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Abstract

State-of-the-art statistical parsing models
applied to free word-order languages tend
to underperform compared to, e.g., pars-
ing English. Constituency-based mod-
els often fail to capture generalizations
that cannot be stated in structural terms,
and dependency-based models employ a
‘single-head’ assumption that often breaks
in the face of multiple exponence. In this
paper we suggest that the position of a con-
stituent is aform manifestation of its gram-
matical function, one among various pos-
sible means of realization. We develop the
Relational-Realizational approach to pars-
ing in which we untangle theprojection
of grammatical functions and their means
of realization to allow for phrase-structure
variability and morphological-syntactic in-
teraction. We empirically demonstrate
the application of our approach to pars-
ing Modern Hebrew, obtaining 7% error
reduction from previously reported results.

1 Introduction

Many broad-coverage statistical parsers to date are
constituency-based with a Probabilistic Context-
Free Grammar (PCFG) or a Stochastic Tree Sub-
stitution Grammar (STSG) at their backbone. The
majority of such models belong to aHead-Driven
paradigm, in which a head constituent is gen-
erated first, providing a positional anchor for
subsequent (e.g., Markovian) sisters’ generation.
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Constituency-based models, lexicalized and un-
lexicalized alike, demonstrate state-of-the-art per-
formance for parsing English (Charniak, 1997;
Collins, 2003; Klein and Manning, 2003; Bod,
2003), yet a direct application of such models to
parsing less configurational languages often fails
to yield comparable results. The parameters of
such parsers capture generalizations that are eas-
ily stated in structural terms (e.g., subjects linearly
precede predicates, VPs dominate objects, etc.)
which may not be adequate for parsing languages
with less configurational character.

A different vein of research explores data-driven
dependency-based parsing methods (e.g., (Mc-
Donald et al., 2005)) which seem to be intuitively
more adequate for the task. It turns out, how-
ever, that even such models fail to provide the
desired remedy. Recent reports by (Nivre, 2007)
delineated a class of richly-inflected languages
with relatively free word-order (including Greek,
Basque, and Modern Standard Arabic) for which
the parsers performed poorly, regardless of the
parsing method used. The need for parsing meth-
ods that can effectively cope with such phenomena
doesn’t seem to have been eliminated by depen-
dency parsing — perhaps quite the contrary.

The essential argument we promote here is that
in order to deal with the kind of variation that
is empirically observed cross-linguistically an al-
ternative view of the generation process is re-
quired. OurRelational-Realizational parsing pro-
posal, strongly inspired by Relational Grammar
(Perlmutter, 1982), takes grammatical relations
such as ‘Subject’ and ‘Predicate’ as central, primi-
tive notions of the syntactic representation, and re-
tains a distinction between the projection of such
relations and the means by which they are real-
ized. The grammar we develop here, formally
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represented as a PCFG, articulates two alternating
generation phases: aRelational phase, in which a
clause-level category projects a monostratal Rela-
tional Network (RN) representation for the clause,
and aRealizational phase, in which the projected
relations are realized in a certain surface config-
uration. Paradigmatic morphosyntactic represen-
tations are constructed for all non-terminal nodes,
allowing for morphosyntactic interaction at vari-
ous levels of the syntactic parse tree.

We illustrate the application of our theoretical
reconstruction to the representation of clause-level
categories in Modern Hebrew (MH) and their in-
teraction with a handful of morphological features.
The treebank grammar resulting from our applica-
tion yields 13% error reduction relative to a tree-
bank PCFG which uses the same information in
the form of state-splits, and our best result shows
a 7% error reduction over the best parsing results
for MH so far. Through a quantitative and quali-
tative analysis we illustrate the advantages of the
Relational-Realizational approach and its poten-
tial promise for parsing other “exotic” languages.

2 Background

Recent decades have seen a surge of interest in sta-
tistical models using a body of annotated text for
learning the distributions of grammatically mean-
ingful structures, in order to assign the most likely
ones to unseen sentences. Probabilistic Context
Free Grammars (PCFGs) have become popular in
the articulation of such models, and unlexicalized
treebank grammars (or representational variations
thereof) were shown to perform reasonably well on
English benchmark corpora (Johnson, 1998; Klein
and Manning, 2003).

