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Abstract incapable of fine distinctions between fluency and
adequacy.
A novel and robust approach to improv- There is concern that the fluency of current

ing statistical machine translation fluency =~ SMT is inadequate (Knight, 2007b). SMT is ro-
is developed within a minimum Bayes-  bust, in that a translation is nearly always pro-
risk decoding framework. By segment-  duced. But unlike translators who should be
ing translation lattices according to con-  skilled in at least one of the languages, SMT sys-
fidence measures over the maximum like- tems are limited in both source and target lan-
lihood translation hypothesis we are able guage competence. Fluency and accuracy there-
to focus on regions with potential transla-  fore tend to suffer together as translation quality
tion errors. Hypothesis space constraints degrades. This should not be the case. Ideally, an
based on monolingual coverage are ap- SMT system should never be any less fluent than
plied to the low confidence regions to im-  the beststochastic text generatiosystem avail-

prove overall translation fluency. able in the target language (Oberlander and Brew,
2000). What is needed is a good way to enhance
1 Introduction and Motivation the fluency of SMT hypotheses.

Translation quality is often described in terms of The maximum likelihood (ML) formulation
fluencyand adequacy Fluency reflects the ‘na- (Brown et al., 1990) of translation of source lan-
tiveness’ of the translation while adequacy indiguage sentenck to target language sentenge
cates how well a translation captures the meaning .
of the original text (Ma and Cieri, 2006). b= arg{EnaX P(F|E)P(E) (1)
From a purely utilitarian view, adequacy should
be more important than fluency. But fluency andnakes it clear why improving SMT fluency is a
adequacy are subjective and not easy to tease apaifficult modelling problem. The language model
(Callison-Burch et al., 2009; Vilar et al., 2007). P(E), the closest thing to a ‘fluency component’
There is a human tendency to rate less fluent tranist the original formulation, only affects candidates
lations as less adequate. One explanation is thidkely under the translation modél(F'|E). Given
errors in grammar cause readers to be more crithe weakness of current translation models this is
ical. A related phenomenon is that the nature of severe limitation. It often happens that SMT sys-
translation errors changes as fluency improves $ems assignP(F|E) = 0 to a correct reference
that any errors in fluent translations must be reltranslation of F (see the discussion in Section
atively subtle. It is therefore not enough to fo-9). The problem is that in ML decoding the lan-
cus solely on adequacy. SMT systems must algguage model can only encourage the production
be fluent if they are to be accepted and truste@f fluent translations; it cannot easily enforce con-
It is possible that the reliance on automatic metstraints on fluency or introduce new hypotheses.
rics may have led SMT researchers to pay insuffi- In Hiero (Chiang, 2007) and syntax-based SMT
cient attention to fluency: BLEU (Papineni et al.,(Knight and Graehl, 2005; Knight, 2007a), the
2002), TER (Snover et al., 2006), and METEORprimary role of syntax is to drive the translation
(Lavie and Denkowski, 2009) show broad correprocess. Translations produced by these systems
lation with human rankings of MT quality, but arerespect the syntax of their translation models, but
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this does not force them to be grammatical in thetrings amongst the vast number of hypotheses en-
way that a typical human sentence is grammatcoded in SMT lattices. Oracle BLEU scores com-
cal; they produce many translations which are ngiuted overk-best lists (Och et al., 2004) show
fluent. The problem is robustness. Generatinthat many high quality hypotheses are produced
fluent translations demands a tightly constrainindy first-pass SMT decoding. We propose reducing
target language grammar but such a grammar is thte difficulty of enhancing the fluency of complete
odds with broad-coverage parsing needed for rdwpotheses by first identifying regions of high-
bust translation. confidence in the ML translations and using these
We have described two problems in translato guide the fluency refinement process. This has
tion fluency: (1) SMT may fail to generate flu-two advantages: (1) we keep portions of the base-
ent hypotheses and there is no simple way to idine hypotheses that we trust and search for alter-
troduce them into the search; (2) SMT produceratives elsewhere, and (2) the task is made much
many translations which are not fluent but enforceasier since the fluency of sentence fragments can
ing constraints to improve fluency can hurt robustbe refined in context.
ness. Both problems are rooted in the ML decod- In what follows, we use posterior probabilities
ing framework in which robustness and fluencyver SMT lattices to identify useful subsequences
are conflicting objectives. in the ML translations (Sections 2 & 3). These
We propose a novel framework to improve thesubsequences drive the segmentation and transfor-
fluency of any SMT system, whether syntactic omation of lattices into smaller subproblems (Sec-
phrase-based. We will perform Minimum Bayes+tions 4 & 5). Subproblems are mined for fluent
risk search (Kumar and Byrne, 2004) over a spacgirings (Section 6), resulting in improved transla-
of fluent hypothese®(: tion fluency (Sections 7 & 8). Our results show
that, when guided by the careful selection of sub-
Byer = argmin Y _ L(E,E')P(E|F)  (2) problems, fluency can be improved with no real
E'€” pee degradation of the BLEU score.

