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Abstract

A novel and robust approach to improv-
ing statistical machine translation fluency
is developed within a minimum Bayes-
risk decoding framework. By segment-
ing translation lattices according to con-
fidence measures over the maximum like-
lihood translation hypothesis we are able
to focus on regions with potential transla-
tion errors. Hypothesis space constraints
based on monolingual coverage are ap-
plied to the low confidence regions to im-
prove overall translation fluency.

1 Introduction and Motivation

Translation quality is often described in terms of
fluencyand adequacy. Fluency reflects the ‘na-
tiveness’ of the translation while adequacy indi-
cates how well a translation captures the meaning
of the original text (Ma and Cieri, 2006).

From a purely utilitarian view, adequacy should
be more important than fluency. But fluency and
adequacy are subjective and not easy to tease apart
(Callison-Burch et al., 2009; Vilar et al., 2007).
There is a human tendency to rate less fluent trans-
lations as less adequate. One explanation is that
errors in grammar cause readers to be more crit-
ical. A related phenomenon is that the nature of
translation errors changes as fluency improves so
that any errors in fluent translations must be rel-
atively subtle. It is therefore not enough to fo-
cus solely on adequacy. SMT systems must also
be fluent if they are to be accepted and trusted.
It is possible that the reliance on automatic met-
rics may have led SMT researchers to pay insuffi-
cient attention to fluency: BLEU (Papineni et al.,
2002), TER (Snover et al., 2006), and METEOR
(Lavie and Denkowski, 2009) show broad corre-
lation with human rankings of MT quality, but are

incapable of fine distinctions between fluency and
adequacy.

There is concern that the fluency of current
SMT is inadequate (Knight, 2007b). SMT is ro-
bust, in that a translation is nearly always pro-
duced. But unlike translators who should be
skilled in at least one of the languages, SMT sys-
tems are limited in both source and target lan-
guage competence. Fluency and accuracy there-
fore tend to suffer together as translation quality
degrades. This should not be the case. Ideally, an
SMT system should never be any less fluent than
the beststochastic text generationsystem avail-
able in the target language (Oberlander and Brew,
2000). What is needed is a good way to enhance
the fluency of SMT hypotheses.

The maximum likelihood (ML) formulation
(Brown et al., 1990) of translation of source lan-
guage sentenceF to target language sentencêE

Ê = argmax
E

P (F |E)P (E) (1)

makes it clear why improving SMT fluency is a
difficult modelling problem. The language model
P (E), the closest thing to a ‘fluency component’
in the original formulation, only affects candidates
likely under the translation modelP (F |E). Given
the weakness of current translation models this is
a severe limitation. It often happens that SMT sys-
tems assignP (F |Ē) = 0 to a correct reference
translationĒ of F (see the discussion in Section
9). The problem is that in ML decoding the lan-
guage model can only encourage the production
of fluent translations; it cannot easily enforce con-
straints on fluency or introduce new hypotheses.

In Hiero (Chiang, 2007) and syntax-based SMT
(Knight and Graehl, 2005; Knight, 2007a), the
primary role of syntax is to drive the translation
process. Translations produced by these systems
respect the syntax of their translation models, but
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this does not force them to be grammatical in the
way that a typical human sentence is grammati-
cal; they produce many translations which are not
fluent. The problem is robustness. Generating
fluent translations demands a tightly constraining
target language grammar but such a grammar is at
odds with broad-coverage parsing needed for ro-
bust translation.

We have described two problems in transla-
tion fluency: (1) SMT may fail to generate flu-
ent hypotheses and there is no simple way to in-
troduce them into the search; (2) SMT produces
many translations which are not fluent but enforc-
ing constraints to improve fluency can hurt robust-
ness. Both problems are rooted in the ML decod-
ing framework in which robustness and fluency
are conflicting objectives.

