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Abstract

This paper proposes a new approach to 
dynamically determine the tree span for 
tree kernel-based semantic relation ex-
traction. It exploits constituent dependen-
cies to keep the nodes and their head 
children along the path connecting the 
two entities, while removing the noisy in-
formation from the syntactic parse tree, 
eventually leading to a dynamic syntactic 
parse tree. This paper also explores entity 
features and their combined features in a 
unified parse and semantic tree, which in-
tegrates both structured syntactic parse 
information and entity-related semantic 
information. Evaluation on the ACE 
RDC 2004 corpus shows that our dy-
namic syntactic parse tree outperforms all 
previous tree spans, and the composite 
kernel combining this tree kernel with a 
linear state-of-the-art feature-based ker-
nel, achieves the so far best performance. 

1 Introduction 

Information extraction is one of the key tasks in 
natural language processing. It attempts to iden-
tify relevant information from a large amount of 
natural language text documents. Of three sub-
tasks defined by the ACE program1, this paper 
focuses exclusively on Relation Detection and 
Characterization (RDC) task, which detects and 
classifies semantic relationships between prede-
fined types of entities in the ACE corpus. For 
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example, the sentence “Microsoft Corp. is based 
in Redmond, WA” conveys the relation “GPE-
AFF.Based” between “Microsoft Corp.” [ORG] 
and “Redmond” [GPE]. Due to limited accuracy 
in state-of-the-art syntactic and semantic parsing, 
reliably extracting semantic relationships be-
tween named entities in natural language docu-
ments is still a difficult, unresolved problem. 

In the literature, feature-based methods have 
dominated the research in semantic relation ex-
traction. Featured-based methods achieve prom-
ising performance and competitive efficiency by 
transforming a relation example into a set of syn-
tactic and semantic features, such as lexical 
knowledge, entity-related information, syntactic 
parse trees and deep semantic information. How-
ever, detailed research (Zhou et al., 2005) shows 
that it’s difficult to extract new effective features 
to further improve the extraction accuracy. 
Therefore, researchers turn to kernel-based 
methods, which avoids the burden of feature en-
gineering through computing the similarity of 
two discrete objects (e.g. parse trees) directly. 
From prior work (Zelenko et al., 2003; Culotta 
and Sorensen, 2004; Bunescu and Mooney, 2005) 
to current research (Zhang et al., 2006; Zhou et 
al., 2007), kernel methods have been showing 
more and more potential in relation extraction. 

The key problem for kernel methods on rela-
tion extraction is how to represent and capture 
the structured syntactic information inherent in 
relation instances. While kernel methods using 
the dependency tree (Culotta and Sorensen, 2004) 
and the shortest dependency path (Bunescu and 
Mooney, 2005) suffer from low recall perform-
ance, convolution tree kernels (Zhang et al., 2006; 
Zhou et al., 2007) over syntactic parse trees 
achieve comparable or even better performance 
than feature-based methods. 

However, there still exist two problems re-
garding currently widely used tree spans. Zhang 
et al. (2006) discover that the Shortest Path-
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enclosed Tree (SPT) achieves the best perform-
ance. Zhou et al. (2007) further extend it to Con-
text-Sensitive Shortest Path-enclosed Tree (CS-
SPT), which dynamically includes necessary 
predicate-linked path information. One problem 
with both SPT and CS-SPT is that they may still 
contain unnecessary information. The other prob-
lem is that a considerable number of useful con-
text-sensitive information is also missing from 
SPT/CS-SPT, although CS-SPT includes some 
contextual information relating to predicate-
linked path. 

This paper proposes a new approach to dy-
namically determine the tree span for relation 
extraction by exploiting constituent dependencies 
to remove the noisy information, as well as keep 
the necessary information in the parse tree. Our 
motivation is to integrate dependency informa-
tion, which has been proven very useful to rela-
tion extraction, with the structured syntactic in-
formation to construct a concise and effective 
tree span specifically targeted for relation extrac-
tion. Moreover, we also explore interesting com-
bined entity features for relation extraction via a 
unified parse and semantic tree. 

