Improving the Quality of Text Under standing by Delaying Ambiguity
Resolution

Doo Soon Kim

Ken Barker

Bruce Porter

Dept. of Computer Science Dept. of Computer Science Dept. of Computer Science

University of Texas

University of Texas

University of Texas

onue5@s. ut exas. edu kbar ker @s. ut exas. eduporter @s. ut exas. edu

Abstract

Text Understanding systems often commit
to a single bestinterpretation of a sen-
tence before analyzing subsequent text.
This interpretation is chosen by resolv-
ing ambiguous alternatives to the one with
the highest confidence, given the context
available at the time of commitment. Sub-
sequent text, however, may contain infor-
mation that changes the confidence of al-
ternatives. This may especially be the
case with multiple redundant texts on the
same topic. ldeally, systems would de-
lay choosing among ambiguous alterna-
tives until more text has been read.

One solution is to maintain multiple can-
didate interpretations of each sentence un-
til the system acquires disambiguating ev-
idence. Unfortunately, the number of al-
ternatives explodes quickly. In this pa-
per, we propose packed graphical (PG)
representationthat can efficiently repre-
sent a large number of alternative interpre-
tations along with dependencies among
them. We also present an algorithm for
combining multiple PG representations to
help resolve ambiguity and prune alterna-
tives when the time comes to commit to a
single interpretation.

Our controlled experiments show that by
delaying ambiguity resolution until multi-
ple texts have been read, our prototype’s
accuracy is higher than when committing
to interpretations sentence-by-sentence.
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1 Introduction

A typical text understanding system confronts am-
biguity while parsing, mapping words to concepts
and formal relations, resolving co-references, and
integrating knowledge derived from separate sen-
tences or texts. The system discards many candi-
date interpretations to avoid combinatorial explo-
sion. Commonly, after reading each sentence, a
system will commit to its top ranked interpreta-
tion of the sentence before reading the next.

If a text understanding system could postpone
committing to an interpretation without being
swamped by a combinatorial explosion of alterna-
tives, its accuracy would almost surely improve.
This intuition follows from the observation that
text is redundant in at least two ways. First, within
a single coherent text (about the same entities
and events), each sentence informs the interpre-
tation of its neighbors. Second, within a corpus of
texts on the same topic, the same information is
expressed in different surface forms, ambiguous
in different ways. Related fields, such as Infor-
mation Extraction, exploit textual redundancy to
good effect, and perhaps text understanding can
as well.

One approach is for the text understanding sys-
tem to maintain multiple complete candidate in-
terpretations. After reading each sentence, for ex-
ample, the system would retain a beam of the n-
best interpretations of the sentence. While this
approach avoids a combinatorial explosion (for
reasonable values of n), several problems remain.
First, because the beam width is limited, the sys-
tem may still discard correct interpretations before
benefiting from the extra context from related text.
Second, enumeration of the candidate interpreta-
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tions does not represent the dependencies among fobject_,
them. For example, there may be multiple candi- e N

date word senses and semantic roles for a given

sentence, but sense alternatives might be depen- 7has.pmﬂ

dent on role selection (and vice-versa). The set

of reasonable interpretations may be a subset Ef ) .
o . L -~ Figure 1: The target semantic graph representa-
all combinations. Finally, maintaining distinct in-

. . . tion for S1
terpretations does not contribute to addressing the

problem of combining evidence to narrow down _ _
alternatives and ultimately select a single best i@~ Tar get semantic representation
terpretation of a text.

location instrument

Our target representation is a semantic graph in
This paper addresses these three problems. \XYeh 'Ch. nodes are words and the ontologlcal ty_pes
... 10 which they map. Edges are semantic relations
propose an approach that postpones committing t0 . . .
. . : .corresponding either to function words or syntac-
an interpretation of a text by representing ambi- . . ,
" : tic relations in the sentence’s parse.
guities and the dependencies among them. There_. . .
Fig. 1 shows the target semantic representation

may still be combinatorial growth in the set of al- i .

o . f8r the following simple sentence:

ternative interpretations, but they are represente

only intensionally, using a packed representatior$1: An engine ignites gasoline with its spark plug.
which maintains alternatives while avoiding enu-
merating them. We also propose an algorithm fo%3

updating and pruning the packed representation agternative semantic interpretations for a sentence
more sentences and texts are read. can be captured with a single PG representation

with ambiguities represented as local alternatives.