A major leap in the performance of PCFG-based
statistical parsers has been introduced by the move
towards aHead-Driven paradigm (Collins, 2003;
Charniak, 1997), in which syntactic categories are
enriched with head information percolated up the
tree. The head-driven generation process allows
one to model the relation between the information
content of a constituent and the information con-
tent of its head-marked sister. At the same time,
such models introduce a bias with respect to the
positioning of a non-head constituent relative to its
head-marked sister. The vast improvement in pars-
ing results came about not without modeling costs,
e.g., additional ad-hoc modifications for capturing
complex structures such as conjunction.

An inherent difficulty with the application of
constituency-based parsing models is the implicit
assumption that the relation between the posi-
tion of a constituent and its grammatical func-
tion is fully predictable. For languages with
relatively free word-order, this assumption often
breaks down. Distinguishing, e.g., “left” and
“right” distributions for constituents of the same
‘sort’ implicitly takes the position of a constituent
to be a primitive syntactic notion, and their gram-
matical function to be a secondary, derived one.
Theoretical accounts show that this may be insuf-
ficient (Perlmutter, 1982). A subsequent difficulty
with the head-driven paradigm, also shared by
dependency-based parsing methods, is the stipu-
lation that all grammatically relevant properties of
a phrase are recovered from a single head. In fact,
it is typologically established that grammatically
meaningful properties of a constituent may jointly
emerge from different surface forms dominated by
it (co-heads or multiple exponence (Zwicky, 1993;
Blevins, 2008)).1

The task we undertake here is to suggest a sta-
tistical generative parsing method which is linguis-
tically plausible as well as technologically viable
for parsing languages with relatively free word-
order and variable means of realization. In what
follows we remain within the computationally ef-
ficient framework of PCFGs, and propose a varia-
tion that draws on insights from syntactic and mor-
phological theories that have been explored cross-
linguistically.

3 Approach

3.1 Relational Grammars (RGs)

Relational Grammars (RGs) were introduced in the
early 80’s when attempts to find a universal def-
inition for notions such as a ‘Subject’ in terms
of various “behavioral properties” seemed to have
failed (Perlmutter, 1982). The unsuccessful at-
tempts to recover an adequate definition of gram-
matical functions in structural terms led to a revival
of a view in which grammatical relations such as
‘Subject’ and ‘Object’ are primitive notions by

1We refrain here from referring to the increasingly popular
approach of discriminative parsing, firstly, because we arein-
terested in a generative parsing model that assigns a probabil-
ity distribution to all sentence-structure pairs in the language,
essentially allowing it to be used as a language model (e.g.,
in SR or SMT applications). Secondly, so far the features that
have been explored in these frameworks are mainly those eas-
ily stated in structural terms, with not much effort towards
modeling morphosyntactic interactions systematically.
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which syntactic structures are defined (Postal and
Perlmutter, 1977). This view proved useful for de-
scriptive purposes, influencing the design of for-
malisms such as Arc-Pair grammars (Postal, 1982)
and LFG (Bresnan, 1979).

The two main primitive elements used in RGs
are (a) a set of nodes representing linguistic ele-
ments (which we refer to using upper case letters),
and (b) a set of names of grammatical relations
(which we refer to asgr1...grn). RGs represent
the fact that a linguistic element bears a certain re-
lation to another element using a structure called
an ‘Arc’, represented as[gri(A,B)]. Arcs are rep-
resented as arrows, with A the head of the Arc and
B its tail, and a Relational Network (RN) is defined
to be a set of Arcs that share a single head.2

Now, a few theoretical observations are due.
Firstly, the essential difference between RGs and
dependency-based grammars is that RNs take the
linguistic element at the head of a network to be a
clause-level category, not a particular surface form.
The corresponding tails are then the various nom-
inals bearing the different grammatical relations
to the clause (including a ‘Predicate’, a ‘Subject’,
an ‘Object’, etc.). In addition, RNs abstract away
from elements such as auxiliary verbs and particles
which do not have their own arc representation.
RGs also differ from phrase-structure grammars
in that their RNs are unordered. Therefore, linear
precedence need not play a role in stating general-
izations. RGs differ from both constituency- and
dependency-based formalisms in that they do not
weigh heavily the ‘single-head’ assumption – RNs
may delineate a whole chunk as bearing a certain
grammatical relation to the clause.