The other sections in this paper are organized 
as follows. Previous work is first reviewed in 
Section 2. Then, Section 3 proposes a dynamic 
syntactic parse tree while the entity-related se-
mantic tree is described in Section 4. Evaluation 
on the ACE RDC corpus is given in Section 5. 
Finally, we conclude our work in Section 6. 

2 Related Work 

Due to space limitation, here we only review 
kernel-based methods used in relation extraction. 
For those interested in feature-based methods, 
please refer to Zhou et al. (2005) for more details. 

Zelenko et al. (2003) described a kernel be-
tween shallow parse trees to extract semantic 
relations, where a relation instance is trans-
formed into the least common sub-tree connect-
ing the two entity nodes. The kernel matches the 
nodes of two corresponding sub-trees from roots 
to leaf nodes recursively layer by layer in a top-
down manner. Their method shows successful 
results on two simple extraction tasks. Culotta 
and Sorensen (2004) proposed a slightly general-
ized version of this kernel between dependency 
trees, in which a successful match of two relation 
instances requires the nodes to be at the same 
layer and in the identical path starting from the 
roots to the current nodes. These strong con-
straints make their kernel yield high precision but 

very low recall on the ACE RDC 2003 corpus. 
Bunescu and Mooney (2005) develop a shortest 
path dependency tree kernel, which simply 
counts the number of common word classes at 
each node in the shortest paths between two enti-
ties in dependency trees. Similar to Culotta and 
Sorensen (2004), this method also suffers from 
high precision but low recall.

Zhang et al. (2006) describe a convolution tree 
kernel (CTK, Collins and Duffy, 2001) to inves-
tigate various structured information for relation 
extraction and find that the Shortest Path-
enclosed Tree (SPT) achieves the F-measure of 
67.7 on the 7 relation types of the ACE RDC 
2004 corpus. One problem with SPT is that it 
loses the contextual information outside SPT, 
which is usually critical for relation extraction. 
Zhou et al. (2007) point out that both SPT and 
the convolution tree kernel are context-free. They 
expand SPT to CS-SPT by dynamically includ-
ing necessary predicate-linked path information 
and extending the standard CTK to context-
sensitive CTK, obtaining the F-measure of 73.2 
on the 7 relation types of the ACE RDC 2004 
corpus. However, the CS-SPT only recovers part 
of contextual information and may contain noisy 
information as much as SPT. 

In order to fully utilize the advantages of fea-
ture-based methods and kernel-based methods, 
researchers turn to composite kernel methods. 
Zhao and Grishman (2005) define several fea-
ture-based composite kernels to capture diverse 
linguistic knowledge and achieve the F-measure 
of 70.4 on the 7 relation types in the ACE RDC 
2004 corpus. Zhang et al. (2006) design a com-
posite kernel consisting of an entity linear kernel 
and a standard CTK, obtaining the F-measure of 
72.1 on the 7 relation types in the ACE RDC 
2004 corpus. Zhou et al. (2007) describe a com-
posite kernel to integrate a context-sensitive 
CTK and a state-of-the-art linear kernel. It 
achieves the so far best F-measure of 75.8 on the 
7 relation types in the ACE RDC 2004 corpus. 

In this paper, we will further study how to dy-
namically determine a concise and effective tree 
span for a relation instance by exploiting con-
stituent dependencies inherent in the parse tree 
derivation. We also attempt to fully capture both 
the structured syntactic parse information and 
entity-related semantic information, especially 
combined entity features, via a unified parse and 
semantic tree. Finally, we validate the effective-
ness of a composite kernel for relation extraction, 
which combines a tree kernel and a linear kernel. 
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3 Dynamic Syntactic Parse Tree 

This section discusses how to generate dynamic 
syntactic parse tree by employing constituent 
dependencies to overcome the problems existing 
in currently used tree spans. 

3.1 Constituent Dependencies in Parse Tree 

Zhang et al. (2006) explore five kinds of tree 
spans and find that the Shortest Path-enclosed 
Tree (SPT) achieves the best performance. Zhou 
et al. (2007) further propose Context-Sensitive 
SPT (CS-SPT), which can dynamically deter-
mine the tree span by extending the necessary 
predicate-linked path information outside SPT. 
However, the key problem of how to represent 
the structured syntactic parse tree is still partially 
resolved. As we indicate as follows, current tree 
spans suffer from two problems: 

(1) Both SPT and CS-SPT still contain unnec-
essary information. For example, in the sentence 
“…bought one of town’s two meat-packing
plants”, the condensed information “one of 
plants” is sufficient to determine “DISC” rela-
tionship between the entities “one” [FAC] and 
“plants” [FAC], while SPT/CS-SPT include the 
redundant underlined part. Therefore more un-
necessary information can be safely removed 
from SPT/CS-SPT. 

