit 

distance between these characteristic 

phrases.  

• To cluster phrases, we only used infor-

mation derived from phrase tables. In fu-

ture, we could also use the kind of in-

formation used in work on paraphrases, 
such as the context surrounding phrases 

in monolingual corpora, entries in the-

sauri, and information from pivot lan-

guages. 

• The phrase clustering above was “hard”: 

each phrase in either language belongs to 

exactly one cluster. We could modify 

our algorithms to carry out “soft” clus-
tering. For instance, we could interpolate 

the probabilities associated with a phrase 

with probabilities from its neighbours.  

• Clustering is a primitive way of finding 

latent structure in the table of joint 

phrase counts. One could apply principal 

component analysis or a related algo-

rithm to this table. 
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