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Abstract 

This paper presents a general platform, 
namely synchronous tree sequence sub-
stitution grammar (STSSG), for the 
grammar comparison study in Transla-
tional Equivalence Modeling (TEM) and 
Statistical Machine Translation (SMT). 
Under the STSSG platform, we compare 
the expressive abilities of various gram-
mars through synchronous parsing and a 
real translation platform on a variety of 
Chinese-English bilingual corpora. Ex-
perimental results show that the STSSG 
is able to better explain the data in paral-
lel corpora than other grammars. Our 
study further finds that the complexity of 
structure divergence is much higher than 
suggested in literature, which imposes a 
big challenge to syntactic transformation-
based SMT. 

1 Introduction 

Translational equivalence is a mathematical rela-
tion that holds between linguistic expressions 
with the same meaning (Wellington et al., 2006).  
The common explicit representations of this rela-
tion are word alignments, phrase alignments and 
structure alignments between bilingual sentences. 
Translational Equivalence Modeling (TEM) is a 
process to describe and build these alignments 
using mathematical models. Thus, the study of 
TEM is highly relevant to Statistical Machine 
Translation (SMT). 

Grammar is the most important infrastructure 
for TEM and SMT since translation models’ ex-
pressive and generative abilities are mainly de-
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termined by the grammar. Many grammars, such 
as finite-state grammars (FSG), bracket/inversion 
transduction grammars (BTG/ITG) (Wu, 1997), 
context-free grammar (CFG), tree substitution 
grammar (TSG) (Comon et al., 2007) and their 
synchronous versions, have been explored in 
SMT. Based on these grammars, a great number 
of SMT models have been recently proposed, 
including string-to-string model (Synchronous 
FSG) (Brown et al., 1993; Koehn et al., 2003), 
tree-to-string model (TSG-string) (Huang et al., 
2006; Liu et al., 2006; Liu et al., 2007), string-to-
tree model (string-CFG/TSG) (Yamada and 
Knight, 2001; Galley et al., 2006; Marcu et al., 
2006), tree-to-tree model (Synchronous 
CFG/TSG, Data-Oriented Translation) (Chiang, 
2005; Cowan et al., 2006; Eisner, 2003; Ding and 
Palmer, 2005; Zhang et al., 2007; Bod, 2007; 
Quirk wt al., 2005; Poutsma, 2000; Hearne and 
Way, 2003) and so on. 

Although many achievements have been ob-
tained by these advances, it is still unclear which 
of these important pursuits is able to best explain 
human translation data, as each has its advan-
tages and disadvantages. Therefore, it has great 
meaning in both theory and practice to do com-
parison studies among these grammars and SMT 
models to see which of them are capable of better 
describing parallel translation data. This is a fun-
damental issue worth exploring in multilingual 
information processing. However, little effort in 
previous work has been put in this point. To ad-
dress this issue, in this paper we define a general 
platform, namely synchronous tree sequence 
substitution grammar (STSSG), for the compari-
son studies. The STSSG can be seen as a gener-
alization of Synchronous TSG (STSG) by replac-
ing elementary tree (a single subtree used in 
STSG) with contiguous tree sequence as the ba-
sic translation unit. As a result, most of previous 
grammars used in SMT can be interpreted as the 
reduced versions of the STSSG. Under the 
STSSG platform, we compare the expressive 
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abilities of various grammars and translation 
models through linguistically-based synchronous 
parsing and a real translation platform. By syn-
chronous parsing, we aim to study which gram-
mar can well explain translation data (i.e. transla-
tional equivalence alignment) while by the real 
translation platform, we expect to investigate 
which model can achieve better translation per-
formance. In addition, we also measure the im-
pact of various factors in this study, including the 
genera of corpora (newspaper domain via spoken 
domain), the accuracy of word alignments and 
syntax parsing (automatically vs. manually).  

We report our experimental settings, experi-
mental results and our findings in detail in the 
rest of the paper, which is organized as follows: 
Section 2 reviews previous work. Section 3 
elaborates the general framework while Section 4 
reports the experimental results. Finally, we con-
clude our work in Section 5. 