We propose a novel framework to improve the
fluency of any SMT system, whether syntactic or
phrase-based. We will perform Minimum Bayes-
risk search (Kumar and Byrne, 2004) over a space
of fluent hypothesesH:

ÊMBR = argmin
E′∈H

∑

E∈E
L(E,E′)P (E|F ) (2)

In this approach the MBR evidence spaceE is
generated by an SMT system as ak-best list or lat-
tice. The system runs in its best possible config-
uration, ensuring both translation robustness and
good baselines. Rather than decoding in the out-
put of the baseline SMT system, translations will
be sought among a collection of fluent sentences
that are close to the top SMT hypotheses as deter-
mined by the loss functionL(E,E′).

Decoupling the MBR hypothesis space from
first-pass translation offers great flexibility. Hy-
potheses inH may be arbitrarily constrained ac-
cording to lexical, syntactic, semantic, or other
considerations, with no effect on translation ro-
bustness. This is because constraints on fluency
do not affect the production of the evidence space
by the baseline system. Robustness and fluency
are no longer conflicting objectives. This frame-
work also allows the MBR hypothesis space to be
augmented with hypotheses produced by an NLG
system, although this is beyond the scope of the
present paper.

This paper focuses on searching out fluent

strings amongst the vast number of hypotheses en-
coded in SMT lattices. Oracle BLEU scores com-
puted overk-best lists (Och et al., 2004) show
that many high quality hypotheses are produced
by first-pass SMT decoding. We propose reducing
the difficulty of enhancing the fluency of complete
hypotheses by first identifying regions of high-
confidence in the ML translations and using these
to guide the fluency refinement process. This has
two advantages: (1) we keep portions of the base-
line hypotheses that we trust and search for alter-
natives elsewhere, and (2) the task is made much
easier since the fluency of sentence fragments can
be refined in context.

In what follows, we use posterior probabilities
over SMT lattices to identify useful subsequences
in the ML translations (Sections 2 & 3). These
subsequences drive the segmentation and transfor-
mation of lattices into smaller subproblems (Sec-
tions 4 & 5). Subproblems are mined for fluent
strings (Section 6), resulting in improved transla-
tion fluency (Sections 7 & 8). Our results show
that, when guided by the careful selection of sub-
problems, fluency can be improved with no real
degradation of the BLEU score.

2 Lattice MBR Decoding
The formulation of the MBR decoder in Equation
(2) separates the hypothesis space from the evi-
dence space. We apply the linearised lattice MBR
decision rule (Tromble et al., 2008)

ÊLMBR = argmax
E′∈H

{
θ0|E′|+

∑

u∈N
θu#u(E

′)p(u|E)
}
,

(3)
whereH is the hypothesis space,E is the evidence
space,N is the set of alln-grams inH (typically,
n = 1 . . . 4), and θ are constants estimated on
held-out data. The quantityp(u|E) is the path pos-
terior probability ofn-gramu

p(u|E) =
∑

E∈Eu
P (E|F ), (4)

whereEu = {E ∈ E : #u(E) > 0} is the sub-
set of paths containingn-gram u at least once.
The path posterior probabilitiesp(u|E) of Equa-
tion (4) can be efficiently calculated (Blackwood
et al., 2010) using general purpose WFST opera-
tions (Mohri et al., 2002).
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Figure 1: Averagen-gram precisions (left) and counts (right) for 2075 sentences of NIST
Arabic→English ML translations at a range of posterior probabilitythresholds0 ≤ β ≤ 1. The left
plot shows atβ = 0 then-gram precisions used in the BLEU score of the ML baseline system.

3 Posterior Probability Confidence
Measures

In the formulation of Equations (3) and (4) the
path posteriorn-gram probabilities play a crucial
role. MBR decoding under the linear approxima-
tion to BLEU is driven mainly by the presence
of high posteriorn-grams in the lattice; the low
posteriorn-grams contribute relatively little to the
MBR decision criterion. Here we investigate the
predictive power of these statistics. We will show
that then-gram posterior is a good predictor as to
whether or not ann-gram is to be found in a set of
reference translations.

