
Proceedings of the 22nd International Conference on Computational Linguistics (Coling 2008), pages 1017–1024
Manchester, August 2008

Bayesian Semi-Supervised Chinese Word Segmentation
for Statistical Machine Translation

Jia Xu†, Jianfeng Gao∗, Kristina Toutanova∗, Hermann Ney†

Computer Science 6† Microsoft Corporation∗
RWTH Aachen University One Microsoft Way
D-52056 Aachen, Germany Redmond, WA 98052, USA
{xujia,ney}@cs.rwth-aachen.de {jfgao,kristout}@microsoft.com

Abstract

Words in Chinese text are not naturally
separated by delimiters, which poses a
challenge to standard machine translation
(MT) systems. In MT, the widely used
approach is to apply a Chinese word seg-
menter trained from manually annotated
data, using a fixed lexicon. Such word
segmentation is not necessarily optimal
for translation. We propose a Bayesian
semi-supervised Chinese word segmenta-
tion model which uses both monolingual
and bilingual information to derive a seg-
mentation suitable for MT. Experiments
show that our method improves a state-of-
the-art MT system in a small and a large
data environment.

1 Introduction
Chinese sentences are written in the form of a se-
quence of Chinese characters, and words are not
separated by white spaces. This is different from
most European languages and poses difficulty in
many natural language processing tasks, such as
machine translation.

It is difficult to define “correct” Chinese word
segmentation (CWS) and various definitions have
been proposed. In this work, we explore the idea
that the best segmentation depends on the task, and
concentrate on developing a CWS method for MT,
which leads to better translation performance.

The common solution in Chinese-to-English
translation has been to segment the Chinese text
using an off-the-shelf CWS method, and to apply
a standard translation model given the fixed seg-
mentation. The most widely applied method for
MT is unigram segmentation, such as segmenta-
tion using the LDC (LDC, 2003) tool, which re-
quires a manual lexicon containing a list of Chi-
nese words and their frequencies. The lexicon and
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frequencies are obtained using manually annotated
data. This method is sub-optimal for MT. For ex-
ample, �(paper) and ](card) can be two words
or composed into one word�](cards). Since�
]does not exist in the manual lexicon, it cannot
be generated by this method.

In addition to unigram segmentation, other
methods have been proposed. For example, (Gao
et al., 2005) described an adaptive CWS system,
and (Andrew, 2006) employed a conditional ran-
dom field model for sequence segmentation. How-
ever, these methods are not specifically devel-
oped for the MT application, and significant im-
provements in translation performance need to be
shown.

In (Xu et al., 2004) and (Xu et al., 2005),
word segmentations are integrated into MT sys-
tems during model training and translation. We re-
fine the method in training using a Bayesian semi-
supervised CWS approach motivated by (Goldwa-
ter et al., 2006). We describe a generative model
which consists of a word model and two alignment
models, representing the monolingual and bilin-
gual information, respectively. In our methods, we
first segment Chinese text using a unigram seg-
menter, and then learn new word types and word
distributions, which are suitable for MT.

Our experiments on both large (NIST) and small
(IWSLT) data tracks of Chinese-to-English trans-
lation show that our method improves the per-
formance of a state-of-the-art machine translation
system.

2 Review of the Baseline System
2.1 Word segmentation
In statistical machine translation, we are given a
Chinese sentence in characters cK1 = c1 . . . cK
which is to be translated into an English sentence
eI1 = e1 . . . eI . In order to obtain a more adequate
mapping between Chinese and English words, cK1
is usually segmented into words fJ1 = f1 . . . fJ in
preprocessing.

In our baseline system, we apply the commonly
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used unigram model to generate the segmenta-
tion. Given a manually compiled lexicon contain-
ing words and their relative frequencies Ps(f ′j),
the best segmentation fJ1 is the one that maximizes
the joint probability of all words in the sentence,
with the assumption that words are independent of
each other1:

fJ1 = argmax
f ′J′

1

Pr(f ′J
′

1 |cK1 )

≈ argmax
f ′J′

1

J ′∏
j=1

Ps(f ′j),

where the maximization is taken over Chinese
word sequences whose character sequence is cK1 .