2 Previous Work 

There are only a few of previous work related to 
the study of translation grammar comparison. 

Fox (2002) is the first to look at how well pro-
posed translation models fit actual translation 
data empirically. She examined the issue of 
phrasal cohesion between English and French 
and discovered that while there is less cohesion 
than one might desire, there is still a large 
amount of regularity in the constructions where 
breakdowns occur. This suggests that reordering 
words by phrasal movement is a reasonable strat-
egy (Fox, 2002). She has also examined the dif-
ferences in cohesion between Treebank-style 
parse trees, trees with flattened verb phrases, and 
dependency structures. Their experimental re-
sults indicate that the highest degree of cohesion 
is present in dependency structures. 

Motivated by the same problem raised by Fox 
(2002), Galley et al. (2004) study what rule can 
better explain human translation data. They first 
propose a theory that gives formal semantics to 
word-level alignments defined over parallel cor-
pora, and then use the theory to introduce a linear 
algorithm that is used to derive from word-
aligned, parallel corpora the minimal set of syn-
tactically motivated transformation rules to ex-
plain human translation data. Their basic idea is 
to create transformation rules that condition on 
larger fragments of tree structure. Their experi-
mental results suggest that their proposed rules 
provide a good, realistic indicator of the com-
plexities inherent in translation than SCFG. 

Wellington et al. (2006) describes their study 
of the patterns of translational equivalence exhib-
ited by a variety of bilingual/monolingual bitexts. 
They empirically measure the lower bounds on 
alignment failure rates with and without gaps 
under the constraints of word alignment alone or 
with one or both side parse trees. Their study 
finds surprisingly many examples of translational 
equivalence that could not be analyzed using bi-
nary-branching structures without discontinuities. 
Thus, they claim that the complexity of these 
patterns in every bitext is higher than suggested 
in the literature. In addition, they suggest that the 
low coverage rates without gaps under the con-
straints of independently generated monolingual 
parse trees might be the main reason why “syn-
tactic” constraints have not yet increased the ac-
curacy of SMT systems. However, they find that 
simply allowing a single gap in bilingual phrases 
or other types of constituent can improve cover-
age dramatically. 

DeNeefe et al. (2007) compares the strengths 
and weaknesses of a syntax-based MT model 
with a phrase-based MT model from the view-
points of translational equivalence extraction 
methods and coverage. They find that there are 
surprising differences in phrasal coverage – nei-
ther is merely a superset of the other. They also 
investigate the reason why some phrase pairs are 
not learned by the syntax-based model. They fur-
ther propose several solutions and evaluate on 
the syntax-based extraction techniques in light of 
phrase pairs captured and translation accuracy. 
Finally, significant performance improvement is 
reported using their solutions. 

Different from previous work discussed above, 
this paper mainly focuses on the expressive abil-
ity comparison studies among different gram-
mars and models through synchronous parsing 
and a real SMT platform. Fox (2002), Galley et 
al (2004) and Wellington et al. (2006) examine 
TEM only. DeNeefe et al. (2007) only compares 
the strengths and weaknesses of a syntax-based 
MT model with a phrase-based MT model. 

3 The General Platform: the STSSG 

In this section, we first define the STSSG plat-
form in Subsection 3.1, and then explain why it 
is a general framework that can cover most of 
previous syntax-based translation grammars and 
models in Subsection 3.2. In Subsection 3.3 and 
3.4, we discuss the STSSG-based SMT and syn-
chronous parsing, which are used to compare 
different grammars and translation models. 
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Figure 1.  A word-aligned parse tree pairs of a Chi-
nese sentence and its English translation 

 

 
 

Figure 2. Two examples of translation rules 

3.1 Definition of the STSSG 

The STSSG is an extension of the STSG by us-
ing tree sequences (rather than elementary trees) 
as the basic translation unit. A STSSG is a septet 

, , , , ,,t t ts s sG N N S S PΣ Σ=< > , where: 
 sΣ  and tΣ  are source and target terminal 
alphabets (POSs or lexical words), respec-
tively, and 

 sN  and tN are source and target non-
terminal alphabets (linguistic phrase tag, i.e. 
NP/VP…), respectively, and 

 s sS N∈  and t tS N∈  are the source and tar-
get start symbols (roots of source and target 
parse trees), and 