(2) CS-SPT only captures part of context-
sensitive information relating to predicate-linked 
structure (Zhou et al., 2007) and still loses much 
context-sensitive information. Let’s take the 
same example sentence “…bought one of town’s
two meat-packing plants”, where indeed there is 
no relationship between the entities “one” [FAC] 
and “town” [GPE]. Nevertheless, the information 
contained in SPT/CS-SPT (“one of town”) may 
easily lead to their relationship being misclassi-
fied as “DISC”, which is beyond our expectation. 
Therefore the underlined part outside SPT/CS-
SPT should be recovered so as to differentiate it 
from positive instances. 

Since dependency plays a key role in many 
NLP problems such as syntactic parsing, seman-
tic role labeling as well as semantic relation ex-
traction, our motivation is to exploit dependency 
knowledge to distinguish the necessary evidence 
from the unnecessary information in the struc-
tured syntactic parse tree.  

On one hand, lexical or word-word depend-
ency indicates the relationship among words 
occurring in the same sentence, e.g. predicate-
argument dependency means that arguments are 
dependent on their target predicates, modifier-

head dependency means that modifiers are de-
pendent on their head words. This dependency 
relationship offers a very condensed representa-
tion of the information needed to assess the rela-
tionship in the forms of the dependency tree (Cu-
lotta and Sorensen, 2004) or the shortest depend-
ency path (Bunescu and Mooney, 2005) that in-
cludes both entities.

On the other hand, when the parse tree corre-
sponding to the sentence is derived using deriva-
tion rules from the bottom to the top, the word-
word dependencies extend upward, making a 
unique head child containing the head word for 
every non-terminal constituent. As indicated as 
follows, each CFG rule has the form: 

P  Ln…L1H R1…Rm
Here, P is the parent node, H is the head child of 
the rule, Ln…L1 and R1…Rm are left and right 
modifiers of H respectively, and both n and m
may be zero. In other words, the parent node P
depends on the head child H, this is what we call 
constituent dependency. Vice versa, we can also 
determine the head child of a constituent in terms 
of constituent dependency. Our hypothesis stipu-
lates that the contribution of the parse tree to es-
tablishing a relationship is almost exclusively 
concentrated in the path connecting the two enti-
ties, as well as the head children of constituent 
nodes along this path. 

3.2 Generation of Dynamic Syntactic Parse 
Tree

Starting from the Minimum Complete Tree 
(MCT, the complete sub-tree rooted by the near-
est common ancestor of the two entities under 
consideration) as the representation of each rela-
tion instance, along the path connecting two enti-
ties, the head child of every node is found ac-
cording to various constituent dependencies. 
Then the path nodes and their head children are 
kept while any other nodes are removed from the 
tree. Eventually we arrive at a tree called Dy-
namic Syntactic Parse Tree (DSPT), which is 
dynamically determined by constituent depend-
encies and only contains necessary information 
as expected. 

There exist a considerable number of constitu-
ent dependencies in CFG as described by Collins 
(2003). However, since our task is to extract the 
relationship between two named entities, our fo-
cus is on how to condense Noun-Phrases (NPs) 
and other useful constituents for relation extrac-
tion. Therefore constituent dependencies can be 
classified according to constituent types of the 
CFG rules: 
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(1) Modification within base-NPs: base-NPs 
mean that they do not directly dominate an NP
themselves, unless the dominated NP is a posses-
sive NP. The noun phrase right above the entity
headword, whose mention type is nominal or 
name, can be categorized into this type. In this 
case, the entity headword is also the headword of 
the noun phrase, thus all the constituents before 
the headword are dependent on the headword,
and may be removed from the parse tree, while 
the headword and the constituents right after the 
headword remain unchanged. For example, in the 
sentence “…bought one of town’s two meat-
packing plants” as illustrated in Figure 1(a), the
constituents before the headword  “plants” can 
be removed from the parse tree. In this way the
parse tree “one of plants” could capture the
“DISC” relationship more concisely and pre-
cisely. Another interesting example is shown in 
Figure 1(b), where the base-NP of the second
entity “town” is a possessive NP and there is no 
relationship between the entities “one” and
“town” defined in the ACE corpus. For both SPT
and CS-SPT, this example would be condensed 
to “one of town” and therefore easily misclassi-
fied as the “DISC” relationship between the two 