2.2 Translation system
Once we have segmented the Chinese sentences
into words, we train standard alignment models
in both directions with GIZA++ (Och and Ney,
2002) using models of IBM-1 (Brown et al., 1993),
HMM (Vogel et al., 1996) and IBM-4 (Brown et
al., 1993).

Our MT system uses a phrase-based decoder
and the log-linear model described in (Zens and
Ney, 2004). Features in the log-linear model in-
clude translation models in two directions, a lan-
guage model, a distortion model and a sentence
length penalty. The feature weights are tuned on
the development set using a downhill simplex al-
gorithm (Press et al., 2002). The language model
is a statistical ngram model estimated using modi-
fied Kneser-Ney smoothing.

3 Unigram Dirichlet Process Model for
CWS

The simplest version of our model is based on a
unigram Dirichlet Process (DP) model, using only
monolingual information. Different from a stan-
dard unigram model for CWS, our model can in-
troduce new Chinese word types and learn word
distributions automatically from unlabeled data.

According to this model, a corpus of Chinese
words f1, . . . fm, . . . , fM is generated via:

G|α, P0 ∼ DP (α, P0)

fm|G ∼ G
where G is a distribution over words drawn from a
Dirichlet Process prior with base measure P0 and
concentration parameter α.

We never explicitly estimate G but instead
integrate over its possible values and perform
Bayesian inference. It is easy to compute the

1The notational convention will be as follows: we use the
symbol Pr(·) to denote general probability distributions with
(nearly) no specific assumptions. In contrast, for model-based
probability distributions, we use the generic symbol P (·).

probability of a Chinese word given a set of al-
ready generated words, while integrating over G.
This is done by casting Chinese word generation
as a Chinese restaurant process (CRP) (Aldous,
1985), i.e. a restaurant with an infinite num-
ber of tables (approximately corresponding to Chi-
nese word types), each table with infinite number
of seats (approximately corresponding to Chinese
word frequencies).

The Dirichlet Process model can be viewed in-
tuitively as a cache model (Goldwater et al., 2006).
Each word fj in the corpus is either retrieved from
a cache or generated anew given the previously ob-
served words f−j :

P (fj |f−j) =
N(fj)+αP0(fj)

N + α
, (1)

whereN(fj) is the number of Chinese words fj in
the previous context. N is the total number of Chi-
nese words, P0 is the base probability over words,
and α influences the probability of introducing a
new word at each step and controls the size of the
lexicon. The probability of generating a word from
the cache increases as more instances of that word
are seen.

For the base distribution P0, which governs the
generation of new words, we use the following dis-
tribution (called the spelling model):

P0(f) = P (L)P0(f |L)

=
λL

L!
e−λuL (2)

where 1
u is the number of characters in the docu-

ment, i.e. character vocabulary size, and L is the
number of Chinese characters of word f . We note
that this is a Poisson distribution on word length
and a unigram distribution on characters given the
length. We used λ = 2 and α = 0.3 in our experi-
ments.

4 CWS Model for MT

As a solution to the problems with the conventional
approach to CWS mentioned in Section 1, we pro-
pose a generative model for CWS in Section 4.1,
and then extend the model to a more general but
deficient model, similar to a maximum entropy
model in which most features are derived from the
submodels of the generative model.