 P is a production rule set. 
A grammar rule ir  in the STSSG is an aligned 

tree sequence pair, < sξ , tξ , A  >, where sξ and 
tξ  are tree sequences of source side and target 

sides, respectively, and A is the alignments be-
tween leaf nodes of two tree sequences. Here, the 
key concept of “tree sequence” refers to an or-
dered subtree sequence covering a consecutive 
tree fragment in a complete parse tree. The leaf 
nodes of a subtree in a tree sequence can be ei-
ther non-terminal symbols or terminal symbols. 
Fig. 2 shows two STSSG rules extracted from 
the aligned tree pair shown in Fig. 1, where 1r is 
also a STSG rule.  

In the STSSG, a translational equivalence is 
modeled as a tree sequence pair while MT is 
viewed as a tree sequence substitution process. 
From the definition of “tree sequence”, we can 
see that a subtree in a tree sequence is a so-called 
elementary tree used in TSG. This suggests that 
SCFG and STSG are only a subset of STSSG 
and SCFG is a subset of STSG. The next subsec-
tion discusses how to configure the STSSG to 
implement the other two simplified grammars. 
This is the reason why we call the STSSG a gen-
eral framework for synchronous grammar-based 
translation modeling. 

It is worth noting that, from rule rewriting 
viewpoint, STSSG can be thought of as a re-
stricted version of synchronous multi-component 
TAGs (Schuler et al., 2000) although TAG is 
more powerful than TSG due to the additional 
operation “adjunctions”. The synchronous multi-
component TAG can also rewrite several non-
terminals in one step of derivation. The differ-
ence between them is that the rewriting sites (i.e. 
the substitution nodes) must be contiguous in 
STSSG. In addition, STSSG is also related to 

tree automata (Comon et al., 2007). However, the 
discussion on the theoretical relation and com-
parison between them is out of the scope of the 
paper. In this paper, we focus on the comparison 
study of SMT grammars using the STSSG plat-
form. 

3.2 Rule Extraction and Grammar Con-
figuration 

All the STSSG mapping rules are extracted from 
bi-parsed trees. Our rule extraction algorithm is 
an extension of that presented at (Chiang, 2005; 
Liu et al., 2006; Zhang et al., 2007). We modify 
their tree-to-tree/string rule extraction algorithms 
to extract tree-sequence-to-tree-sequence rules. 
Our rules2 are extracted in two steps: 
                                                 
2  We classify the rules into two categories: initial 
rules, whose leaf nodes must be terminals, and ab-
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1) Extracting initial rules from bi-parsed trees. 
This is rather straightforward. We first generate 
all fully lexicalized source and target tree se-
quences (whose leaf nodes must be lexical words) 
using a DP algorithm and then iterate over all 
generated source and target sequence pairs. If 
their word alignments are all within the scope of 
the current tree sequence pair, then the current 
tree sequence pair is an initial rule. 

2) Extracting abstract rules from the extracted 
initial rules. The idea behind is that we generate 
an abstract rule from a “big” initial rule by re-
moving one or more “small” initial rules from 
the “big” one, where the “small” ones must be a 
sub-graph of the “big” one. Please refer to 
(Chiang, 2005; Liu et al., 2006; Zhang et al., 
2007) for the implementation details. 

As indicated before (Chiang, 2005; Zhang et 
al., 2007), the above scheme generates a very 
large number of rules, which not only makes the 
system too complicated but also introduces too 
many undesirable ambiguities. To control the 
overall model complexity, we introduce the fol-
lowing parameters: 

1) The maximal numbers of trees in the source 
and target tree sequences: sα and tα . 

2) The maximal tree heights in the source and 
target tree sequences: sβ and tβ . 

3) The maximal numbers of non-terminal leaf 
nodes in the source and target tree sequences: 

sγ and tγ . 
Now let us see how to implement other mod-

els in relation to STSSG based the STSSG 
through configuring the above parameters. 