Let Nn denote the set ofn-grams of ordern
in the ML hypothesisÊ, and letRn denote the
set ofn-grams of ordern in the union of the ref-
erences. For confidence thresholdβ, letNn,β =
{u∈Nn : p(u|E) ≥ β} denote then-grams inNn

with posterior probability greater than or equal to
β, wherep(u|E) is computed using Equation (4).
This is equivalent to identifying all substrings of
lengthn in the translation hypotheses for which
the system assigns a posterior probability ofβ or
higher. The precision at ordern for thresholdβ is
the proportion ofn-grams inNn,β also present in
the references:

Pn,β =
|Rn ∩ Nn,β|
|Nn,β|

(5)

The left plot in Figure 1 shows average per-
sentencen-gram precisionsPn,β at orders1. . .4
for an Arabic→English translation task at a range

of thresholds0 ≤ β ≤ 1. Sentence start and end
tokens are ignored when computing unigram pre-
cisions. We note that precision at all orders im-
proves as the thresholdβ increases. This confirms
that these intrinsic measures of translation confi-
dence have strong predictive power.

The right-hand side of the figure shows the av-
erage number ofn-grams per sentence for the
same range ofβ. We see that for highβ, there are
fewn-grams withp(u|E) ≥ β; this is as expected.
However, even at a high threshold ofβ = 0.9
there are still on average three 4-grams per sen-
tence with posterior probabilities that exceedβ.
Even at this very high confidence level, high pos-
terior n-grams occur frequently enough that we
can expect them to be useful.

These precision results motivate our use of path
posterior n-gram probabilities as a confidence
measure. We assign confidencep(Êj

i |E) to sub-
sequenceŝEi . . . Êj of the ML hypothesis.

Prior work focuses on word-level confidence
extracted fromk-best lists and lattices (Ueffing
and Ney, 2007), while Zens and Ney (2006)
rescorek-best lists withn-gram posterior proba-
bilities. Similar experiments with a slightly dif-
ferent motivation are reported by DeNero et al.
(2009); they show that expectedn-gram counts in
a lattice can be used to predict whichn-grams ap-
pear in the references.

4 Lattice Segmentation
We have shown that current SMT systems, al-
though flawed, can identify with confidence par-
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the newspaper “ constitution ” quoted brigadier abdullah krishan , the chief of police inkarak governorate( 521 km
south @-@ west of amman ) as saying that the seizuretook place afterpolice received information that there were
attempts by the group to sell for more than $ 100 thousand dollars ,the police rushed tothe arrest in possession .
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Figure 2: ML translationÊ, word latticeE , and decomposition as a sequence of four string and five
sublattice regionsH1 . . .H9 usingn-gram posterior probability thresholdp(u|E)≥0.8.

tial hypotheses that can be trusted. We wish to
constrain MBR decoding to include these trusted
partial hypotheses but allow decoding to consider
alternatives in regions of low confidence. In this
way we aim to improve the best possible output of
the best available systems.

We use the path posteriorn-gram probabilities
of Equation (4) to segment latticeE into regions of
high and low confidence. As shown in the exam-
ple of Figure 2, the lattice segmentation process
is performed relative to the ML hypothesiŝE, i.e.
relative to the best path throughE .

For confidence thresholdβ, we find all4-grams
u = Êi, . . . , Êi+3 in the ML translation for which
p(u|E) > β. We then segment̂E into regions
of high and low confidence where the high confi-
dence regions are identified by consecutive, over-
lapping high confidence4-grams. The high confi-
dence regions are contiguous strings of words for
which there is consensus amongst the translations
in the lattice. If we trust the path posteriorn-gram
probabilities, any hypothesised translation should
include these high confidence substrings. This ap-
proach differs from simple posterior-based prun-
ing in that we discard paths, rather than words

or n-grams, which are not consistent with high-
confidence regions of the ML hypothesis.

The hypothesis strinĝE is in this way seg-
mented intoR alternating subsequences of high
and low confidence. The segment boundaries are
ir andjr so thatÊjr

ir
is either a high confidence

or a low confidence subsequence. Each subse-
quence is associated with an unweighted subspace
Hr; this subspace has the form of a string for high
confidence regions and the form of a lattice for
low confidence regions.