The set-theoretic notion of RNs in RGs abstracts
away from surface phenomena crucial for generat-
ing phrase-structure trees. Thus, we next turn to
modeling how grammatical relations are realized.

3.2 Form, Function and Separation

Morphological phenomena such as suprasegmen-
tation, interdigitation, reduplication, subtractive
morphology, templatic morphology, and methathe-
sis demonstrate that it is sometimes impossible to
find a direct correspondence between a certain part

2RGs also define the notion of a stratum, a single level
of syntactic representation, and for the current discussion we
assume a monostratal representation. We do not claim that
our framework is capable of dealing with the full range of
phenomena multistratal RNs were shown to account for, yet
there is nothing in our proposal that excludes extending the
representation into a multistratal framework that does so.

of a word (a ‘morpheme’) and the function it has
in altering the word’s meaning (Anderson, 1992).
Attempts to model such morphological phenom-
ena brought forward the hypothesis that ‘form’ and
‘function’ need not stand in one-to-one correspon-
dence, and that one is not necessarily immediately
predicted by the other. This hypothesis is known as
the “Separation Hypothesis” (Beard, 1988). The
problem of modeling certain surface phenomena
then boils down to modeling form and function
correlations, bearing in mind that these may be
quite complex.

Bringing this general notion of separation into
the syntactic derivation, we propose to view the
position of a constituent in a phrase as itsform and
the articulated grammatical relation as itsfunction.
The task of learning the position of different con-
stituents realizing the grammatical relations in an
RN is now delegated to a statistical component. A
set of parameters which we refer to as “configu-
ration” determines the syntacticposition in which
each of the grammatical relations is to be realized.

3.3 Morphosyntactic Representations

In order to connect the abstract RN representation
with the constituents that syntactic parse trees are
“made of” we propose to view the internal nodes
of a tree asMorphosyntactic Paradigms. Our
morphosyntactic representation for constituents,
loosely inspired by (Anderson, 1992), is a struc-
tured representation of morphological and syntac-
tic properties for an internal node in the parse tree.
In our model, the morphological features asso-
ciated with a syntactic constituent are percolated
from its dominated surface forms, and we allow
the specification of head (PoS tag) information and
structural features such as vertical markovization.
Given the grammatical relation an element bears
to a clause, it is statistically feasible to learn the
morphosyntactic paradigm by which it is realized.

4 The Model

4.1 The Generative Model

Let Sp → 〈Sc1-gr1 . . . Scn-grn〉 be a context-free
rule whereSp is the morphosyntactic representa-
tion of a parent constituent,gr1...grn are the gram-
matical relations forming its RN, and〈Sc1 . . . Scn〉
are ordered morphosyntactic representations of the
child constituents bearing the respective relations
to the parent. Our grammar then conceptualizes
the generation of such a rule in three phases:
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• Projection:
Sp → {gri}n

i=1@Sp

• Configuration:
{gri}n

i=1@Sp → 〈gr1@Sp . . . grn@Sp〉
• Realization:
{gri@Sp → Sci}n

i=1

In the projection stage we generate the set of gram-
matical relations in the RN of a constituent. In
the configuration stage we order these grammat-
ical relations, and in realization we generate the
morphosyntactic representation of each child con-
stituent given the relation to its parent. Figure (1)
shows the application of this process to two clauses
bearing identical RNs that are in turn realized in
different possible configurations.

This three-step process does not generate func-
tional elements (such as auxiliary verbs and
special-purpose particles) that are outside of con-
stituents’ RNs. We thus let the configuration stage
place obligatory or optional “realizational slots”
between the ordered elements (markedgri : grj),
signalling periphrastic adpositions and/or modifi-
cation. Note that modification may introduce more
than one constituent, to be generated in realization.

• Projection:
Sp → {gri}n

i=1@Sp

• Configuration:
{gri}n

i=1@Sp →
〈gr0 : gr1@Sp gr1@Sp. . .grn : grn+1@Sp〉

• Realization:
{gri@Sp → Sci}n

i=1

{gri : gri+1@Sp → 〈Sci1
...Scimi

〉}n
i=0

In figure (2), the configuration stage reserves a slot
for an obligatory punctuation mark at the end of an
affirmative sentence. It further reserves a slot for
an optional adverbial modifier at a position com-
monly employed in MH for interjections.