1) STSG-based tree-to-tree model (Zhang et 
al., 2007; Bod, 2007) when sα = tα =1. 

2) SCFG-based tree-to-tree model when sα = 

tα =1 and sβ = tβ =2. 
3) Phrase-based translation model only (no re-

ordering model) when sγ = tγ =0 and sβ = tβ =1. 
4) TSG-CFG-based tree-to-string model (Liu 

et al., 2006) when sα = tα =1, tβ =2 and ignore 
phrase tags in target side.  

5) CFG-TSG-based string-to-tree model (Gal-
ley et al., 2006) when sα = tα =1and sβ =2. 

6) TSSG-CFG-based tree-sequence-to-string 
model (Liu et al., 2007) when tβ =2 and ignore 
phrase tags in target side. 
                                                                          
stract rule that having at least one non-terminal leaf 
node. 

From the above definitions, we can see that all 
of previous related models/grammars can be can 
be interpreted as the reduced versions of the 
STSSG. This is the reason why we use the 
STSSG as a general platform for our model and 
grammar comparison studies. 

3.3 Model Training and Decoder for SMT 

We use the tree sequence mapping rules to model 
the translation process. Given the source parse 
tree 1( )JT f , there are multiple derivations3 that 

could lead to the same target tree 1( )IT e , the 

mapping probability 1 1( ( ) | ( ))I JrP T e T f is ob-
tained by summing over the probabilities of all 
derivations. The probability of each derivationθ  
is given by the product of the probabilities of all 
the rules ( )ip r  used in the derivation (here we 
assume that a rule is applied independently in a 
derivation). 

1 1 1 1( | ) ( ( ) | ( ))

                  = ( )
i

I J I J

i
r

r rP e f P T e T f

p r
θ θ∈

=

∑∏           (1) 

The model is implemented under log-linear 
framework. We use seven basic features that are 
analogous to the commonly used features in 
phrase-based systems (Koehn, 2004): 1) bidirec-
tional rule mapping probabilities; 2) bidirectional 
lexical translation probabilities; 3) the target lan-
guage model; 4) the number of rules used and 5) 
the number of target words. Besides, we define 
two new features: 1) the number of lexical words 
in a rule to control the model’s preference for 
lexicalized rules over un-lexicalized rules and 2) 
the average tree height in a rule to balance the 
usage of hierarchical rules and more flat rules. 
The overall training process is similar to the 
process in the phrase-based system (koehn et al., 
2007): word alignment, rule extraction, feature 
extraction and probability calculation and feature 
weight tuning. 

Given 1( )JT f , the decoder is to find the best 

derivation θ  that generates < 1( )JT f , 1( )IT e >.  

1

1

1 1

,

ˆ arg max ( ( ) | ( ))

  arg max ( )

I

I
i

I J

e

i
e r

re P T e T f

p r
θ θ∈

=

≈ ∏
             (2) 

By default, same as other SMT decoder, here 
we use Viterbi derivation in Eq (2) instead of the 
                                                 
3 A derivation is a sequence of tree sequence rules that 
maps a source parse tree to its target one. 
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summing probabilities in Eq (3). This is to make 
the decoder speed not too slow. The decoder is a 
standard span-based chart parser together with a 
function for mapping the source derivations to 
the target ones. To speed up the decoder, we util-
ize several thresholds to limit the search beams 
for each span, such as the number of rules used 
and the number of hypotheses generated. 

3.4 Synchronous Parsing   

A synchronous parser is an algorithm that can 
infer the syntactic structure of each component 
text in a multitext and simultaneously infer the 
correspondence relation between these structures. 
When a parser’s input can have fewer dimen-
sions than the parser’s grammar, we call it a 
translator. When a parser’s grammar can have 
fewer dimensions than the parser’s input, we call 
it a synchronizer (Melamed, 2004). Therefore, 
synchronous parsing and MT are closed to each 
other. In this paper, we use synchronous parsing 
to compare the ability of different grammars in 
translational equivalence modeling.  