If the rth segment is a high confidence region
thenHr accepts only the strinĝEjr

ir
. If the rth

segment is a region of low confidence, thenHr

is built to accept relevant substrings fromE . It is
constructed as follows. Therth low confidence
regionÊjr

ir
has a high confidence left contextêr−1

and a high confidence right contextêr+1 formed
from subsequences of the ML translation hypoth-
esisÊ as

êr−1 = Ê
jr−1

ir−1
, êr+1 = Ê

jr+1

ir+1

Note that whenr = 1 the left context̂er−1 is the
empty string and whenr = R the right context
êr+1 is the empty string. We build a transducer
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Tr for the regular expression/. ∗ êr−1(.∗)êr+1. ∗
/\1/.1 Composition withE yieldsHr = E◦Tr, so
thatHr contains all the reasonable alternatives to
Êjr

ir
in E consistent with the high confidence left

and right contextŝer−1 andêr+1. If Hr is aligned
to a high confidence subsequence ofÊ, we call
it a string regionsince it contains a single path;
if it is aligned to a low confidence region it is a
lattice and we call it asublattice region. The se-
ries of high and low confidence subspace regions
H1, . . . ,HR defines the lattice segmentation.

5 Hypothesis Space Construction
We now describe a general framework for improv-
ing the fluency of the MBR hypothesis space.

The segmentation of the lattice described in
Section 4 considerably simplifies the problem of
improving the fluency of its hypotheses since each
region of low confidence may be considered in-
dependently. The low confidence regions can be
transformed one-by-one and then reassembled to
form a new MBR hypothesis space.

In order to transform the hypothesis regionHr

it is important to know the context in which it oc-
curs, i.e. the sequences of words that form its pre-
fix and suffix. Some transformations might need
only a short context; others may need a sentence-
level context, i.e. the full sequence of ML words
Ê

jr−1

1 andÊN
ir+1

to the left and right of the region
Hr that is to be transformed.

To put this formally, each low confidence sub-
lattice region is transformed by the application of
some functionΨ:

Hr ← Ψ(Ê
jr−1

1 , Hr, Ê
N
ir+1

) (6)

The hypothesis space is then constructed from the
concatenation of high confidence string and trans-
formed low confidence sublattice regions

H = E ◦
⊗

1≤r≤R

Hr (7)

The composition with the original latticeE dis-
cards any new hypotheses that might be created
via the unconstrained concatenation of strings
from theHr. It may be that in some circumstances

1In this notation parentheses indicate string matches so
that/. ∗ y(a∗)w. ∗ /\1/ applied toxyaaawzz yieldsaaa.

the introduction of new paths is good, but in what
follows we test the ability to improve fluency by
searching among existing hypotheses, and this en-
sures that nothing new is introduced.

Size of the Hypothesis Space If no new hy-
potheses are introduced by the operationsΨ, the
size of the hypothesis spaceH is determined by
the posterior probability thresholdβ. Only the
ML hypothesis remains atβ = 0, since all its
subsequences are of high confidence, i.e. can be
covered byn-grams with non-zero path posterior
probability. At the other extreme, forβ = 1, it
follows thatH = E and no paths are removed,
since any string regions created are formed from
subsequences that occur on every path inE .

We can therefore useβ to tighten or relax
constraints on the LMBR hypothesis space. At
β = 0, LMBR returns only the ML hypothesis;
at β = 1, LMBR is done over the full transla-
tion lattice. This is shown in Table 1, where the
BLEU score approaches the BLEU score of un-
constrained LMBR asβ increases.

Note also that the size of the resulting hypoth-
esis space is the product of the number of se-
quences in the sublattice regions. For Figure 2 at
β = 0.8, this product is∼5.4 billion hypotheses.
Even for fairly aggressive constraints on the hy-
pothesis space, many hypotheses remain.

6 Monolingual Coverage Constraints

This section describes one implementation of the
transformation functionΨ that we will show leads
to improved fluency of machine translation out-
put. This transformation is based onn-gram cov-
erage in a large target language text collection:
where possible, we filter the sublattice regions
so that they contain only long-spann-grams ob-
served in the text. Our motivation is that large
monolingual text collections are good guides to
fluency. If a hypothesis is composed entirely of
previously seen high ordern-grams, it is likely to
be fluent and should be favoured.