4.1 Generative Model
The generative model assume that a corpus of par-
allel sentences (c1K ,e1I ) is generated along with a
hidden sequence of Chinese words f1

J and a hid-
den word alignment b1I for every sentence. The
alignment indicates the aligned Chinese word fbi
for each English word ei, where f0 indicates a spe-
cial null word as in the IBM models.
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Without assuming any special form for the prob-
ability of a sentence pair along with hidden vari-
ables, we can factor it into a monolingual Chi-
nese sentence probability and a bilingual transla-
tion probability as follows:

Pr(c1K , e1I , f1
J , b1

I)

=Pr(cK1 , f
J
1 )Pr(eI1, b

I
1|fJ1 )

=Pr(fJ1 )δ(f1
J , c1

K)Pr(eI1, b
I
1|fJ1 ),

where δ(fJ1 , c
K
1 ) is 1 if the characters of the se-

quence of words f1
J are c1

K , and to 0 other-
wise. We can drop the conditioning on c1

K in
Pr(eI1, b

I
1|fJ1 ), because the characters are deter-

ministic given the words.
The joint probability of the observations

(c1K , eI1) can be obtained by summing over all
possible values of the hidden variables fJ1 and bI1.

In Sections 4.1.1 and 4.1.2, we will describe
the modeling assumptions behind the monolingual
Chinese sentence model and the translation model,
respectively.

4.1.1 Monolingual Chinese sentence model
We use the Dirichlet Process unigram word

model introduced in section 3. In this model, the
parameters of a distribution over words G are first
drawn from the Dirichlet prior DP (α, P0). Words
are then independently generated according to G.
The probability of a sequence of Chinese words in
a sentence is thus:

Pr(fJ1 ) ≈
J∏
j=1

P (fj |G) (3)

4.1.2 Translation model
We employ the Dirichlet Process inverse IBM

model 1 to generate English words and alignment
given the Chinese words. In this model, for every
Chinese word f (including the null word), a distri-
bution over English words Gf is first drawn from
a Dirichlet Process prior DP (α, P0(e)), where
P0(e) we used the empirical distribution over En-
glish words in the parallel data. Then, given these
parameters, the probability of an English sentence
and alignment given a Chinese sentence (sequence
of words) is given by:

P (eI1, b
I
1|fJ1 , Gf ) =

I∏
i=1

1
J + 1

P (ei|Gfbi
)

This is the same model form as inverse IBM
model 1, except we have placed Dirichlet Process
priors on the Chinese-word specific distributions
over English words. 2

2fbi is the Chinese word aligned to ei and Gfbi
is the

distribution over English words conditioned on the word fbi .
Similarly, eaj is the English word aligned to fj in the other di-
rection and Geaj

is the distribution over Chinese words con-
ditioned on eaj .

In practice, we observed that using a word-
alignment model in one direction is not sufficient.
We then added a factor to our model which in-
cludes word alignment in the other direction , i.e. a
Dirichlet Process IBM model 1. We ignore the de-
tailed description here, because the calculation is
the same as that of the inverse IBM model 1. Ac-
cording to this model, for every English word e (in-
cluding the null word), a distribution over Chinese
words Ge is first drawn from a Dirichlet Process
prior DP (α, P0(f)). Here, for the base distribu-
tion P0(f) we used the same spelling model as for
the monolingual unigram Dirichlet Process prior.
The probability of a sequence of Chinese words
fJ1 and a word alignment aJ1 given a sequence of
English words eI1 is then:

P (fJ1 , a
J
1 |eI1, Ge) =

J∏
j=1

1
I + 1

P (fj |Geaj
)

4.2 Final Model
We put the monolingual model and the transla-
tion models in both directions together into a sin-
gle model, where each of the component models
is weighted by a scaling factor. This is similar to
a maximum entropy model. We fit the weights of
the sub-models on a development set by maximiz-
ing the BLEU score of the final translation.

P (cK1 , e
I
1, f

J
1 , a

J
1 , b

I
1) (4)

≈ 1
Z
P (fJ1 )

λ1 · P (eI1, b
I
1|fJ1 )

λ2

·P (fJ1 , a
J
1 |eI1)

λ3
,

where Z is the normalization factor.
In practice we do not re-normalize the proba-

bilities and our model is thus deficient because it
does not sum to 1 over valid observations. How-
ever, we found the model work very good in our
experiments. Similar deficient models have been
used very successfully before, for example, in the
IBM models 3–6 and in the unsupervised grammar
induction model of (Klein and Manning, 2002).