In this approach the MBR evidence spafds 2 Lattice MBR Decoding
generated by an SMT system ais-est st or lat- The formulation of the MBR decoder in Equation

tice. The system runs in its best possible config;, } separates the hypothesis space from the evi-

uration, ensuring both translation robustness an

ence space. We apply the linearised lattice MBR
good baselines. Rather than decoding in the out-

ecision rule (Tromble et al., 2008)

put of the baseline SMT system, translations wil

be sought among a collection of fluent sentence@ = argmax{@oyE HZ Outtu(E') (u\S)}

that are close to the top SMT hypotheses as deter-" =

mined by the loss functiod(E, E'). (3)
Decoupling the MBR hypothesis space fromwhere?{ is the hypothesis spacg s the evidence

first-pass translation offers great flexibility. Hy-space\ is the set of alh-grams in# (typically,

potheses i{ may be arbitrarily constrained ac-n = 1...4), and# are constants estimated on

cording to lexical, syntactic, semantic, or otheheld-out data. The quantipy(u|€) is the path pos-

considerations, with no effect on translation roterior probability ofn-gramu

bustness. This is because constraints on fluency

do not affect the production of the evidence space p(ul€) = Z P(B|F), (4)

by the baseline system. Robustness and fluency Betu

are no longer conflicting objectives. This framewhere&,, = {E € £ : #,(F) > 0} is the sub-

work also allows the MBR hypothesis space to bset of paths containing-gram « at least once.

augmented with hypotheses produced by an NLGhe path posterior probabilitigg(u|E) of Equa-

system, although this is beyond the scope of thiion (4) can be efficiently calculated (Blackwood

present paper. et al., 2010) using general purpose WFST opera-
This paper focuses on searching out fluertions (Mohri et al., 2002).
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Figure 1. Averagen-gram precisions (left) and counts (right) for 2075 sentsnof NIST
Arabic—English ML translations at a range of posterior probabilityesholds) < g < 1. The left
plot shows a3 = 0 then-gram precisions used in the BLEU score of the ML baselintesys

3 Posterior Probability Confidence of threshold®) < 3 < 1. Sentence start and end
Measures tokens are ignored when computing unigram pre-