In the current framework, grammatical rela-
tions may be realized in a certain surface position
via configuration, or using explicit morphological
marking per grammatical relation independently of
linear context. Figure (3) demonstrates how the
realization phase models the correlation between
grammatical relations and morphological informa-
tion percolated from dominated surface forms. In
particular, our model can capture the interaction
between marked features, e.g., the ‘exclusive or’
relation between definiteness and accusativity in
marking direct objects in MH (Danon, 2001).

Finally, a conjunction structure in our model
is simply an RN representation of multiple mor-
phosyntactically equivalent conjuncts, as illus-
trated in figure (4). This modeling choice avoids
the need to stipulate a single head for such struc-
tures (cf. head-driven processes) and allows the
different conjuncts to share a realization distribu-
tion — essentially implying homogeneity in the
assignment of heads and morphosyntactic features
across conjuncts.

4.2 The Probabilistic Model

Our probablistic model is a PCFG, where CFG
rules capture the three stages of generation. Ev-
ery time we apply our projection-configuration-
realization cycle we replace the rule probability
with the probabilities of the three stages, multi-
plied (n +

∑n
i=0 mi daugthers ,gr0=grn+1=null).

P (〈Sci1
, .., Scimi

Sci-gri, Sci+11
, .., Sci+1mi+1

〉ni=0|Sp) =

P ({gri}n
i=1|Sp)×

P (〈gr0 : gr1, g1, . . .〉|{gri}n
i=1, Sp)×∏n

i=1 P (Sci |gri, Sp)×
P (〈Sc01

, ..., Sc0m0
〉|gr0 : gr1, Sp)×∏n

i=1 P (〈Sci1
, ..., Scimi

〉|gri : gri+1, Sp)

The multiplication implements the independence
assumption between form and function underlying
the Separation Hypothesis, and the conditioning
we articulate captures one possible way to model a
systematic many-to-many correspondence.

4.3 The Grammar

We use a probabilistic treebank grammar in which
the different parameters and their probability dis-
tributions are read off and estimated from the
treebank trees. Clause-level (or clause-like) con-
stituents such as S, SQ, FRAG, FRAGQ, inter-
nally complex VPs and a small number NPs can
head RNs. For the rest we use flat CFG rules.
We use a limited set of grammatical relations,
namely, ‘Predicate’, ‘Subject’, ‘Object’ and ‘Com-
plement’ — making the distinction between a
nominal complement and a verbal (infinitival) one.
Our linguistic elements are morphosyntactic rep-
resentations of labeled non-terminal constituents,
where the morphosyntactic representations of con-
stituents incorporate morphological information
percolated from surface forms and syntactic infor-
mation about the constituent’s environment.
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(a) S

NP-SBJ VP-PRD NP-OBJ

S

{PRD,OBJ,SBJ}@S

SBJ@S

NP

PRD@S

VP

OBJ@S

NP

(b) S

VP-PRD NP-SBJ NP-OBJ

S

{PRD,OBJ,SBJ}@S

PRD@S

VP

SBJ@S

NP

OBJ@S

NP

Figure 1:Generating Canonical and Non-Canonical Configurations:The CF depictions of the S level constituents at the
LHS of (a) and (b) are distinct, whereas theRR-CFG representations at the RHS of (a) and (b) share theprojection of GRs and
differs in theirconfiguration — while (a) generates an SVO order, (b) generates a so-calledVerb-Initial (VI) construction.

(c) S

VP-PRD ADVP NP-SBJ NP-OBJ DOT

S

{PRD,OBJ,SBJ}@S

PRD@S

VP

PRD:SBJ@S

ADVP

SBJ@S

NP

OBJ@S

NP

OBJ:@S

DOT

Figure 2: Generating Adjunction and Periphrastic Configurations: The CF depiction of S at the LHS of (c) generates
complements, adjuncts, and punctuation in one go, whereas the RR-CFG representation at the RHS generates first the projec-
tion of core grammatical elements and then the configurationof a modified affirmative sentence in which they are realized.
(Similarly, realising a question configuration using inversion in, e.g., English, naturally follows).