5 Gibbs Sampling Training

It is generally impossible to find the most likely
segmentation according to our Bayesian model us-
ing exact inference, because the hidden variables
do not allow exact computation of the integrals.
Nonetheless, it is possible to define algorithms us-
ing Markov chain Monte Carlo (MCMC) that pro-
duce a stream of samples from the posterior dis-
tribution of the hidden variables given the obser-
vations. We applied the Gibbs sampler (Geman
and Geman, 1984) — one of the simplest MCMC
methods, in which transitions between states of the
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Figure 1: Case I, transition from a no-boundary to
a boundary state, f to f ′f ′′.

Figure 2: Case II, transition from a boundary to a
no-boundary state, f ′f ′′ to f .

Markov chain result from sampling each compo-
nent of the state conditioned on the current value
of all other variables.

In our problem, the observations are D =
(d1, ..dn, .., dN ), where dn=(cK1 , e

I
1) indicates a

bilingual sentence pair, the hidden variables are the
word segmentations fJ1 and the alignments in two
directions aJ1 and bI1.

To perform Gibbs sampling, we start with
an initial word segmentation and initial word
alignments, and iteratively re-sample the word-
segmentation and alignments according to our
model of Equation 4.

Note that for efficiency, we only allow limited
modifications to the initial word alignments. Thus
we only use models derived from IBM-1 (instead
of IBM-4) for comparing different word segmenta-
tions. On the other hand, re-sampling the segmen-
tation causes re-linking alignment points to parts
or groups of the original words.

Hence, we organize our sampling process
around possible word boundaries. For each char-
acter ck in each sentence, we consider two alterna-
tive segmentations: ck+ indicates the segmentation
where there is a boundary after ck and ck− indi-
cates the segmentation where there is no boundary
after ck, keeping all other boundaries fixed. Let f
denote the single word spanning character ck when
there is no boundary after it, and f ′,f ′′ denote the
two adjacent words resulting if there is a bound-
ary: f ′ includes ck and f ′′ starts just to the right,
with character ck+1. The introduction of f ′ and
f ′′ leads to M new possible alignments in the E-
to-C direction b+k1, . . . , b

+
kM , such as in Figure 1.

Together with the boundary vs no-boundary state
at each character position, we re-sample a set of
alignment links between English words and any of
the Chinese words f ,f ′, and f ′′, keeping all other
word alignments in the sentence pair fixed. (See
Figures 1 and 2.)

Table 1: General Algorithm of GS for CWS.

Input: D with an initial segmentation and alignments
Output: D with sampled segmentation and alignments
for n = 1 to N̂

for k = 1 to K that ck ∈ dn
Create M+1 candidates, cba+

k,m and cba−k , where
cba+

k,m: there is a word boundary after ck
cba−k : there is no word boundary after ck

Compute probabilities
P (cba+

k,m|dhnk−)
P (cba−k |dhnk−)

Sample boundary and relevant alignments
Update counts

Thus at each step in the Gibbs sampler, we con-
sider a set of alternatives for the boundary after
ck and relevant alignment links, keeping all other
hidden variables fixed. At each step, we need to
compute the probability of each of the alternatives,
given the fixed values of the other hidden variables.

We introduce some notation to make the presen-
tation easier. For every position k in sentence pair
n, we denote by dhnk− the observations and hid-
den variables for all sentences other than sentence
n, and the observations and hidden variables in-
side sentence n, not involving character position
ck. The fixed variables inside the sentence are the
words not neighboring position k, and the align-
ments in both directions to these words.