Initial attempts to identify fluent hypotheses in
sublattice regions by ranking according ton-gram
LM scores were ineffective. Figure 3 shows the
difficulties. We see that both the 4-gram Kneser-
Ney and 5-gram stupid-backoff language models
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LM Translation hypothesisE andn-gram orders used by the LM to score each word Score

4g
<s>1 the2 reactor3 produces3 plutonium2 needed2 to3 manufacture4 atomic3 bomb2 .3 </s>4 -22.59
<s>1 the2 reactor3 produces3 plutonium2 needed2 to3 manufacture4 the4 atomic2 bomb3 .4 </s>4 -23.61

5g <s>1 the2 reactor3 produces4 plutonium5 needed3 to3 manufacture4 atomic5 bomb2 .3 </s>4 -16.04
<s>1 the2 reactor3 produces4 plutonium5 needed3 to3 manufacture4 the4 atomic4 bomb5 .4 </s>5 -17.96

Figure 3: Scores andn-gram orders for hypotheses using 4-gram Kneser-Ney and 5-gram stupid-
backoff (estimated from 1.1B and 6.6B tokens, resp.) LMs. Low confidence regions are in italics.

favour the shorter but disfluent hypothesis; nor-
malising by length was not effective. However,
the stupid-backoff LM has better coverage and the
backing-off behaviour is a clue to the presence
of disfluency. Similar cues have been observed
in ASR analysis (Chase, 1997). The shorter hy-
pothesis backs off to a bigram for “atomic bomb”,
whereas the longer hypothesis covers the same
words with 4-grams and 5-grams. We therefore
disregard the language model scores and focus on
n-gram coverage. This is an example where ro-
bustness and fluency are at odds. Then-gram
models are robust, but often favour less fluent hy-
potheses.

LetS denote the set of alln-grams in the mono-
lingual training data. To identify partial hypothe-
ses in sublattice regions that have complete mono-
lingual coverage at the maximum ordern, we
build a coverage acceptorCn with a similar form
to the WFST representation of ann-gram backoff
language model (Allauzen et al., 2003).Cn as-
signs a penalty to everyn-gram not found inS.
In Cn word arcs have no cost and backoff arcs are
assigned a fixed cost of 1. Firstly, arcs from the
start state are added for each unigramw ∈ N1:

w
w/0∅

Then for n-gramsu ∈ S ∩ {∪ni=2 Ni}, where
u = wn

1 consisting of historyh = wn−1
1 and target

wordwn, arcs are added

wn/0h h+

whereh+ = wn−1
2 if u has ordern andh+ = wn

1

if u has order less thann. Backoff arcs are added
for eachu as

φ/1
h h−

whereh− = wn−1
2 if u has order> 2, and bi-

grams backoff to the null history start state∅.
For each sublattice regionHr, we wish to pe-

nalise each path proportionally to the number of

its n-grams not found in the monolingual text col-
lectionS. We wish to do this in context, so that
we include the effect of the neighbouring high
confidence regionsHr−1 andHr+1. Given that
we are countingn-grams at ordern we form the
left context machineLr which accepts thelast
n − 1 words inHr−1; similarly, Rr accepts the
first n − 1 words ofHr+1. The concatenation
Xr = Lr⊗Hr⊗Rr represents the partial transla-
tion hypotheses inHr padded withn−1 words of
left and right context from the neighbouring high
confidence regions. ComposingXr ◦ Cn assigns
each partial hypothesis a cost equal to the number
of times it was necessary to back off to lower order
n-grams while reading the string. Partial hypothe-
ses with cost 0 did not back off at all and contain
only maximum ordern-grams.

In the following experiments, we look at each
Xn ◦ Cn and if there are paths with cost 0, only
these are kept and all others discarded. We intro-
duce this as a constraint on the hypothesis space
which we will evaluate for improvement on flu-
ency. Here the transformation functionΨ returns
Hr asXr ◦Cn after pruning. IfXr ◦Cn has no zero
cost paths, the transformation functionΨ returns
Hr as we find it, since there is not enough mono-
lingual coverage to guide the selection of fluent
hypotheses. After applying monolingual coverage
constraints to each region, the modified hypothe-
sis space used for MBR search is formed by con-
catenation using Equation (7).