(d) S

VP-PRD

VB

NP[Def+,Acc+]-OBJ

AT[Acc+] NP[Def+]

NNT NN[Def+]

NP[Def+]-SBJ

NN[Def+]

S

{PRD,OBJ,SBJ}@S

PRD@S

VP

VB

OBJ@S

NP[Def+,Acc+]

AT[Acc+] NP[Def+]

NNT NN[Def+]

SBJ@S

NP[Def+]

NN[Def+]

Figure 3:Realizing Grammatical Relations with bounded and unbounded Morphemes: The CF depiction of the S level
constituent at the LHS of (d) shows a strong dependence between the position of syntactic constituents and the morphologically
realized features percolated from lower surface forms. In theRR-CFG representation at the RHS the feature distribution among
sub constituents is dependent on grammatical relations, independently of their positioning. The realization stage generates a
morphosyntactic paradigm in one go, allowing to capture meaningful collocations and idiosyncrasies, e.g., the Xor relation of
theAcc+ anddef+ features when marking direct objects in MH (Danon, 2001).

S-CNJ

S S CC S DOT

S

{SCNJ,SCNJ,SCNJ}@S

SCNJ@S

S

SCNJ@S

S

SCNJ:SCNJ@S

CC

SCNJ@S

S

SCNJ:@S

DOT

Figure 4:Generating a Conjunction Structure: The conjunction structure in the LHS of (e) is generated by the RR-CFG
on the RHS in three stages. First, a relational network of finite number of conjuncts is generated, then a configuration forthe
conjuncts and conjunction markers (in MH, a CC before the last conjunct) is proposed, and finally the different conjunctsare
generated conditioned on the same grammatical relation andthe same parent. (Note that the possibility of different means for
realizing conjunction, e.g., using morphemes, punctuation or multiple adpositions, falls out naturally from this setup.)
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5 Experiments

Data The data we use is taken from the Modern
Hebrew Treebank (MHTB) (Sima’an et al., 2001)
which consists of 6501 sentences from the newspa-
per ‘haaretz’ annotated with phrase-structure trees
and decorated with various morphological and
functional features. We use version 2.0 of the tree-
bank3 which we processed and head-annotated as
in (Tsarfaty and Sima’an, 2007). We experimented
with sentences 1–500 (development set) and sen-
tences 501–6001 (training set), and used sentences
6001-6501 (test set) for confirming our best result.

Models Our Plain models use the coarse-level
MHTB category-labels enriched with various mor-
phological features. Our morphological represen-
tationBasevaries with respect to the use of the per-
colated features definitenessDef and accusativity
Acc. Constituents’ morphosyntactic representa-
tions enriched with their head PoS tag are referred
to asHead and grand-parent encodings asParent.
For each combination of morphological and syn-
tactic features we experimented with a state-split
PCFG and with ourRR-PCFG implementation.

Procedure We read off our models’ parame-
ters from the decorated phrase-structure trees in
the MHTB, and use relative frequency estimation
to instantiate their probability distributions. We
smooth lexical rules using a PoS-tags distribution
we learn for rare-words, where the ‘rare’ threshold
is set to 1. We then use BitPar, a general purpose
chart parser,4 to find the most likely structures,
and we extract the corresponding coarse-grained
tree-skeletons for the purpose of evaluation.5 We
use PARSEVAL measures to quantitatively evalu-
ate our models and perform a qualitative analysis
of the resulting parse trees.

Results Table 1 shows the average F-Measure
value for all sentences of length≤40 in our
development set with/without punctuation. The
naı̈ve baseline implementation for our experi-
ments, theBasePlain PCFG, performs at the level
of 67.61/68.67 (comparable to the baseline re-
ported in (Tsarfaty and Sima’an, 2007)). For all

3http://www.mila.cs.technion.ac.il/
english/resources/corpora/treebank/ver2.
0/index.html

4:http://www.ims.uni-stuttgart.de/tcl/
SOFTWARE/BitPar.html

5Our setup is comparable to English, which means that our
surface forms are segmented per PoS tag without specifying
their respective PoS tags and morphological features.