In the process of sampling, we consider a set
of alternatives: segmentation ck+ along with the
product space of relevant alignments in both direc-
tions b+k1, . . . , b

+
kM , and a+

k , and segmentation c−k
along with relevant alignments bk− and a−k . For
brevity, we denote these alternatives by cbak,m+

and cbak−.
We describe how we derive the set of alterna-

tives in section 5.2 and how we compute their
probabilities in section 5.1.

Table 1 shows schematically one iteration of
Gibbs sampling through the whole training corpus
of parallel sentences, where N̂ is the number of
parallel sentences.

5.1 Computing probabilities of alternatives
For the Gibbs sampling algorithm in Table 1, we
need to compute the probability of each alternative
segmentation/alignments, given the fixed values of
the rest of the data dhnk−. The probability of the
hidden variables in the alternatives is proportional
to the joint probability of the hidden variables and
observations, and thus it is sufficient to compute
the probability of the latter. We compute these
probabilities using the Chinese restaurant process
sampling scheme for the Dirichlet Process, thus in-
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tegrating over all of the possible values of the dis-
tributions G, Gf and Ge.

Let cbak denote an alternative hypothesis in-
cluding boundary or no boundary at position k,
and relevant alignments to English words in both
directions of the one or two Chinese words result-
ing from the segmentation at k. The probability of
this configuration given by our model is:

P (cbak|dhnk−) ∝ Pm(cbak|dhnk−)λ1 (5)

·Pef (cbak|dhnk−)λ2 · Pfe(cbak|dhnk−)λ3 ,

where Pm(cbak|dhnk−) is the monolingual
word probability, and Pfe(cbak|dhnk−) and
Pef (cbak|dhnk−) are the translation probabilities
in the two directions.

We now describe the computations of each of
the component probabilities.

5.1.1 Word model probability
The word model probability Pm(cabk|dhnk−)

in Equation 5 is derived from Equations 3 and 1:
There are two cases, depending on whether the

hypothesis specifies that there is a boundary after
character ck, in which case we need the probabili-
ties of the two resulting words f ′, and f ′′, or there
is no boundary, in which case we need the proba-
bility of the single word f . (See the initial states in
Figures 1 and 2, respectively.)

Let N denote the total number of word tokens
in the rest of the corpus dhnk−, and N(f) denote
the number of instances of word f in dhnk−. The
probabilities in the two cases are

Pm(c+k |dhnk−) ∝
N(f ′) + αP0(f ′)

N + α
· N(f ′′) + αP0(f ′′)

N + α

Pm(c−k |dhnk−) ∝ N(f) + αP0(f)
N + α

Here P0(f) is computed using Equation 2.

5.1.2 Translation model probability
The translation model probabilities depend on

whether or not there is a segmentation boundary
at ck and which English words are aligned to the
relevant Chinese words.

In the first case, assume that there is a word
boundary in cabk, and that English words {e′} are
aligned to f ′ and words {e′′} are aligned to f ′′ in
the E-to-C direction according to the alignment bk,
and that f ′ is aligned to e∗′ and f ′′ is aligned to e∗′′
in the C-to-E direction according to the alignment
ak (see the initial state in Figure 1). Here we over-
loaded notations and use bk and ak to indicate the
alignments of the relevant Chinese words at posi-
tion k to any English words. Let I denote the total

number of English words in the sentence, and J+1
denote the number of Chinese words according to
this segmentation. We also denote the total num-
ber of English words aligned to either f ′ or f ′′ in
the E-to-C direction by P .

The translation model probability in the E-to-C
direction is thus:

Pef (c+k , bk, ak|dhnk−) ∝
1

(J + 2
)P
∏
e′
P (e′|f ′, dhnk−)∏

e′′
P (e′′|f ′′, dhnk−)

Here we compute P (e|f, dhnk−) as:

P (e|f, dhnk−) =
N(e, f) + αP0(e)

N(f) + α
,

where the counts are computed over the fixed as-
signments dhnk−.