Given a bilingual sentence pair 1
Jf and 1

Ie , the 
synchronous parser is to find a derivation θ  that 
generates < 1( )JT f , 1( )IT e >. Our synchronous 
parser is similar to the synchronous CKY parser 
presented at (Melamed, 2004). The difference is 
that we implement it based on our STSSG de-
coder. Therefore, in nature the parser is a stan-
dard synchronous chart parser but constrained by 
the rules of the STSSG grammar. In our imple-
mentation, we simply use our decoder to simu-
late the bilingual parser: 1) for each sentence pair, 
we extract one model; 2) we use the model and 
the decoder to translate the source sentence of 
the given sentence pair; 3) if the target sentence 
is successfully generated by the decoder, then we 
say the symphonious parsing is successful. 
Please note that the synchronous parsing is con-
sidered as successful once the last words in the 
source and target sentences are covered by the 
decoder even if there is no a complete target 
parse tree generated (it may be a tree sequence). 
This is because our study only concerns whether 
all translational equivalences are linked together 
by the synchronous parser correctly. 

4 Experiments 

4.1 Experimental Settings 

Synchronous parsing settings: Our experiments 
of synchronous parsing are carried on three Chi-

nese-to-English bilingual corpora: the FBIS cor-
pus, the IWSLT 2007 training set and the HIT 
Corpus. The FBIS data is a collection of trans-
lated newswire documents published by major 
news agencies from three representative loca-
tions: Beijing, Taipei and Hongkong. The 
IWSLT data is a multilingual speech corpus on 
travel domain while the HIT corpus consists of 
example sentences of a Chinese-English diction-
ary. The first two corpora are sentence-aligned 
while the HIT corpus is a manually bi-parsed 
corpus with manually annotated word alignments. 
We use the three corpora to study whether the 
models’ expressive abilities are domain depend-
ent and how the performance of word alignment 
and parsing affect the ability of translation mod-
els. We selected 2000 sentence pairs from each 
individual corpus for the comparison study of 
translational equivalence modeling. Table 1 
gives descriptive statistics of the tree data set. 

 

 Chinese English 
FBIS 48,331 59,788 

IWSLT  17,667 18,427 
HIT 18,215 20,266 

 
Table 1. # of words of experimental data 
for synchronous parsing (there are 2k sen-
tence pairs in each individual corpus) 
 

In the synchronous parsing experiments, we 
compared three synchronous grammars: SCFG, 
STSG and STSSG using the STSSG platform. 
We use the same settings except the following 
parameters (please refer to Subsection 3.2 for 
their definitions): sα = tα =1, sβ = tβ =2 for 
SCFG ; sα = tα =1 and sβ = tβ =6 for STSG; 

sα = tα = 4 and sβ = tβ =6 for STSSG. We iter-
ate over each sentence pair in the three corpora 
with the following process: 

1) to used Stanford parser (Klein and Manning, 
2003) to parse bilingual sentences separately,  
this means that our study is based on the Penn 
Treebank style grammar.  

2) to extract SCFG, STSG and STSSG rules 
form each sentence pair, respectively; 

3) to do synchronous parsing using the exacted 
rules.  

Finally, we can calculate the successful rate of 
the synchronous parsing on each corpus. 

SMT evaluation settings: For the SMT ex-
periments, we trained the translation model on 
the FBIS corpus (7.2M (Chinese)+9.2M(English) 
words) and trained a 4-gram language model on 

1101



the Xinhua portion of the English Gigaword cor-
pus (181M words) using the SRILM Toolkits 
(Stolcke, 2002) with modified Kneser-Ney 
smoothing (Chen and Goodman, 1998). We used 
these sentences with less than 50 characters from 
the NIST MT-2002 test set as our development 
set and the NIST MT-2005 test set as our test set. 
We used the Stanford parser (Klein and Manning, 
2003) to parse bilingual sentences on the training 
set and Chinese sentences on the development 
and test sets. The evaluation metric is case-
sensitive BLEU-4 (Papineni et al., 2002). We 
used GIZA++ and the heuristics “grow-diag-
final” to generate m-to-n word alignments. For 
the MER training, we modified Koehn’s MER 
trainer (Koehn, 2004) for our STSSG-based sys-
tem. For significance test, we used Zhang et al’s 
implementation (Zhang et al, 2004). We com-
pared four SMT systems: Moses (Koehn et al., 
2007), SCFG-based, STSG-based and STSSG-
based tree-to-tree translation models. For Moses, 
we used its default settings. For the others, we 
implemented them on the STSSG platform by 
adopting the same settings as used in the syn-
chronous parsing. We optimized the decoding 
parameters on the development sets empirically. 