Syntax Plain Head Parent ParentHead
Morphology

Base (PCFG) 67.61/68.77 71.01/72.48 73.56/73.79 73.44/73.61
(RR-PCFG) 65.86/66.86 71.84/72.76 74.06/74.28 75.13/75.29

BaseDef (PCFG) 67.68/68.86 71.17/72.47 74.13/74.39 72.54/72.79
(RR-PCFG) 66.65/67.86 73.09/74.13 74.59/74.59 76.05/76.34

BaseDefAcc (PCFG) 68.11/69.30 71.50/72.75 74.16/ 74.41 72.77/73.01
(RR-PCFG) 67.13/68.01 73.63/74.69 74.65/74.79 76.15/ 76.43

Table 1: Parsing Results for Sentences of Length< 40
in the Development Set:Averaged F-Measure With/Without
Punctuation.Baserefers to coarse syntactic categories,Def
indicates percolating definiteness values,Acc indicated per-
colating accusativity marking. The underlined results repli-
cate previously reported results in similar settings.

models in thePlain column the simple PCFG out-
performs theRR-variety. Yet, the contribution of
percolated morphological features is higher with
theRR-PCFG than with the simple PCFG.

Moving to theHead column, we see that allRR-
models already outperform their enriched PCFG
counterparts. Again, morphological information
contributes more to theRR-variety. The best result
for this column, achieved by theBaseDefAccHead
RR-model (63.73/64.69), outperforms its PCFG
counterpart as well as all two-dimensional models
reported by (Tsarfaty and Sima’an, 2007). In the
Parent column), ourRR-variety continues to out-
perform the PCFG albeit in an insignificant rate.
(Both results are at the same level as the best model
of (Tsarfaty and Sima’an, 2007).)

Finally, for all models in theParentHead col-
umn theRR-models outperform their PCFG coun-
terparts to a significant degree. Similarly to the
Head column, the more morphological informa-
tion is added, the greater the improvement is. Our
best RR-model, BaseDefAccParentHead, scores
almost 10pt (25% error reduction) more than the
Plain PCFG, it is about 3.5pt better (13% error re-
duction) than a state-split PCFG using the same
information, and almost 2pt (7% error reduction)
more than the best results reported for MH so far.

We confirmed the results of our best model on
our test set, for which our baseline (BasePlain)
obtained 69.63/70.31. The enriched PCFG
of DaseDefAccHeadParent yields 73.66/73.86
whereas theRR-PCFG yields 75.83/75.89. The
overall performance for PCFGs is higher on this
set, yet theRR-model shows a notable improve-
ment (about 9% error reduction).

6 Analysis and Discussion

The trends in our quantitative analysis suggest that
the RR-models are more powerful in exploiting
different sorts of information encoded in parse

894



(a) S

NP

CDT

EFRWT
tens-of

NP

NN

ANFIM
people

VP

VB

MGIEIM
arrive

PP

IN

M
from

NP

NNP

TAILND
Thailand

PP

IN

L
to

NP

NNP

IFRAL
Israel

...

(b) S

NP

CDT

EFRWT
tens-of

NP

NN

ANFIM
people

VP

VB

MGIEIM
arrive

PP

IN

M
from

NP

NP

NNP

TAILND
Thailand

PP

IN

L
to

NP

NNP

IFRAL
Israel

....

Figure 5: Qualitative Analysis of Sentence (Fragment)
#1: (a) is the gold tree fragment, correctly predicted by our
bestRR-PCFG model. (b) is the tree fragment predicted by
the PCFG corresponding to previously reported results.

trees, be it morphological information coming
from dominated surface forms or functional infor-
mation on top of syntactic categories.

We have shown that head information, which
has very little contribution to parsing accuracy as
a mere state-split, turns out to have crucial ef-
fects within theRR-models. For state-splits based
PCFGs, adding head information brings about
a category fragmentation and decreasing perfor-
mance. The separation between form and function
we articulate in theRR-approach allows us to cap-
ture generalizations concerning the distribution of
syntactic constituents under heads based on their
grammatical function, and use fine-grained fea-
tures to predict their morphosyntactic behaviour.