VZ(_e evaluate qur gpprcl)_ach by comﬁarlng tw%ecause candidate representations are often struc-
reading systems: a baseline system that Commlttﬁrally similar, a PG representation can signifi-

o its best interpretation aiter each sentence, a'&%ntly compress the representation of alternatives.
our prototype system that uses a packed represen-Fig. 2 shows the PG representation of alternate

ta“of‘ 0 ma‘”ta'f‘ all mterpretatlo_n S l_”_ml furthelr#'nterpretations of S1 (PG1). The different types of
reading enables it to prune. For this initial proof o

ambiguity captured by the PG representation are
concept, we use a small corpus of redundant text3s follows

The results indicate that our approach improves
the quality of text interpretation by preventing ag-3.1 Word-Type ambiguity
gressive pruning while avoiding combinatorial ex, PG1, the node engine-2a corresponds to the

plosion. word “engine” in S1. Its annotation [MING-

In the following sections, we first describe ourE,NTITY 3 | DEvICE .7] captures the map-

target semantic representation of the interpret&’-Ing to either LVING-ENTITY (probability 0.3)

tion of sentences. We then present the detaiff DEVICE (probability 0.7). The PG repre-

of our packed graphical representation (PG re|o_sentatlon does not presume a particular uncer-
resentation)and our algorithm to resolve ambi-

PG representation

guities in the PG representations as disambigue Direeeeey [ Spark-plug-8a ]
. . A->C [Burn] [ipasuhusbiat} [Living-Entity .55|Device .45]
ing evidence from subsequent text accrues. W T N oNen
describe the architecture of a prototype that prc b“\‘ A has-part |

gasoline-4a
[Liquid-Substance]

duces PG representations for text and implemen

the disambiguating algorithm. Finally, we presen ¢
the results from controlled experiments designe
to compare the accuracy of the prototype to a
baseline system that prunes more aggressively. Figure 2: The PG representation for S1 (PG1)

its-7a

ﬁ <coref .7> ——p [Entity]
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tainty formalism. Any formalism, (Dempster- refers to (ignite-3a agent engine-2a), ando@-
Shafer theory (Pearl, 1988), Markov Logic Net-straints— e.g., A depends on C.

works (Richardson and Domingos, 2006), etc.)
could be used. 4 Combining PG representations

32 Semantic Relation ambiguity Maintaining ambiguity within aPG repre_:sentation

) allows us to delay commitment to an interpreta-
In PG1, the edge labetagent .6| location .4>  yj5 il disambiguating evidence appears. For
from ignite-3a to engine-2a says that the engine ig,y eyt fragment that results in a PG represen-
eitheragentor location of the ignition. tation (PGa) containing ambiguity, there may ex-
ist other text fragments that are partly redundant,
but result in a less ambiguous (or differently am-
In PG1, edges D and E are alternatives corresigyous) representation (PGb). PGb can be used
sponding to the different prepositional phrase aiy adjust confidences in PGa. Enough such evi-
tachments for “with its spark plug” (to ignite-3a gence allows us to prune unlikely interpretations,
or gasoline-4a). The annotati¢® .3| E .7} says timately disambiguating the original representa-
that the choices are mutually exclusive with probjgn
abilities of 0.3 and 0.7. For example, sentence S3 does not have suffi-
cient context to disambiguate between the-M

TORsense of “engine” and theBHICLE sense (as
Co-reference of nodes in a PG representation jf locomotivé.

captured using a “co-reference” edge. In PG1, th
edge labeledccoref .7> represents the probabil-
ity that engine-2a and its-7a are co-referent.

3.3 Structural ambiguity

3.4 Co-reference ambiguity

§3: General Electric announced plans this week
for their much anticipated new engine.

The PG3 representation for S3 (PG3) would

In addition to storing ambiguities explicitly, maintain the ambiguous representation (with con-
the PG representation also captures dependencigfences for each sense based on prior probabil-
among alternatives. ities, for example). On subsequently encounter-
ing sentence S4, a Lesk-based word sense disam-
biguation module (as in our prototype) would pro-
The existence of one element in the graph deduce a PG4 with a strong preference for the loco-
pends on the existence of another element. Hotive sense of “engine”, given the more specific
subsequent evidence suggests that an elementcintext of S4.
incorrect, its dependents should be pruned. F
example, the dependency A C, means that if
LIVING-ENTITY is ultimately rejected as the type
for engine-2a, the agent relation should be prune

3.5 Simpledependency

¥4: The announcement comes to the relief of many
in the railway industry looking to replace the en-
gines in their aging locomotive fleets.