In the formulation of Equations (3) and (4) thecCisions. We note that precision at all orders im-
path posterion-gram probabilities play a crucial Proves as the threshojgiincreases. This confirms
role. MBR decoding under the linear approximathat these intrinsic measures of translation confi-
tion to BLEU is driven mainly by the presencedence have strong predictive power.
of high posteriorn-grams in the lattice; the low  The right-hand side of the figure shows the av-
posterior-grams contribute relatively little to the €/ag€ number of-grams per sentence for the
MBR decision criterion. Here we investigate theSame range of. We see that for higlt, there are
predictive power of these statistics. We will show/eW n-grams withp(u|€) > f; this is as expected.
that then-gram posterior is a good predictor as tg1owever, even at a high threshold gf = 0.9
whether or not am-gram is to be found in a set of there are still on average three 4-grams per sen-
reference translations. tence with posterior probabilities that excegd
Let AV, denote the set oh-grams of ordem Evgn at this very high confidence level, high pos-
in the ML hypothesisE, and letR,, denote the terior n-grams occur frequently enough that we
set ofn-grams of order in the union of the ref- €an expect them to be useful.
erences. For confidence threshgidlet A, 5 = These precision results motivate our use of path
{ueN,: p(u|l€) > B} denote thex-grams in\, posterior n-gram probablll‘_ues as a confidence
with posterior probability greater than or equal tg"€asure. We assign confidenefd-; |€) to sub-
3, wherep(u|€) is computed using Equation (4). Seéquences; ... E; of the ML hypothesis.
This is equivalent to identifying all substrings of ~Prior work focuses on word-level confidence
lengthn in the translation hypotheses for whichéXtracted fromk-best lists and lattices (Ueffing
the system assigns a posterior probability3asr  @nd Ney, 2007), while Zens and Ney (2006)
higher. The precision at orderfor threshold3 is rescorek-best lists withn-gram posterior proba-

the proportion ofr-grams in\;, 5 also present in bilities. Similar experiments with a slightly dif-
the references: ferent motivation are reported by DeNero et al.

(2009); they show that expectedgram counts in
R N No g (5) a lattice can be used to predict whickgrams ap-
N sl pear in the references.

Pup =

The left plot in Figure 1 shows average per4 Lattice Segmentation
sentencen-gram precisionsP, 5 at ordersl...4 We have shown that current SMT systems, al-
for an Arabic—~English translation task at a rangethough flawed, can identify with confidence par-
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the newspaper “ constitution ” quoted brigadier abdullakHan , the chief of police inkarak governoraté521 km
south @-@ west of amman ) as saying that the seizuteok place aftepolice received information thatthere were
attempts by the group to sell for more than $ 100 thousanaudolthe police rushed tothe arrest in possession .

433 1 4 1 6 1 6860 1 76

Figure 2: ML translation®, word lattice€, and decomposition as a sequence of four string and five
sublattice region${; ... Hg usingn-gram posterior probability threshojd«|£)>0.8.

tial hypotheses that can be trusted. We wish tor n-grams, which are not consistent with high-
constrain MBR decoding to include these trustedonfidence regions of the ML hypothesis.
partial hypotheses but allow decoding to consider The hypothesis string? is in this way seg-
alternatives in regions of low confidence. In thiamented intoR alternating subsequences of high
way we aim to improve the best possible output odnd low confidence. The segment boundaries are
the best available systems. i, andj, so thatEj: is either a high confidence
We use the path posteriargram probabilities or a low confidence subsequence. Each subse-
of Equation (4) to segment lattiézinto regions of quence is associated with an unweighted subspace
high and low confidence. As shown in the exam#{,; this subspace has the form of a string for high
ple of Figure 2, the lattice segmentation proceseonfidence regions and the form of a lattice for
is performed relative to the ML hypothesis i.e. low confidence regions.
relative to the best path through If the ~** segment is a high cAo'nfidence region
For confidence thresholg, we find all4-grams then#, accepts only the string)”. If the "
uw=E;,...,E; 5inthe ML translation for which segment is a region of low confidence, thn
p(u|€) > B. We then segmenk into regions is built to accept relevant substrings frafn It is
of high and low confidence where the high conficonstructed as follows. The” low confidence
dence regions are identified by consecutive, ovefegionE?" has a high confidence left context_;
lapping high confidencé-grams. The high confi- and a high confidence right contet.; formed
dence regions are contiguous strings of words fdfom subsequences of the ML translation hypoth-
which there is consensus amongst the translatiof§iSE' as
in the lattice. If we trust the path posteriergram
probabilities, any hypothesised translation should
include these high confidence substrings. This apdote that when- = 1 the left contexé,_; is the
proach differs from simple posterior-based prunempty string and when = R the right context
ing in that we discard paths, rather than words, ,; is the empty string. We build a transducer