entities. In the contrast, our DSPT can avoid this 
problem by keeping the constituent “’s” and the 
headword “plants”.

(2) Modification to NPs: except base-NPs,
other modification to NPs can be classified into 
this type. Usually these NPs are recursive, mean-
ing that they contain another NP as their child. 
The CFG rules corresponding to these modifica-
tions may have the following forms:
NP NP SBAR [relative clause]
NP NP VP [reduced relative]
NP NP PP [PP attachment]

Here, the NPs in bold mean that the path con-
necting the two entities passes through them. For
every right hand side, the NP in bold is modified
by the constituent following them. That is, the 
latter is dependent on the former, and may be 
reduced to a single NP. In Figure 1(c) we show a
sentence “one of about 500 people nominated
for …”, where there exists a “DISC” relationship
between the entities “one” and “people”. Since 
the reduced relative “nominated for …” modifies
and is therefore dependent on the “people”, they 
can be removed from the parse tree, that is, the 
right side (“NP VP”) can be reduced to the left 
hand side, which is exactly a single NP. 

(a) Removal of constituents before the headword in base-NP

(b) Keeping of constituents after the headword in base-NP
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Figure 1. Removal and reduction of constituents using dependencies 

700



(3) Arguments/adjuncts to verbs: this type 
includes the CFG rules in which the left side in-
cludes S, SBAR or VP. An argument represents
the subject or object of a verb, while an adjunct
indicates the location, date/time or way of the
action corresponding to the verb. They depend
on the verb and can be removed if they are not
included in the path connecting the two entities.
However, when the parent tag is S or SBAR, and
its child VP is not included in the path, this VP
should be recovered to indicate the predicate
verb. Figure 1(d) shows a sentence “… maintain
rental property he owns in the state”, where the
“ART.User-or-Owner” relation holds between 
the entities “property” and “he”. While PP can be
removed from the rule  (“VP  VBZ PP”), the 
VP should be kept in the rule (“S  NP VP”).
Consequently, the tree span looks more concise 
and precise for relation extraction. 

(4) Coordination conjunctions: In coordina-
tion constructions, several peer conjuncts may be 
reduced into a single constituent. Although the
first conjunct is always considered as the head-
word (Collins, 2003), actually all the conjuncts
play an equal role in relation extraction. As illus-
trated in Figure 1(e), the NP coordination in the 
sentence (“governors from connecticut, south
dakota, and montana”) can be reduced to a single 
NP (“governors from montana”) by keeping the
conjunct in the path while removing the other 
conjuncts.

(5) Modification to other constituents: ex-
cept for the above four types, other CFG rules 
fall into this type, such as modification to PP,
ADVP and PRN etc. These cases are similar to 
arguments/adjuncts to verbs, but less frequent 
than them, so we will not detail this scenario. 

In fact, SPT (Zhang et al., 2006) can be ar-
rived at by carrying out part of the above re-
moval operations using a single rule (i.e. all the 
constituents outside the linking path should be
removed) and CS-CSPT (Zhou et al., 2007) fur-
ther recovers part of necessary context-sensitive 
information outside SPT, this justifies that SPT
performs well, while CS-SPT outperforms SPT. 

4 Entity-related Semantic Tree 

Entity semantic features, such as entity headword, 
entity type and subtype etc., impose a strong
constraint on relation types in terms of relation
definition by the ACE RDC task. Experiments by
Zhang et al. (2006) show that linear kernel using 
only entity features contributes much when com-
bined with the convolution parse tree kernel. 

Qian et al. (2007) further indicates that among
these entity features, entity type, subtype, and 
mention type, as well as the base form of predi-
cate verb, contribute most while the contribution
of other features, such as entity class, headword 
and GPE role, can be ignored. 