" To use PG4 to help disambiguate PG3, we need
3.6 Mutual dependency to align PG3 and PG4 semantically and merge
their conflict sets. (In the simple example, the

Elements of a mutual dependency set are mutualglonﬂict sets for the word “engine” might be [4

confirming. Ewdepce conflrmlng or rejecting anror 5 | VEHICLE .5] in PG3 and [MbTOR .2 |
et:ement alsho conflrmls orhrejl;actsi ol;[hlerdelementsh EHICLE .8] in PG4).
the set. Inthe example, the box labeled B says t a'[Algorithm 1 describes how two PG representa-

(6”9'”6‘2"" type BVICE) and (|gn!te-3a location 505 can be combined to help resolve their ambi-
engme-_Za) should bpth be_ confirmed or pruneauities. The algorithm identifies their isomorphic
when either of them is confirmed or pruned. subgraphs (redundant portions of the interpreta-
Formally, the PG representation is a structuréons) and uses the information to disambiguate
consisting of (a)semantic triples- e.g., (ignite- their ambiguities. For illustration, we will step
3a type BJRN), (b) macros— e.g., the symbol A through Algorithm 1, merging PG1 (Fig. 2) with
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Algorithm 1 Disambiguating PG representations Alchemy(Richardson and Domingos, 2006) in the
Input : PG1, PG2 prototype system to do the joint inference). For
Output: new PG representation example, aligning engine-2a with Engine-1b re-
1. Identify semantically aligned parts betweersults in a score of 1.7 for BviCE (1 + .7). The
PG1 and PG2Use graph matching to identify confidence score of INING-ENTITY in engine-
alignments (redundant portions) between PG2a is unchanged at .3. Since the resulting score
and PG2: align nodes with the same base worfdr DEVICE is much higher thart the score for
or with taxonomically related types; from theLIVING-ENTITY, LIVING-ENTITY is discarded.
node alignments, align identical types as typ®eleting LVING-ENTITY causes deletion of the
alignments; align relations if the relations areagentedge between ignite-3a and engine-2a due
the same and their head and tail nodes hawe the dependency constraint-A C.
been aligned. $

5 i di bi PGL . The disambiguated PG1 and PG2 are merged
- Use alignments to disambiguate PG1 an nto a single PG representation (PG1+2) based on

PG2. With the available information (the con- alignments. Any remaining ambiguity persists

fidence scores qnd the constraints in PG1 arm PG1+2, possibly to be resolved with another
PG2 and the alignments between them), us

S _ Eentence.

joint inference to calculate the confidence score

of each candidate interpretation. If the con-

fidence score of one interpretation become§ Prototype system
much higher than competing ones, the interpres 1  parser

tation is chosen while the others are discarded,

3. Combine the disambiguated PG1 and PGéP)ur proé?type dsy:/][em_ usezsooéhe ?tanford
into one PG representation using the align- arser (Klein an anning, )- 0 cap-

ments identified in the first step ture structural ambiguity for our experiments,
i we manually edited the parser output by adding

corrections as alternatives wherever the parse

combust-5b Engine-1b . . .

tree was incorrect. This gave a syntactic PG

representation with both incorrect and correct

~
object <agent.4|instrument.6> has-part

S alternatives. We gave the original, incorrect

alternatives high confidence scores and the added,

correct alternatives low scores, simulating a
Figure 3: PG representation for SZThe engine’s Parser pruning correct interpretations in favor
spark plug combusts gasoline” of incorrect ones with higher confidence scores.

The syntactic PG for S1 is shown in Fig. 4. We

have recently designed a modification to the
PG2 (Fig. 3). Stanford Parser to make it produce syntactic PG
1. The graph matcher identifies alignment§€Presentations natively, based on the complete
between PG1 and PG2. Type alignments inclugehart built during parsing.

(engine-2a[EVICE], Engine-1b[CEVICE]), 52 Semantic Interpreter
(spark-plug-8a[lLVING-ENTITY],  spark-plug-
3b[LIVING -ENTITY]). Relation alignments The semantic interpreter assigns types to nodes in

include ((combust-5b instrument spark-plug-3b)the syntactic PG representation and semantic rela-
(ignite-3 instrument spark-plug-8)), ((ignite-3ations to the edges.

instrument  spark-plug-8a) (combust-5b instru- Type ambiguity. Types and confidence scores
ment spark-plug-3b)). are assigned to words using SenseRelate (Pat-
2. In this example, when two interpreta-Wardhan etal., 2005), WSD software based on the

tions are aligned, we simply add their confi-— 1, prototype, we set the pruning thresholdiatthe

dence scores. (We are currently incorporatingcore of the top-scored interpretation.