A _ fdr—1 5 _ firt
€r—1 = E:, Ery+1 = Ei:+1
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7T, for the regular expressioh * é,_1(.x)é,4+1. * the introduction of new paths is good, but in what
/\1/.1 Composition with€ yieldsH, = £07,,s0 follows we test the ability to improve fluency by
that, contains all the reasonable alternatives tgearching among existing hypotheses, and this en-
EJ" in € consistent with the high confidence leftsures that nothing new is introduced.

and right contextg,_; andé, .. If H,. is aligned

to a high confidence subsequenceifwe call Size of the Hypothesis Spacelf no new hy-

it a string regionsince it contains a single path; Potheses are introduced by the operatignghe

if it is aligned to a low confidence region it is asize of the hypothesis spagé is determined by
lattice and we call it sublattice region The se- the posterior probability threshold. Only the

ries of high and low confidence subspace regiordL hypothesis remains at = 0, since all its

H1,...,Hr defines the lattice segmentation. ~ Subsequences are of high confidence, i.e. can be
covered byn-grams with non-zero path posterior
5 Hypothesis Space Construction probability. At the other extreme, fof = 1, it

We now describe a general framework for improvfollows that# = £ and no paths are removed,
ing the fluency of the MBR hypothesis space. ~ Since any string regions created are formed from
The segmentation of the lattice described igubsequences that occur on every patfi.in
Section 4 considerably simplifies the problem of We can therefore usg to tighten or relax
improving the fluency of its hypotheses since eacbonstraints on the LMBR hypothesis space. At
region of low confidence may be considered in8 = 0, LMBR returns only the ML hypothesis;
dependently. The low confidence regions can bat 5 = 1, LMBR is done over the full transla-
transformed one-by-one and then reassembled tion lattice. This is shown in Table 1, where the
form a new MBR hypothesis space. BLEU score approaches the BLEU score of un-
In order to transform the hypothesis regitfp ~ constrained LMBR ag increases.
it is important to know the context in which it oc- Note also that the size of the resulting hypoth-
curs, i.e. the sequences of words that form its presis space is the product of the number of se-
fix and suffix. Some transformations might needjuences in the sublattice regions. For Figure 2 at
only a short context; others may need a sentencg-= 0.8, this product is~5.4 billion hypotheses.
level context, i.e. the full sequence of ML wordsEven for fairly aggressive constraints on the hy-
B andEf:Cr1 to the left and right of the region pothesis space, many hypotheses remain.
H, that is to be transformed.
To put this formally, each low confidence sub6 Monolingual Coverage Constraints

lattice region is transformed by the application Ofrpjs section describes one implementation of the
some functiond: transformation functio that we will show leads
~ - to improved fluency of machine translation out-
Jr—1 N
Hr = U(E Wy B ) ©6) put. This transformation is based ergram cov-

The hypothesis space is then constructed from tf&23€ in @ large target language text collection:

concatenation of high confidence string and trandVN€re possible, we filter the sublattice regions
formed low confidence sublattice regions so that they contain only long-spangrams ob-
served in the text. Our motivation is that large

U —Eo ® H, @) monolingual text collections are good guides to
fluency. If a hypothesis is composed entirely of
previously seen high order-grams, it is likely to
The composition with the original lattic€ dis- be fluent and should be favoured.
cards any new hypotheses that might be created|njtial attempts to identify fluent hypotheses in
via the unconstrained concatenation of stringsublattice regions by ranking accordingtayram
from the?,. It may be that in some circumstances_M scores were ineffective. Figure 3 shows the
In this notation parentheses indicate string matches Qifficulties. We see that both the 4-gram Kneser-
that /. * y(a*)w. * /\1/ applied toxryaaawzz yieldsaaa. ~ Ney and 5-gram stupid-backoff language models