The translation probability in the other direction
is similarly computed as:

Pfe(c+k , bk, ak|dhnk−) ∝(
1

I + 1

)2

P (f ′|e∗, dhnk−)P (f ′′|e∗, dhnk−)

And P (f |e, dhnk−) is computed as:

P (f |e, dhnk−) =
N(f, e) + αP0(f)

N(e) + α
,

where the counts are computed over the fixed as-
signments dhnk−.

In the second case, if the hypothesis in evalua-
tion does not have a word boundary at position k,
the total number of Chinese words would be one
less, i.e. J instead of J +1 in the equations above,
and there would be a single set of English words
aligned to the word f in the E-to-C direction, and a
single word e∗ aligned to f in the C-to-E direction
(see the initial state in Figure 2. The probability of
this hypothesis is computed analogously.

5.2 Determining the set of alternative
hypotheses

As mentioned earlier, we consider alternative
alignments which deviate minimally from the cur-
rent alignments, and which satisfy the constraints
of the IBM model 1 in both directions. In order
to describe the set of alternatives, we consider two
cases, depending on whether there is a boundary at
the current character before sampling at position k.

Case 1. There was no boundary at ck in the previ-
ous state (see Figure 1).
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If there is no boundary at ck, there is a sin-
gle word f spanning that position. We denote by
{e} the set of English words aligned to f at that
state in the E-to-C direction and by e∗ the En-
glish word aligned to f in the C-to-E direction.
Since every state we consider satisfies the IBM
one-to-many constraints, there is exactly one En-
glish word aligned to f in the C-to-E direction and
the words {e} have no other words aligned to them
in the E-to-C direction.

In this case, we consider as hypothesis cbak−
the same segmentation and alignment as in the pre-
vious state. (see Table 1 for an overview of the
alternative hypotheses.)

We consider M different hypotheses which in-
clude a boundary at k in this case, where M de-
pends on the number of words {e} aligned to f
in the previous state. Because we are breaking
the word f into two words f ′ and f ′′ by placing
a boundary at ck, we need to re-align the words
{e} to either f ′ or f ′′. Additionally we need to
align f ′ and f ′′ to English words in the C-to-E
direction. The number of different hypotheses is
equal to 2P where P = |{e}|. These alternatives
arise by considering that each of the words in {e}
needs to align to either f ′ or f ′′, and there are 2P
combinations of these alignments. For example, if
{e} = {e1, e2}, after splitting the word f there are
four possible alignments, illustrated in Figure 1:
I. (f ′, e1) and (f ′′, e2), II. (f ′, e2) and (f ′′, e1),
III. (f ′, e1) and (f ′, e2), IV. (f ′′, e1) and (f ′′, e2).
For the alignment ak in the C-to-E direction, we
consider only one option, in which both resulting
words f ′ and f ′′ align to e∗. These alternatives
form cbak,m

+ in Table 1.

Case 2. There was a boundary at ck in the previous
state (see Figure 2).

In this case, for the hypotheses c+k we consider
only one alternative, which is exactly the same as
the assignment of segmentation and alignments in
the previous state. Thus we have M = 1 in Table
1.

Let f ′ and f ′′ denote the two words at position
k in the previous state, {e′} and {e′′} denote the
sets of English words aligned to them in the E-to-C
direction, respectively, and e∗′ and e∗′′ denote the
English words aligned to f ′ and f ′′ in the C-to-E
direction.

We consider only one hypothesis cbak− where
there is no boundary at ck. In this hypothesis, there
is a single word f = f ′f ′′ spanning position k,
and all words {e′} ∪ {e′′} align to f in the E-to-
C direction. For the C-to-E direction we consider
the “better” of the alignments (f, e′∗) and (f, e′′∗)
where the better alignment is defined as the one
having higher probability according to the C-to-E
word translation probabilities.

Table 2: Complete Algorithm of Gibbs Sampler
for CWS including Alignment Models.