584



Lesk Algorithm (Lesk, 1986). Assigned sensegOriginal Text Hearts pump blood through the body.

; _ Blood carries oxygen to organs throughout the body.
are then mapped to o@omponent Libraryntol Blood leaves the heart, then goes to the lungs where

ogy (Barker et al., 2001) using its built-in Word-| it is oxygenated. The oxygen given to the blood by the

Net mappings. lungs is then burned by organs throughout the body.

Eventually the blood returns to the heart, depleted of
Relational ambiguity. Semantic relations are | oxygen.

; ; ; 2ar aphrase The heart begins to pump blood into the
ass[gned to the depgndency re.Iatlons in the_SY ody. The blood first travels to the lungs, where it
tactic PG representatlon aCCOfdlng to semantic |npicks up oxygen. The blood will then be deposited
terpretation rules. Most rules consider the heach_tl? Lhe organs, Whrl]chhbum thﬁ OXy_gen_-” ghﬁ‘ blf_od

: .| will then return to the heart, where it will be lacking
and tail types as well as the dependency relatio Maxygen, and start over again.
but do not produce confidence scores. Our proto=

type scores candidates equally. We plan to incor- Figure 5: The original text and a paraphrase
porate a more sophisticated scoring method such
as (Punyakanok et al., 2005).

for each sentence is merged with the cumulative
Structural ambiguity. Parse ambiguities (such pG from previous sentences. The global PG repre-
as PAvs. PB in Fig. 4) are converted directly tosentation integrates sentence-level PG representa-
structural ambiguity representations (D vs. E injons to the extent that they align semantically. In
Fig. 2) in the semantic PG representation. the worst case (completely unrelated sentences),

Simple Dependency. A dependency is in- the global PG representation would simply be the
stalled between a type t for word w and a semantighion of individual PG representations. The ex-
relation r when (1) r is produced by a rule basedent to which the global PG is more coherent re-
on t and (2) r is dependent on no other candidafects redundancy and semantic overlap in the sen-
type for w. In Fig. 2, a dependency relation is inteNces.
stalled from A to C, because (1)WNG-ENTITY
in engine-2a was used in the rule assignaggnt

between ignite-3a and engine-2a and (2) the agye first wanted to evaluate our hypothesis that
signment ofagentis not dependent on BVICE,  ajgorithm 1 can improve interpretation accuracy
the other candidate type of engine-2a. over multiple redundant texts. We manually

Mutual dependency. If multiple interpreta- generated ten redundant texts by having volun-
tions depend on one another, a mutual dependentg§grs rewrite a short, tutorial text, using Amazon

6 Experiment 1

set is created to include them. Turk (http://mturk.com)? The volunteers had no
knowledge of the purpose of the task, and were
53 PG Merger asked to rewrite the text using “different” lan-

The PG Merger implements Algorithm 1 to com-guage. Fig. 5 shows the original text and one vol-

bine PG representations. The PG representaticwteers rewrite. The total number of sentences
over the ten texts was 37. Average sentence length

was 14.5 words.

h .
nsubj/ [ 6.1 Evaluation Procedure
dobj )
v A3 ]Pe.7y We ran two systems over the ten texts. The base-

v
: line-4 . - . . . . .
(oesoline4] vy (sparkplug7 line system commits to the highest scoring consis-
1 PB prep_with |
det poss

v tent interpretation after each sentence. The pro-
o totype system produces an ambiguity-preserving

_ _ ] 2\We ultimately envision a system whose task is to develop
Figure 4. Syntactic PG representation for S1, cap model of a particular topic by interpreting multiple texts

turing the PP-attachment ambiguity of “with itg Such a system might be given a cluster of documents or use
its own information retrieval to find similar documents give

spark plug”. a tutorial text.
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Figure 6: Correctness scores for the prototype vs. baseline systea) type triples (word sense assignment), (b) content
triples (semantic relations) and (c) all triples (with stard deviation).