In order to effectively capture entity-related
semantic features, and their combined features as
well, especially bi-gram or tri-gram features, we 
build an Entity-related Semantic Tree (EST) in 
three ways as illustrated in Figure 2. In the ex-
ample sentence “they ’re here”, which is ex-
cerpted from the ACE RDC 2004 corpus, there 
exists a relationship “Physical.Located” between
the entities “they” [PER] and “here”
[GPE.Population-Center]. The features are en-
coded as “TP”, “ST”, “MT” and “PVB”, which
denote type, subtype, mention-type of the two 
entities, and the base form of predicate verb if 
existing (nearest to the 2nd entity along the path 
connecting the two entities) respectively. For 
example, the tag “TP1” represents the type of the 
1st entity, and the tag “ST2” represents the sub-
type of the 2nd entity. The three entity-related
semantic tree setups are depicted as follows: 

TP2TP1

(a) Bag Of Features(BOF)

ENT

ST2ST1 MT2MT1 PVB

(c) Entity-Paired Tree(EPT)

ENT

E1 E2

(b) Feature Paired Tree(FPT)

ENT

TP ST MT

ST1TP1 MT1 TP2 ST2 MT2

PVB

TP1 TP2 ST1 ST2 MT1 MT2

PVB

PER null PRO GPE Pop. PRO be

PER null PRO GPE Pop. PRO

be

PER GPE null Pop. PRO PRO

be

Figure 2. Different setups for entity-related se-
mantic tree (EST) 

(a) Bag of Features (BOF, e.g. Fig. 2(a)): all 
feature nodes uniformly hang under the root node,
so the tree kernel simply counts the number of 
common features between two relation instances.
This tree setup is similar to linear entity kernel
explored by Zhang et al. (2006). 

(b) Feature-Paired Tree (FPT, e.g. Fig. 2(b)): 
the features of two entities are grouped into dif-
ferent types according to their feature names, e.g.
“TP1” and “TP2” are grouped to “TP”. This tree 
setup is aimed to capture the additional similarity
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of the single feature combined from different 
entities, i.e., the first and the second entities. 

(c) Entity-Paired Tree (EPT, e.g. Fig. 2(c)): all 
the features relating to an entity are grouped to 
nodes “E1” or “E2”, thus this tree kernel can fur-
ther explore the equivalence of combined entity 
features only relating to one of the entities be-
tween two relation instances. 

In fact, the BOF only captures the individual 
entity features, while the FPT/EPT can addition-
ally capture the bi-gram/tri-gram features respec-
tively. 

Rather than constructing a composite kernel, 
we incorporate the EST into the DSPT to pro-
duce a Unified Parse and Semantic Tree (UPST) 
to investigate the contribution of the EST to rela-
tion extraction. The entity features can be at-
tached under the top node, the entity nodes, or 
directly combined with the entity nodes as in 
Figure 1. However, detailed evaluation (Qian et 
al., 2007) indicates that the UPST achieves the 
best performance when the feature nodes are at-
tached under the top node. Hence, we also attach 
three kinds of entity-related semantic trees (i.e. 
BOF, FPT and EPT) under the top node of the 
DSPT right after its original children. Thereafter, 
we employ the standard CTK (Collins and Duffy, 
2001) to compute the similarity between two 
UPSTs, since this CTK and its variations are 
successfully applied in syntactic parsing, seman-
tic role labeling (Moschitti, 2004) and relation 
extraction (Zhang et al., 2006; Zhou et al., 2007) 
as well. 

5 Experimentation 

This section will evaluate the effectiveness of the 
DSPT and the contribution of entity-related se-
mantic information through experiments. 