Input: D, F0
Output: AT , FT
for t = 1 to T

Run GIZA++ on (D,Ft−1) to obtain At
Run GS on (D,Ft−1, At) to obtain Ft

5.3 Complete segmentation algorithm
So far, we have described how we re-sample word
segmentation and alignments according to our
model, starting from an initial segmentation and
alignments from GIZA++. Putting these pieces to-
gether, the algorithm is summarized in Table 1.

We found that we can further improve perfor-
mance by repeatedly aligning the corpus using
GIZA++, after deriving a new segmentation us-
ing our model. The complete algorithm which in-
cludes this step is shown in Table 2, where Ft in-
dicates the word segmentation at iteration t and At
denotes the GIZA++ corpus alignment in both di-
rections. The GS re-segmentation step is done ac-
cording to the algorithm in Table 1.

Using this algorithm, we obtain a new segmen-
tation of the Chinese data and train the translation
models using this segmentation as in the baseline
MT system. To segment the test data for transla-
tion, we use a unigram model, trained with maxi-
mum likelihood estimation off of the final segmen-
tation of the training corpus FT .

6 Translation Experiments

We performed experiments using our models for
CWS on a large and a small data track. We evalu-
ated performance by measuring WER (word error
rate), PER (position-independent word error rate),
BLEU (Papineni et al., 2002) and TER (translation
error rate) (Snover et al., 2006) using multiple ref-
erences.

6.1 Translation Task: Large Track NIST
We first report the experiments using our mono-
lingual unigram Dirichlet Process model for word
segmentation on the NIST machine translation task
(NIST, 2005). Because of the computational re-
quirements, we only employed the monolingual
word model for this large data track, i.e. the fea-
ture weights were λ1 = 1, λ2 = 0, λ3 = 0. There-
fore, no alignment information needs to be main-
tained in this case.

The bilingual training corpus is a superset of
corpora in the news domain collected from differ-
ent sources.

We took LDC (LDC, 2003) as a baseline CWS
method (Base). As shown in Table 3, the training
corpus in each language contains more than two
million sentences. There are 56 million Chinese
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Table 3: Statistics of corpora in task NIST.
Data Sents. Words[K] Voc.[K]

Cn. En. Cn. En.
Chars 2M 56M 49.5M 65.4 211
Base 39.2M 95.7
GS 40.5M 95.4
02 878 23.1 28.0 2.04 4.34
03 919 24.6 29.2 2.21 4.91
04 1788 49.8 60.7 2.61 6.71
05 1082 30.8 34.2 2.30 5.39

Table 4: Translation performance [% BLEU] with
the baseline(LDC) and GS method on NIST.

MT-eval LDC(Base) GS
2005 32.85 33.26
2002 34.32 34.36
2003 33.41 33.75
2004 33.74 34.06

characters. The LDC and GS word segmentation
methods generated 39.2 and 40.5 million running
words, respectively.

The scaling factors of the translation models de-
scribed in Section 2.2 were optimized on the devel-
opment corpus, MT-eval 05 with 1082 sentences.
The resulting systems were evaluated on the test
corpora MT-eval 02-04. For convenience, we only
list the statistics of the first English reference.

Starting from the baseline LDC output as ini-
tial word segmentation, we performed Gibbs sam-
pling (GS) of word segmentations using 30 itera-
tions over the Chinese training corpus.

Since BLEU is the official NIST measure of
translation performance, we show the translation
results measured in BLEU score only. As shown
in Table 4, on the development data MT-eval 05,
the BLEU score was improved by 0.4% absolute or
more than 1% relative using GS. Similarly, the ab-
solute BLEU scores are also improved on all other
test sets, in the range of 0.04% to 0.4%.

We can see that even a monolingual semi-
supervised word segmentation method can outper-
form a supervised one in MT, probably because the
training/test corpora contain many unknown words
and words have different frequencies in our MT
data from they do in the manually labeled CWS
data.

6.2 Translation Task: Small Track IWSLT
We evaluate our full model, using both monolin-
gual and bilingual information, on the IWSLT data.