PG representation. For each sentence, the proto- | baseline| prototype
type’s PG Merger merges the PG of the sentence nodes w/ the correcttype| 76 o1
with the merged PG of the previous sentences. Af-edges w/ the correct relation 74 88

ter N sentences (varying N from 1..37), the system .
is forced to commit to the highest scoring con:rable 1:Percentage (?f nodgs anq edges con.talnlng the cor-
sistent interpretation in the merged PG. For N:iect types and semantic relations in the baseline and the pro
(commit after the first sentence), both the basd?Pe for all 37 sentences.
line and prototype produce the same result. For
N=2, the baseline produces the union of the highsentage of gold standard triples that are the high-
est scoring interpretations for each of the first twe@st scoring alternatives in the merged PG.
sentences. The prototype produces a merged PGTable. 1 shows that 91% of the nodes in the PG
for the first two sentences and then prunes to theontain the correct type (though not necessarily
highest scoring alternatives. the highest scoring). 88% of the edges contain the
At each value of N, we measured the corcorrect semantic relations among the alternatives.
rectness of the interpretations (the percentade contrast, the baseline has pruned away 24% of
of correct semantic triples) for each system byhe correct types and 26% of the correct semantic
comparing the committed triples against humanrelations.
generated gold standard triples. .
We repeated the experiment ten times with dif-7 Experiment 2

ferent random orderings of the 37 sentences, avehur second experiment aims to evaluate the claim
aging the resullts. that the prototype can efficiently manage a large
number of alternative interpretations. The top line
in Fig. 7 shows the number of triples in the PG
Fig. 6 shows that both type assignment and seepresentations input to the prototype. This is the
mantic relation assignment by the prototype imtotal number of triples (including ambiguous al-
prove as the system reads more sentences. Thesnatives) in the PG for each sentence prior to in-
result confirms our hypothesis that delaying comvoking Algorithm 1. The middle line is the num-
mitment to an interpretation resolves ambiguitie®er of triples remaining after merging and pruning
better by avoiding overly aggressive pruning. by Algorithm 1. The bottom line is the number of
To determine an upper bound of correctness fdriples after pruning all but the highest scoring al-
the prototype, we inspected the PG representternatives (the baseline system). The results show
tions to see how many alternative sets containgtiat Algorithm 1 achieves significant compression
the correct interpretation even if not the highesbver unmerged PG representations. The result-
scoring alternative. This number is different froming size of the merged PG representations more
the correctness score in Fig. 6, which is the peglosely tracks the size of the aggressively pruned

6.2 Evaluation result
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Figure 7:Total number of triples in individual sentence PG Figure 8:Sensitivity of the prototype and baseline systems
representations (top); total number of triples in the PG repo the quality of the NL system output. The quality of in-
resentation after merging in the prototype system (migidleput triples is perturbed affecting performance accuradhef
total number of triples after pruning to the highest scoringwo systems. For example, when the quality of input triples
alternative (bottom). is such that the baseline system performs at 70% accuracy,
the prototype system performs at 80%. The arrow indicates

. unperturbed language interpreter performance.
representations.

8 Experiment 3 tion beyond sentence and text boundaries. Im-

rovements in the correctness of semantic inter-

Finally, we wanted to measure the sensitivity 0Eretation of sentences is possible without an ex-
our approach to the quality of the natural Iangu"a‘gﬁlosion in size when maintaining multiple inter-
interpretation. In this experiment, we artiﬁCia”yPretations

varied the confidence scores for the correct inte Nevertheless, these experiments are proofs of

pretations in the PG representations input to th@oncept. The results confirm that it is worthwhile

prototype and baseline systems by a fixed Pe{¢ subject our prototype to a more real-world,

cgtrr]:agel.t_ ||:or exg_r;ptle,t consu_jerl a d_nodteh heart; actical application. To do so, we need to address
with multiple candidate types, including the cor- . -1icc jas.

rect sense for its context: NFTERNAL-ORGAN : .

. . . First, we manually simulated structural (parse)
with confidence 0.8. We reran Experiment 1 vary- . ".. , e
. . . - ambiguities. We will complete modifications to
ing the confidence INNTERNAL-ORGAN in in-

the Stanford Parser to produce PG representations

crements of +/-10%, while scaling the confidences _.. : . . N
natively. This change will result in a significant

in the incorrect types equally. As the ComcIOIenC(lencrease in the number of alternatives stored in

in correct interpretations is increased, all correcttne PG representation over the current prototype.

interpretations become the highest scoring, so ur initial investigations suggest that there is still

gressive pruning is justified and the baseline pet- .
enough structural overlap among the candidate
formance approaches the prototype performance,

. . . . arse trees to allow the PG representation to con-
As the confidences in correct interpretations arF P

i fol explosion, but this is an empirical question
decreased, they are more likely to be pruned b% P , P 9
at will need to be confirmed.
both systems.