5.1 Experimental Setting  

For evaluation, we use the ACE RDC 2004 cor-
pus as the benchmark data. This data set contains 
451 documents and 5702 relation instances. It 
defines 7 entity types, 7 major relation types and 
23 subtypes. For comparison with previous work, 
evaluation is done on 347 (nwire/bnews) docu-
ments and 4307 relation instances using 5-fold 
cross-validation. Here, the corpus is parsed using 
Charniak’s parser (Charniak, 2001) and relation 
instances are generated by iterating over all pairs 
of entity mentions occurring in the same sentence 
with given “true” mentions and coreferential in-
formation. In our experimentations, SVMlight

(Joachims, 1998) with the tree kernel function

(Moschitti, 2004) 2  is selected as our classifier. 
For efficiency, we apply the one vs. others
strategy, which builds K classifiers so as to 
separate one class from all others. For 
comparison purposes, the training parameters C 
(SVM) and  (tree kernel) are also set to 2.4 and 
0.4 respectively. 

5.2 Experimental Results 

Table 1 evaluates the contributions of different 
kinds of constituent dependencies to extraction 
performance on the 7 relation types of the ACE 
RDC 2004 corpus using the convolution parse 
tree kernel as depicted in Figure 1. The MCT 
with only entity-type information is first used as 
the baseline, and various constituent dependen-
cies are then applied sequentially to dynamically 
reshaping the tree in two different modes: 

--[M1] Respective:  every constituent depend-
ency is individually applied on MCT. 

--[M2] Accumulative: every constituent de-
pendency is incrementally applied on the previ-
ously derived tree span, which begins with the 
MCT and eventually gives rise to a Dynamic 
Syntactic Parse Tree (DSPT).  

Dependency types P(%) R(%) F

MCT (baseline) 75.1 53.8 62.7

Modification within 
base-NPs

76.5
(59.8)

59.8
(59.8)

67.1
(67.1)

Modification to NPs 77.0
(76.2)

63.2
(56.9)

69.4
(65.1)

Arguments/adjuncts to verb 77.1
(76.1)

63.9
(57.5)

69.9
(65.5)

Coordination conjunctions 77.3
(77.3)

65.2
(55.1)

70.8
(63.8)

Other modifications 77.4
(75.0)

65.4
(53.7)

70.9
(62.6)

Table 1. Contribution of constituent dependen-
cies in respective mode (inside parentheses) and 
accumulative mode (outside parentheses) 

The table shows that the final DSPT achieves 
the best performance of 77.4%/65.4%/70.9 in
precision/recall/F-measure respectively after ap-
plying all the dependencies, with the increase of 
F-measure by 8.2 units compared to the baseline 
MCT. This indicates that reshaping the tree by 
exploiting constituent dependencies may signifi-
cantly improve extraction accuracy largely due to 
the increase in recall. It further suggests that con-
stituent dependencies knowledge is very effec-

2 http://ai-nlp.info.uniroma2.it/moschitti/ 
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tive and can be fully utilized in tree kernel-based 
relation extraction. This table also shows that: 

(1) Both modification within base-NPs and 
modification to NPs contribute much to perform-
ance improvement, acquiring the increase of F-
measure by 4.4/2.4 units in mode M1 and 4.4/2.3 
units in mode M2 respectively. This indicates the 
local characteristic of semantic relations, which 
can be effectively captured by NPs near the two 
involved entities in the DSPT. 

(2) All the other three dependencies show mi-
nor contribution to performance enhancement, 
they improve the F-measure only by 2.8/0.9/-0.1 
units in mode M1 and 0.5/0.9/0.1 units in mode 
M2. This may be due to the reason that these de-
pendencies only remove the nodes far from the 
two entities. 

We compare in Table 2 the performance of 
Unified Parse and Semantic Trees with different 
kinds of Entity Semantic Tree setups using stan-
dard convolution tree kernel, while the SPT and 
DSPT with only entity-type information are 
listed for reference. It shows that: 

(1) All the three unified parse and semantic 
tree kernels significantly outperform the DSPT 
kernel, obtaining an average increase of ~4 units 
in F-measure. This means that they can effec-
tively capture both the structured syntactic in-
formation and the entity-related semantic fea-
tures.

(2) The Unified Parse and Semantic Tree with 
Feature-Paired Tree achieves the best perform-
ance of 80.1/70.7/75.1 in P/R/F respectively, 
with an increase of F-measure by 0.4/0.3 units 
over BOF and EPT respectively. This suggests 
that additional bi-gram entity features captured 
by FPT are more useful than tri-gram entity fea-
tures captured by EPT. 