1<r<R
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LM Translation hypothesi& andn-gram orders used by the LM to score each word Score
4g <s>; the, reactop produces plutonium needed to; manufacture atomic; bomb, .3 </s>4 -22.59
<s>; the; reactos produces plutonium: needed tos manufacture the; atomic, bombys .4 </s>4 | -23.61
5g <s>; the, reactos produces plutonium; needed tos manufacture atomic; bomb, .3 </s>4 -16.04
<s>; the; reactos produces plutoniun needed tos manufacture the, atomic; bomby .4 </s>5 | -17.96

Figure 3: Scores and-gram orders for hypotheses using 4-gram Kneser-Ney ancrb-gtupid-
backoff (estimated from 1.1B and 6.6B tokens, resp.) LMsv konfidence regions are in italics.

favour the shorter but disfluent hypothesis; norits n-grams not found in the monolingual text col-
malising by length was not effective. HoweverJection S. We wish to do this in context, so that
the stupid-backoff LM has better coverage and theve include the effect of the neighbouring high
backing-off behaviour is a clue to the presenceonfidence region${,_; andH,,;. Given that
of disfluency. Similar cues have been observede are counting:-grams at orden, we form the
in ASR analysis (Chase, 1997). The shorter hyleft context machinel, which accepts thdast
pothesis backs off to a bigram for “atomic bomb”,n — 1 words inH,_+; similarly, R, accepts the
whereas the longer hypothesis covers the sanfiest n — 1 words of H,,. The concatenation
words with 4-grams and 5-grams. We thereforeX, = £, @ H, ® R, represents the partial transla-
disregard the language model scores and focus tinn hypotheses ift{, padded withn — 1 words of
n-gram coverage. This is an example where rdeft and right context from the neighbouring high
bustness and fluency are at odds. Thgram confidence regions. Composidg. o C,, assigns
models are robust, but often favour less fluent hyeach partial hypothesis a cost equal to the number
potheses. of times it was necessary to back off to lower order
Let S denote the set of all-grams in the mono- n-grams while reading the string. Partial hypothe-
lingual training data. To identify partial hypothe-ses with cost 0 did not back off at all and contain
ses in sublattice regions that have complete mononly maximum order-grams.
lingual coverage at the maximum order we In the following experiments, we look at each
build a coverage acceptdy, with a similar form X, o C,, and if there are paths with cost 0, only
to the WFST representation of angram backoff these are kept and all others discarded. We intro-
language model (Allauzen et al., 2003, as- duce this as a constraint on the hypothesis space
signs a penalty to every-gram not found inS.  which we will evaluate for improvement on flu-
In C,, word arcs have no cost and backoff arcs arency. Here the transformation functidnreturns
assigned a fixed cost of 1. Firstly, arcs from they, asx, oC, after pruning. IfX, oC,, has no zero
start state are added for each unigrang N7: cost paths, the transformation functi@nreturns

@ w/0 ‘H, as we find it, since there is not enough mono-
lingual coverage to guide the selection of fluent
Then forn-gramsu € S N {U", N;}, where hypotheses. After applying monolingual coverage

u = w? consisting of history, = w?ffl and target constraints to each region, the modified hypothe-
word w,,, arcs are added sis space used for MBR search is formed by con-

w0 catenation using Equation (7).
We note that,, is a simplistic NLG system. It
whereht — w§*1 if u has orden andh* — w? generates strings by concatenatingrams found

if u has order less tham. Backoff arcs are added " S. We do not allpw ILto run open Ipop n the;e
for eachu as experiments, but instead use it to find the strings

C 1 : in X, with goodn-gram coverage.

whereh— = wg—l if w has order> 2, and bi- 7 LMBR Over SegmentEd Lattices

grams backoff to the null history start stéte The effect of fluency constraints on LMBR de-
For each sublattice regioH,., we wish to pe- coding is evaluated in the context of the NIST
nalise each path proportionally to the number ofrabic—~English MT task. The seune consists
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ML ... view , especially witlthe open chinese econontgy the world and ...
+LMBR ... view , especially withthe open chinese econonty the world and ...
+LMBR+CC | ... view, especially witlthe opening of the chinese econotoyhe world and ...