We note thatCn is a simplistic NLG system. It
generates strings by concatenatingn-grams found
in S. We do not allow it to run ‘open loop’ in these
experiments, but instead use it to find the strings
in Xr with goodn-gram coverage.

7 LMBR Over Segmented Lattices

The effect of fluency constraints on LMBR de-
coding is evaluated in the context of the NIST
Arabic→English MT task. The settuneconsists
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ML ... view , especially withthe open chinese economyto the world and ...
+LMBR ... view , especially withthe open chinese economyto the world and ...
+LMBR+CC ... view , especially withthe opening of the chinese economyto the world and ...

ML ... revision of the constitutionof the japanese public, which dates back ...
+LMBR ... revision of the constitutionof the japanese public, which dates back ...
+LMBR+CC ... revision of the constitutionof japan , which dates back ...

Figure 4: Improved fluency through the application of monolingual coverage constraints to the hypoth-
esis space in MBR decoding of NIST MT 08 Arabic→English newswire lattices.

of the odd numbered sentences of the MT02–
MT05 testsets; the even numbered sentences form
test. MT08 performance onnw08(newswire) and
ng08(newsgroup) data is also reported.

First-pass translation is performed using HiFST
(Iglesias et al., 2009), a hierarchical phrase-based
decoder. The first-pass LM is a modified Kneser-
Ney (Kneser and Ney, 1995) 4-gram estimated
over the English side of the parallel text and an
881M word subset of the English GigaWord 3rd
Edition. Prior to LMBR, the first-pass lattices are
rescored with zero-cutoff stupid-backoff 5-gram
language models (Brants et al., 2007) estimated
over more than 6B words of English text. The
LMBR factorsθ0, . . . , θ4 are set as in Tromble et
al. (2008) using unigram precisionp = 0.85 and
recall ratior = 0.74.

The effect of performing LMBR over the seg-
mented hypothesis space is shown in Table 1. The
hypothesis subspacesHr are constructed at var-
ious confidence thresholds as described in Sec-
tion 4 withH formed via Equation (7); no cover-
age constraints are applied yet. Constraining the
search space usingβ = 0.6 leads to little degra-
dation in LMBR performance under BLEU. This
shows lattice segmentation works as intended.

We next investigate the effect of monolingual
coverage constraints on BLEU. We build accep-
tors Cn as described in Section 6 withS con-
sisting of alln-grams in the English GigaWord.
At β = 0.6 we found 181 sentences with sub-
latticesHr spanned by maximum ordern-grams
from S, i.e. for whichXr ◦ Cn have paths with
cost 0; these are filtered as described. LMBR
over these coverage-constrained sublattices is de-
noted LMBR+CC. Onnw08 the BLEU score for
LMBR+CC is 52.0 which is +0.7 over the ML de-
coder and only -0.2 BLEU below unconstrained
LMBR decoding. Done in this way, constraining
hypotheses to have5-grams from the GigaWord

tune test nw08 ng08
ML 54.2 53.8 51.3 36.3

β

0.0 54.2 53.8 51.3 36.3
0.2 54.3 53.8 51.3 36.3
0.4 54.6 54.2 51.6 36.7
0.6 54.9 54.4 52.1 36.6
0.8 54.9 54.4 52.1 36.6
1.0 54.9 54.4 52.2 36.7

LMBR 54.9 54.4 52.2 36.8

Table 1: BLEU scores for ML hypotheses and
LMBR decoding inH over0 ≤ β ≤ 1.

has little impact on BLEU.
At this value ofβ, 116 of the 813nw08 sen-

tences have a low confidence region (1) com-
pletely covered by5-grams, and (2) within which
the ML hypothesis and the LMBR+CC hypothe-
sis differ. It is these regions which we will inspect
for improved fluency.

8 Human Fluency Evaluation
We asked 17 native speakers to judge the fluency
of sentence fragments fromnw08. We compared
hypotheses from the ML and the LMBR+CC de-
coders. Each fragment consisted of the partial
translation hypothesis from a low confidence re-
gion together with its left and right high confi-
dence contexts (examples given in Figure 4). For
each sample, judges were asked: “Could this frag-
ment occur in a fluent sentence?”