Tree setups P(%) R(%) F
SPT 76.3 59.8 67.1
DSPT 77.4 65.4 70.9
UPST (BOF) 80.4 69.7 74.7
UPST (FPT) 80.1 70.7 75.1
UPST (EPT) 79.9 70.2 74.8
Table 2. Performance of Unified Parse and 

Semantic Trees (UPSTs) on the 7 relation types 
of the ACE RDC 2004 corpus 

In Table 3 we summarize the improvements of 
different tree setups over SPT. It shows that in a 
similar setting, our DSPT outperforms SPT by 
3.8 units in F-measure, while CS-SPT outper-
forms SPT by 1.3 units in F-measure. This sug-
gests that the DSPT performs best among these 

tree spans. It also shows that the Unified Parse 
and Semantic Tree with Feature-Paired Tree per-
form significantly better than the other two tree 
setups (i.e., CS-SPT and DSPT) by 6.7/4.2 units 
in F-measure respectively. This implies that the 
entity-related semantic information is very useful 
and contributes much when they are incorporated 
into the parse tree for relation extraction. 
Tree setups P(%) R(%) F
CS-SPT over SPT3 1.5   1.1 1.3
DSPT over SPT 1.1   5.6 3.8
UPST (FPT) over SPT 3.8 10.9 8.0
Table 3. Improvements of different tree setups 

over SPT on the ACE RDC 2004 corpus 

Finally, Table 4 compares our system with 
other state-of-the-art kernel-based systems on the 
7 relation types of the ACE RDC 2004 corpus. It 
shows that our UPST outperforms all previous 
tree setups using one single kernel, and even bet-
ter than two previous composite kernels (Zhang 
et al., 2006; Zhao and Grishman, 2005). Fur-
thermore, when the UPST (FPT) kernel is com-
bined with a linear state-of-the-state feature-
based kernel (Zhou et al., 2005) into a composite 
one via polynomial interpolation in a setting 
similar to Zhou et al. (2007) (i.e. polynomial de-
gree d=2 and coefficient =0.3), we get the so far 
best performance of 77.1 in F-measure for 7 rela-
tion types on the ACE RDC 2004 data set. 
Systems P(%) R(%) F
Ours:
composite kernel 83.0 72.0 77.1

Zhou et al., (2007):
composite kernel 82.2 70.2 75.8

Zhang et al., (2006):
composite kernel 76.1 68.4 72.1

Zhao and Grishman, (2005):4

composite kernel 69.2 70.5 70.4

Ours:
CTK with UPST 80.1 70.7 75.1

Zhou et al., (2007): context-
sensitive CTK with CS-SPT 81.1 66.7 73.2

Zhang et al., (2006):
CTK with SPT 74.1 62.4 67.7

Table 4. Comparison of different systems on 
the ACE RDC 2004 corpus 

3  We arrive at these values by subtracting P/R/F 
(79.6/5.6/71.9) of Shortest-enclosed Path Tree from P/R/F  
(81.1/6.7/73.2) of Dynamic Context-Sensitive Shortest-
enclosed Path Tree according to Table 2 (Zhou et al., 2007) 
4 There might be some typing errors for the performance 
reported in Zhao and Grishman (2005) since P, R and F do 
not match. 
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6 Conclusion

This paper further explores the potential of struc-
tured syntactic information for tree kernel-based 
relation extraction, and proposes a new approach 
to dynamically determine the tree span (DSPT) 
for relation instances by exploiting constituent 
dependencies. We also investigate different ways 
of how entity-related semantic features and their 
combined features can be effectively captured in 
a Unified Parse and Semantic Tree (UPST). 
Evaluation on the ACE RDC 2004 corpus shows 
that our DSPT is appropriate for structured repre-
sentation of relation instances. We also find that, 
in addition to individual entity features, com-
bined entity features (especially bi-gram) con-
tribute much when they are combined with a 
DPST into a UPST. And the composite kernel, 
combining the UPST kernel and a linear state-of-
the-art kernel, yields the so far best performance. 

For the future work, we will focus on improv-
ing performance of complex structured parse 
trees, where the path connecting the two entities 
involved in a relationship is too long for current 
kernel methods to take effect. Our preliminary 
experiment of applying certain discourse theory 
exhibits certain positive results.
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