As shown in Table 5, the Chinese training
corpus was segmented using the unigram seg-
menter (Base) described in Section 2.1 and our GS
method. Since the unigram segmenter performs
better in our experiments, we took it as the base-
line and the method for initialization in later ex-
periments. We see that the vocabulary size of the
Chinese training corpus was reduced more signif-
icantly by GS than by the baseline method, even

Table 5: Statistics of corpora in task IWSLT.
Test Sents. Words[K] Voc.

Cn. En. Cn. En.
Chars 42.9K 520 420 2780 9930
Base 394 8800
GS 398 6230
Dev2 500 3.74 3.82 1004 821
Dev3 506 4.01 3.90 980 820
Eval 489 3.39 3.72 904 810

Table 6: Translation performance with different
CWS methods on IWSLT[%].

Test Method WER PER BLEU TER
Dev2 Unigram (Base) 38.2 31.2 55.4 37.0

GS 36.8 30.0 56.6 35.5
Dev3 Unigram (Base) 33.5 27.5 60.4 32.1

GS 32.3 26.6 61.0 31.4
Eval Characters 49.3 41.8 35.4 47.5

LDC 46.2 40.0 39.2 45.0
ICT 45.9 40.4 40.1 44.9
Unigram (Base) 46.8 40.2 41.6 45.6
9-gram 46.9 40.4 40.1 45.4
GS 45.9 40.0 41.6 44.8

though they resulted in a similar number of run-
ning words. This shows that the distribution of
Chinese words is more concentrated when using
GS.

The parameter optimizations were performed on
the Dev2 data with 500 sentences, and evaluations
were done both on Dev3 and on Eval data, i.e. the
evaluation corpus of (IWSLT, 2007).

The model weights λ of GS from Section 5.1.2
were optimized using the Powell (Press et al.,
2002) algorithm with respect to the BLEU score.
We obtained λ1 = 1.4, λ2 = 1 and λ3 = 0.8 as
optimal values and T = 4 as the optimal number
of iterations of re-alignment with GIZA++.

For a fair comparison, we evaluated on various
CWS methods including translation on characters
, LDC (LDC, 2003), ICT (Zhang et al., 2003), uni-
gram, 9-gram and GS. Improvements using GS can
be seen in Table 6. Under all test sets and evalua-
tion criteria, GS outperforms the baseline method.
The absolute WER decreases with 1.2% on Dev3
and with 1.1% on Eval data over baseline.

We compared the translation outputs using GS
with the baseline method. On the Eval data, 196
sentences are different out of 489 lines, where 64
sentences from GS are better, 33 sentences are
worse, and the rests have similar translation qual-
ities. Table 7 shows two examples from the Eval
corpus. We list segmentations produced by the
baseline and GS methods, as well as the transla-
tions corresponding to these segmentations. The
GS method generates better translation results than
the baseline method in these cases.
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Table 7: Segmentation and translation outputs with
baseline and GS methods.

a) Baseline � £4 mÚ
do you have a ?

GS �£4mÚ
do you have a shorter way ?

REF is there a shorter route ?

b) Baseline >·ª·����
please show me the in .

GS >·ª·����
please show me the total price .

REF can you tell me the total amount ?

7 Conclusion and future work

We showed that it is possible to learn Chinese word
boundaries such that the translation performance
of Chinese-to-English MT systems is improved.

We presented a Bayesian generative model for
parallel Chinese-English sentences which uses
word segmentation and alignment as hidden vari-
ables, and incorporates both monolingual and
bilingual information to derive a segmentation
suitable for MT.

Starting with an initial word segmentation, our
method learns both new Chinese words and dis-
tributions for these words. In a large and a small
data environment, our method outperformed the
standard Chinese word segmentation approach in
terms of the Chinese to English translation quality.
In future work, we plan to enrich our monolingual
and bilingual models to better represent the true
distribution of the data.
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