ML ... revision of the constitutionf the japanese publicwhich dates back ...
+LMBR ... revision of the constitutionf the japanese publicwhich dates back ...
+LMBR+CC | ... revision of the constitutionf japan , which dates back ...

Figure 4: Improved fluency through the application of momglial coverage constraints to the hypoth-
esis space in MBR decoding of NIST MT 08 Arabid€nglish newswire lattices.

of the odd numbered sentences of the MT02— tune | test | nw08 | ng08
MTO5 testsets; the even numbered sentences form ML 2421 o381 013 | 363
’ ven nu _ 00 542|538 51.3 | 363

test MTO08 performance onw08(newswire) and 0.2 | 54.3| 53.8| 51.3 | 36.3
ng08(newsgroup) data is also reported. 0415465421 51.6 | 36.7
9 _ ( group) o P _ _ Bl o6|549|544| 521 | 3656
First-pass translation is performed using HiIFST 0.8 | 549|544 | 52.1 | 36.6
(Iglesias et al., 2009), a hierarchical phrase-based 10| 549 544 522 | 367
LMBR | 549 | 54.4| 52.2 | 36.8

decoder. The first-pass LM is a modified Kneser-
Ney (Kneser and Ney, 1995) 4-gram estimateqable 1: BLEU scores for ML hypotheses and
over the English side of the parallel text and an MBR decoding in# over0 < 8 < 1.
881M word subset of the English GigawWord 3rd
Edition. Prior to LMBR, the first-pass lattices arehas little impact on BLEU.
rescored with zero-cutoff stupid-backoff 5-gram At this value of 3, 116 of the 813w08 sen-
language models (Brants et al., 2007) estimategnces have a low confidence region (1) com-
over more than 6B words of English text. Thepletely covered by-grams, and (2) within which
LMBR factorsf, ..., 0, are set as in Tromble et the ML hypothesis and the LMBR+CC hypothe-
al. (2008) using unigram precisign= 0.85 and  sis differ. It is these regions which we will inspect
recall ratior = 0.74. for improved fluency.

The effect of performing LMBR over the seg-
mented hypothesis space is shown in Table 1. THe Human Fluency Evaluation
hypothesis subspacé$, are constructed at var- We asked 17 native speakers to judge the fluency
ious confidence thresholds as described in Segf sentence fragments fronw08 We compared
tion 4 with 7 formed via Equation (7); no cover- hypotheses from the ML and the LMBR+CC de-
age constraints are applied yet. Constraining thgbders. Each fragment consisted of the partial
search space using = 0.6 leads to little degra- translation hypothesis from a low confidence re-
dation in LMBR performance under BLEU. This gion together with its left and right high confi-
shows lattice segmentation works as intended. dence contexts (examples given in Figure 4). For

We next investigate the effect of monolingualeach sample, judges were asked: “Could this frag-
coverage constraints on BLEU. We build accepment occur in a fluent sentence?”
tors C,, as described in Section 6 witS con- The results are shown in Table 2. Most of the
sisting of alln-grams in the English GigaWord. time, the ML and LMBR+CC sentence fragments
At 5 = 0.6 we found 181 sentences with sub-were both judged to be fluent; it often happened
lattices#, spanned by maximum ordergrams that they differed by only a single noun or verb
from S, i.e. for which X, o C,, have paths with substitution which didn't affect fluency. In a small
cost O; these are filtered as described. LMBRumber of cases, both ML and LMBR+CC were
over these coverage-constrained sublattices is dedged to be disfluent. We are most interested in
noted LMBR+CC. OmwO08the BLEU score for the ‘off-diagonal’ cases. In cases when one sys-
LMBR+CC is 52.0 which is +0.7 over the ML de- tem was judged to be fluent and the other was not,
coder and only -0.2 BLEU below unconstrained.MBR+CC was preferred about twice as often as
LMBR decoding. Done in this way, constrainingthe ML baseline (26.9% to 9.7%). In other words,
hypotheses to have-grams from the GigaWord the monolingual fluency constraints were judged
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LMBR+CC Testset| Sentence§ Reachability
Fluent | Not Fluent tune 2075 15%
ML Fluent 1175 (59.6%)| 192 (9.7%) test 2040 14%
Not Fluent| 530 (26.9%)| 75 (3.8%) nwO08 813 11%
ng08 547 9%