4.2 Experimental Results  
 

 SCFG STSG STSSG 
FBIS 7 (0.35%) 143 (7.15%) 388 (19.4%) 
IWSLT 171 (8.6%) 1179 (58.9%) 1708 (85.4%)

HIT 65 (3.23%) 1133 (56.6%) 1532 (76.6%)
 

Table 2. Successful rates (numbers inside 
bracket) of synchronous parsing over 2,000 
sentence pairs, where the integers outside 
bracket are the numbers of successfully-
parsed sentence pairs 

 
Table 2 reports the experimental results of syn-
chronous parsing. It shows that: 

1) As an extension of STSG/SCFG, STSSG 
outperforms STSG and SCFG consistently in the 
three data sets. The significant difference sug-
gests that the STSSG is much more effective in 
modeling translational equivalences and structure 
divergences. The reason is simply because the 
STSSG uses tree sequences as the basic transla-
tion unit so that it can model non-syntactic 
phrase equivalence with structure information 
and handle structure reordering in a large span.  

2) STSG shows much better performance than 
SCFG. It is mainly due to that STSG allow mul-
tiple level tree nodes operation and reordering in 

a larger span than SCFG. It reconfirms that only 
allowing sibling nodes reordering as done in 
SCFG may be inadequate for translational equiva-
lence modeling (Galley et al., 2004)4.  

3) All the three models on the FBIS corpus 
show much lower performance than that on the 
other two corpora. The main reason, as shown in 
Table 1, is that the sentences in the FBIS corpus 
are much longer than that in the other corpus, so 
their syntactic structures are significantly more 
complicated than the other two. In addition, al-
though tree sequences are utilized, STSSG show 
much lower performance in the FBIS corpus. 
This implies that the complexity of structure di-
vergence between two languages is higher than 
suggested in literature (Fox, 2002; Galley et al., 
2004). Therefore, structure divergence is still a 
big challenge to translational equivalence model-
ing when using syntactic structure mapping. 

4) The HIT corpus does not show better per-
formance than the IWSLT corpus although the 
HIT corpus is manually annotated with parse 
trees and word alignments. In order to study 
whether high performance word alignment and 
parsing results can help synchronous parsing, we 
do several cross validations and report the ex-
perimental results in Table 3. 

 

 Gold Word 
Alignment 

Automatic 
Word Align-
ment 

 Gold Parse 3.2/56.6/76.6 2.9/57.7/80.9
 Automatic  
Parse 3.2/55.6/76.0 2.9/54.2/78.8

 

Table 3. Successful rates (SCFG/STSG/ 
STSSG)(%) with regards to different word 
alignments and parse trees  on the HIT corpus 
 
Table 3 compares the performance of syn-

chronous parsing on the HIT corpus when using 
gold and automatic parser and word alignment. It 
is surprised that gold word alignments and parse 
trees do not help and even decrease the perform-
ance slightly. Our analysis further finds that 
                                                 
4 This claim is mainly hold for linguistically-informed 
SCFG since formal SCFG and BTG already showed 
much better performance in the formally syntax-based 
translation framework (Chiang, 2005). This is because 
the formal syntax is learned from phrase translational 
equivalences directly without relying on any linguistic 
theory (Chiang, 2005). Thus, it may not suffer from 
the issues of non-isomorphic structure alignment and 
non-syntactic phrase usage heavily (Wellington et al., 
2006). 
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more than 90% sentence pairs out of all the sen-
tence pairs that can be successfully bi-parsed are 
in common in the four experiments. This sug-
gests that the STSSG/STSG (SCFG achieves too 
much lower performance) and our rule extraction 
algorithm are robust in dealing with the errors 
introduced by the word alignment and parsing 
programs. If a parser, for example, makes a sys-
tematic error, we expect to learn a rule that can 
nevertheless be systematically used to model cor-
rect translational equivalence. Our error analysis 
on the three corpora shows that most of the fail-
ures of synchronous parsing are due to the struc-
ture divergence (i.e. the nature of non-
isomorphic structure mapping) and the long dis-
tance dependence in the syntactic structures.  