The results are shown in Table 2. Most of the
time, the ML and LMBR+CC sentence fragments
were both judged to be fluent; it often happened
that they differed by only a single noun or verb
substitution which didn’t affect fluency. In a small
number of cases, both ML and LMBR+CC were
judged to be disfluent. We are most interested in
the ‘off-diagonal’ cases. In cases when one sys-
tem was judged to be fluent and the other was not,
LMBR+CC was preferred about twice as often as
the ML baseline (26.9% to 9.7%). In other words,
the monolingual fluency constraints were judged
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LMBR+CC
Fluent Not Fluent

ML
Fluent 1175 (59.6%) 192 (9.7%)

Not Fluent 530 (26.9%) 75 (3.8%)

Table 2: Partial hypothesis fluency judgements.

to have improved the fluency of the low confi-
dence region more than twice as often as a fluent
hypothesis was made disfluent.

Some examples of improved fluency are shown
in Figure 4. Although both the ML and un-
constrained LMBR hypotheses might satisfy ad-
equacy, they lack the fluency of the LMBR+CC
hypotheses generated using monolingual fluency
constraints.

9 Summary and Discussion
We have described a general framework for im-
proving SMT fluency. Decoupling the hypothesis
space from the evidence space allows for much
greater flexibility in lattice MBR search.

We have shown that high path posterior proba-
bility n-grams in the ML translation can be used to
guide the segmentation of a lattice into regions of
high and low confidence. Segmenting the lattice
simplifies the process of refining the hypothesis
space since low confidence regions can be refined
in the context of their high confidence neighbours.
This can be done independently before reassem-
bling the refined regions. Lattice segmentation
facilitates the application of post-processing and
rescoring techniques targeted to address particu-
lar deficiencies in ML decoding.

The techniques we presented are related to con-
sensus decoding and system combination for SMT
(Matusov et al., 2006; Sim et al., 2007), and to
segmental MBR for automatic speech recognition
(Goel et al., 2004). Mohit et al. (2009) describe
an alternative approach to improving specific por-
tions of translation hypotheses. They use an SVM
classifier to identify a single phrase in each source
language sentence that is “difficult to translate”;
such phrases are then translated using an adapted
language model estimated from parallel data. In
contrast to their approach, our approach is able
to exploit large collections of monolingual data to
refine multiple low confidence regions using pos-
terior probabilities obtained from a high-quality
evidence space of first-pass translations.

Testset Sentences Reachability
tune 2075 15%
test 2040 14%

nw08 813 11%
ng08 547 9%

Table 3: Arabic→English reference reachability.

We applied hypothesis space constraints based
on monolingual coverage to low confidence re-
gions resulting in improved fluency with no real
degradation in BLEU score relative to uncon-
strained LMBR decoding. This approach is lim-
ited by the coverage of sublattices using monolin-
gual text. We expect this to improve with larger
text collections or in tightly focused scenarios
where in-domain text is less diverse.

However, fluency will be best improved by inte-
grating more sophisticated natural language gen-
eration. NLG systems capable of generating sen-
tence fragments in context can be incorporated di-
rectly into this framework. If the MBR hypothe-
sis spaceH contains a generated hypothesisĒ for
whichP (F |Ē) = 0, Ē could still be produced as
a translation, since it can be ‘voted for’ by nearby
hypotheses produced by the underlying system.

Table 3 shows the proportion of NIST testset
sentences that can be aligned to any of the ref-
erence translations using our high quality base-
line hierarchical decoder with a powerful gram-
mar. The low level of reachability suggests that
NLG may be required to achieve high levels of
translation quality and fluency. Other rescoring
approaches (Kumar et al., 2009; Li et al., 2009)
may also benefit from NLG when the baseline is
incapable of generating the reference.

We note that our approach could also be used to
improve the fluency of ASR, OCR and other lan-
guage processing tasks where the goal is to pro-
duce fluent natural language output.
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