Table 2:; Partial hypothesis fluency judgements. _ _ -
Table 3: Arabie+English reference reachability.

to have improved the fluency of the low confi- _ _ _
dence region more than twice as often as a fluent We applied hypothesis space constraints based
hypothesis was made disfluent. on monolingual coverage to low confidence re-

Some examples of improved fluency are showfions resulting in improved fluency with no real
in Figure 4. Although both the ML and un- degradation in BLEU score relative to uncon-
constrained LMBR hypotheses might satisfy agstrained LMBR decoding. This approach is lim-
equacy, they lack the fluency of the LMBR+cCcited by the coverage of sublattices using monolin-

hypotheses generated using monolingual fluen@Hal text. We expect this to improve with larger
constraints. text collections or in tightly focused scenarios

where in-domain text is less diverse.

9 Summary and Discussion However, fluency will be best improved by inte-
We have described a general framework for imgrating more sophisticated natural language gen-
proving SMT fluency. Decoupling the hypothesiseration. NLG systems capable of generating sen-
space from the evidence space allows for muctgnce fragments in context can be incorporated di-
greater flexibility in lattice MBR search. rectly into this framework. If the MBR hypothe-

We have shown that high path posterior probasis spacé{ contains a generated hypothe&igor
bility n-grams in the ML translation can be used tovhich P(F|E) = 0, E could still be produced as
guide the segmentation of a lattice into regions of translation, since it can be ‘voted for’ by nearby
high and low confidence. Segmenting the lattic®ypotheses produced by the underlying system.
simplifies the process of refining the hypothesis Table 3 shows the proportion of NIST testset
space since low confidence regions can be refinégntences that can be aligned to any of the ref-
in the context of their high confidence neighboursgrence translations using our high quality base-
This can be done independently before reasserire hierarchical decoder with a powerful gram-
bling the refined regions. Lattice segmentatiormar. The low level of reachability suggests that
facilitates the application of post-processing andlLG may be required to achieve high levels of
rescoring techniques targeted to address partictianslation quality and fluency. Other rescoring
lar deficiencies in ML decoding. approaches (Kumar et al., 2009; Li et al., 2009)

The techniques we presented are related to comay also benefit from NLG when the baseline is
sensus decoding and system combination for SMmcapable of generating the reference.
(Matusov et al., 2006; Sim et al., 2007), and to We note that our approach could also be used to
segmental MBR for automatic speech recognitioimprove the fluency of ASR, OCR and other lan-
(Goel et al., 2004). Mohit et al. (2009) describeguage processing tasks where the goal is to pro-
an alternative approach to improving specific porduce fluent natural language output.
tions of translation hypotheses. They use an SVM
classifier to identify a single phrase in each sourcBcknowledgments
language sentence that is “difficult to translate”We would like to thank Matt Gibson and the
such phrases are then translated using an adaptednan judges who participated in the evalua-
language model estimated from parallel data. Ition. This work was supported in part under the
contrast to their approach, our approach is ableALE program of the Defense Advanced Re-
to exploit large collections of monolingual data tosearch Projects Agency, Contract No. HR0011-
refine multiple low confidence regions using pos06-C-0022 and the European Union Seventh
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