 
 SCFG Moses STSG STSSG
BLEU(%) 22.72 23.86 24.71 26.07 

 
     Table 3. Performance comparison of dif-

ferent grammars on FBIS corpus 
 
Table 3 compares different grammars in terms 

of translation performance. It shows that: 
1) The same as synchronous parsing, the 

STSSG-based model statistically significantly 
outperforms (p < 0.01) previous phrase-based and 
linguistically syntax-based methods. This empiri-
cally verifies the effect of the tree-sequence-based 
grammar for statistical machine translation.  

2) Both STSSG and STSG outperform Moses 
significantly and STSSG clearly outperforms 
STSG, which suggest that: 

 The linguistically motivated structure fea-
tures are still useful for SMT, which can be cap-
tured by the two syntax-based grammars through 
tree node operations. 

 STSSG is much more effective in utiliz-
ing linguistic structures than STSG since it uses 
tree sequence as the basic translation unit. This 
enables STSSG not only to handle structure reor-
derings by tree node operations in a larger span, 
but also to capture non-syntactic phrases with syn-
tactic information, and hence giving the grammar 
more expressive power. 

3) The linguistic-based SCFG shows much 
lower performance. This is largely because SCFG 
only allows sibling nodes reordering and fails to 
utilize both non-syntactic phrases and those syn-
tactic phrases that cannot be covered by a single 
CFG rule. It thereby suggests that SCFG is less 
effective in modelling parse tree structure trans-
fer.  

The above two experimental results show that 
STSSG achieves significant improvements over 
the other two grammars in terms of synchronous 
parsing’s successful rate and translation Bleu 
score. 

5 Conclusions 

Grammar is the fundamental infrastructure in 
translational equivalence modeling and statistical 
machine translation since grammar formalizes 
what kind of rule to be learned from a parallel 
text. In this paper, we first present a general plat-
form STSSG and demonstrate that a number of 
synchronous grammars and SMT models can be 
easily implemented based on the platform. We 
then compare the expressive abilities of different 
grammars on the platform using synchronous 
parsing and statistical machine translation. Our 
experimental results show that STSSG can better 
explain the data in parallel corpora than the other 
two synchronous grammars. We further finds 
that, although syntactic structure features are 
helpful in modeling translational equivalence, the 
complexity of structure divergence is much 
higher than suggested in literature, which im-
poses a big challenge to syntactic transformation-
based SMT. This may explain why traditional 
syntactic constraints in SMT do not yield much 
performance improvement over robust phrase-
substitution models. 

The fundamental assumption underlying much 
recent work on syntax-based modeling, which is 
considered to be one of next technology break-
throughs in SMT, is that translational equiva-
lence can be well modeled by structural trans-
formation. However, as discussed in prior arts 
(Galley et al., 2004) and this paper, linguisti-
cally-informed SCFG is an inadequate model for 
parallel corpora due to its nature that only allow-
ing child-node reorderings. Although STSG 
shows much better performance than SCFG, its 
two major limitations are that it only allows 
structure distortion operated on a single sub-tree 
and cannot model non-syntactic phrases. STSSG 
extends STSG by using tree sequence as the ba-
sic translation unit. This gives the grammar much 
more expressive power.  

There are many open issues in the syntactic 
transformation-based SMT due to the divergence 
nature between bilingual structure mappings. We 
find that structural divergences are more serious 
than suggested in the literature (Fox, 2002; Gal-
lery et al., 2004) or what we expected when sen-
tences are longer. We will continue to investigate 
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whether and how parallel corpora can be well 
modeled by syntactic structure mappings.   
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