We have further shown that morphological in-
formation contributes a substantial improvement
when adopting theRR-approach, which is inline
with the linguistic insight that there is a correlation
between morphological marking on top of surface
forms and the grammatical function their domi-
nating constituents realize. Morphological infor-
mation is particularly useful in the presence of
heads. Taken together, head and percolated fea-
tures implement a rather complete conceptualiza-
tion of multiple exponence.

To wrap up the discussion, we leave numbers
aside and concentrate on thekind of structures pre-
dicted by our best model in comparison to the
ones suggested by previously reported unlexical-
ized PCFGs ((Tsarfaty and Sima’an, 2007), un-
derlined in our table). Due to lack of space we

(a) S

PP

MCD FNI

on the
other hand

VP
VB
MTIR

allows

NP
NNP

MSRD HEBWDH WHRWWXH

the ministry of...

VP

VB
LHESIK

to-
employ

NP
EWBDIM ZRIM

foreign
workers

PP
B..

in..

(b) S

PP

IN
M

from

NP

NNT
CD

side

NP

CDT
FNI

two

NP

NNT
MTIR

allows

NP
NNP

MSRD HEBWDH WHRWWXH

the ministry of...

VP
LHESIK

to-
employ

NP

NP
EWBDIM

workers

ADJP
ZRIM

foreigners

PP
B..

in..

Figure 6: Qualitative Analysis of Sentence (Fragment)
#4: (a) is the gold tree fragment, correctly predicted by our
bestRR-PCFG model. (b) is the tree fragment predicted by
the PCFG corresponding to previously reported results.

only discuss errors found within the first 10 parsed
sentence, yet we note that the qualitative trend
we describe here persists throughout our develop-
ment set. Figures (5) and (6) show a gold tree
(a fragment of sentence #1) correctly predicted
by our bestRR-model (a) in comparison with the
one predicted by the respective PCFG (b). The
tree fragment in figure (5) shows that theRR-
grammar bracketed and attached correctly all the
constituents that bear grammatical relations to the
S clause (5a). The corresponding PCFG conflated
the “to” and “from” phrases to a rather meaning-
less prepositional phrase (5b). For (a fragment of)
sentence #4 in our set (figure 6) theRR-model re-
covered all grammatically meaningful constituents
under the S clause and under the internal VP (6a).
Notably, the PCFG in (6b) recoverednone of them.
Both grammars make attachment mistakes internal
to complex NPs, but theRR-model is better at iden-
tifying higher level constituents that correlate with
meaningful grammatical functions.

Our qualitative analysis suggests that our model
is even more powerful than our quantitative analy-
sis indicates, yet we leave the discussion of better
ways to quantify this for future research.

A Note on Related Work Studies on parsing
MH to date concentrate mostly on spelling out
the integration of a PCFG parser with a mor-
phological disambiguation component (e.g., (Tsar-
faty, 2006; Goldberg and Tsarfaty, 2008)). On a
setup identical to ours (gold segmentation, no PoS)
the latter obtained 70pt. (Tsarfaty and Sima’an,
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2007) examined the contribution of horizontal
and vertical conditioning to an unlexicalized MH
parser and concluded that head-driven Markoviza-
tion performs below the level of vertical condi-
tioning enriched with percolated features. We do
not know of existing dependency-parsers applied
to parsing MH or mildly-context-sensitive broad-
coverage parsers applied to parsing a Semitic lan-
guage.6 To the best of our knowledge, this is the
first fully generative probabilistic framework that
models explicitly morpho-syntactic interaction to
enhance parsing for non-configrational languages.

7 Conclusion

Projection and Realization are two sides of the
same coin. Projection determineswhich gram-
matical relations appear in the syntactic represen-
tation, andRealization determineshow such rela-
tions are realized. We suggest that theRelational-
Realizational (RR) approach is adequate for pars-
ing languages characteristically different from En-
glish, and we illustrate it with an application to
parsing MH. We show that our approach to mod-
eling the interaction between syntactic categories
and a handful of percolated features already yields
a notable improvement in parsing accuracy and
substantially improves the quality of suggested
parses. Incorporating additional functional and
morphological information, we expect, will help
bridging the gap in performance between Hebrew
and configurational languages such as English.
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