. . . We are modifying our semantic interpreter to
Fig. 8 shows that Algorithm 1 is able to recover . fying L i b .
admit induced semantic interpretation rules which

at least some correct interpretations even when. : . .
A . ) will allow us to train the system in new domains.

their original scores (relative to incorrect alterna- : -

. . ) The current prototype uses a naive heuristic for

tives) is quite low. . o . .

identifying co-reference candidates. We are inves-

tigating the use of off-the-shelf co-reference sys-

tems.

Our controlled experiments suggest that it is both Finally, we are incorporating the

desirable and feasible to delay ambiguity resoluAlchemy (Richardson and Domingos, 2006)

9 Discussion and Future Work

587



probabilistic inference engine to calculate the€004) (Egg et al., 2001) (Copestake et al., 2005)
probability that a candidate interpretation isor discourse relations (Schilder, 1998) (Regneri et
correct given the PG constraints and alignmentsl., 2008).
in order to inform confirmation or pruning of Disambiguating compact representations has
interpretations. received relatively less attention. (Riezler et al.,
Once these updates are complete, we will pe2002; Geman and Johnson, 2002) use a packed
form more wide-scale evaluations. We will investepresentation to train parsers on a corpus and
tigate the automatic construction of a test corpusses the learned statistics to disambiguate packed
using text clustering to find redundant texts, andepresentations. (Clark and Harrison, 2010) uses
we will conduct experiments in multiple domains.paraphrase databases and a hand-built knowledge
base to resolve underspecified representations.
10 Related Work Different architectures have been proposed to

Succinctly representing multiple interpretationdmprove the pipeline architecture.  (Sutton and
has been explored by several researchers. TheCallum, 2005; Wellner et al., 2004) maintain
packed representation (Maxwell Ill and Kaplan@ beam of n best interpretations in the pipeline
1981; Crouch, 2005) uses logical formulae to dearchitecture. Their pipeline, however, consists of
note alternative interpretations and treats the di§nly two components. (Finkel et al., 2006) uses
ambiguation task as the propositional satisfiabilsampling over the distribution of alternative inter-
ity problem. Core Language Engine (Nshawi’pretations at each stage of the pipeline and then
1992) introduces two types of packing mechaPasses the sampled data to the next component.
nism. First, a quasi logical form allows the under-he packed representation (Crouch, 2005) and
specification of several types of information, suctLE (Alshawi, 1992) use packed representation in
as anaphoric references, ellipsis and semantic réle pipeline, though both, at some stages, unpack
lations (Alshawi and Crouch, 1992). Second, &hem and re-pack the processed result. (Crouch
packed quasi logical form (Alshawi, 1992) com-and King, 2006) later proposes a new method that
pactly represents the derivations of alternativéloes not require unpacking and then repacking.
qguasi logical forms. In contrast, the PG repre- .

sentation is (1) based on a graphical representdl Conclusion

tion, (2) explicitly represents constraints and (3)ye have begun to address the challenge of effi-
includes confidence scores. ciently managing multiple alternative interpreta-
These representations and the PG represefisns of text. We have presented (1)packed
tation have one feature in common: they repgraphical representationthat succinctly repre-
resent a set of complete alternative interpretasents multiple alternative interpretations as well as
tions of a text. Another class of compact repreghe constraints among them, and (2) an algorithm
sentations, called “underspecification”, has beefy; combining multiple PG representations to re-
studied as a formal representation of ambigunforce correct interpretations and discount im-
ous sentences. These representations inClugg, siple interpretations. Controlled experiments
Hole Semantics (Bos, 2004), Underspecified Disgnoy that it is possible to improve the correctness
course Represe_ntatlon Ser_nanthS (Reyle, 199%) semantic interpretations of text by delaying dis-
Minimal Recursion Semantics (Copestake et algmpiguation, without incurring the cost of an ex-

2005) and Dominance C_:onstraints (Egg et a_'ponentially expanding representation.
2001). These representations, rather than packing

fully-represented candidate interpretations, speg2 Acknowledgement

ify fragments of interpretations which are un-

ambiguously interpreted, along with constraint$Support for this research was provided in part by
on their combination (corresponding to differentAir Force Contract FA8750-09-C-0172 under the
interpretations). They generally focus on speDARPA Machine Reading Program

cific ambiguities such as scope ambiguity (Bos,
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