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Abstract

This paper explores the relationship be-
tween various measures of unsupervised
part-of-speech tag induction and the per-
formance of both supervised and unsuper-
vised parsing models trained on induced
tags. We find that no standard tagging
metrics correlate well with unsupervised
parsing performance, and several metrics
grounded in information theory have no
strong relationship with even supervised
parsing performance.

1 Introduction

There has been a great deal of recent interest in
the unsupervised discovery of syntactic structure
from text, both parts-of-speech (Johnson, 2007;
Goldwater and Griffiths, 2007; Biemann, 2006;
Dasgupta and Ng, 2007) and deeper grammatical
structure like constituency and dependency trees
(Klein and Manning, 2004; Smith, 2006; Bod,
2006; Seginer, 2007; Van Zaanen, 2001). While
some grammar induction systems operate on raw
text, many of the most successful ones presume
prior part-of-speech tagging. Meanwhile, most re-
cent work in part-of-speech induction focuses on
increasing the degree to which their tags match
hand-annotated ones such as those in the Penn
Treebank.

In this work our goal is to evaluate how im-
provements in part-of-speech tag induction affects
grammar induction. Using several different unsu-
pervised taggers, we induce tags and train three
grammar induction systems on the results.
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We then explore the relationship between the
performance on common unsupervised tagging
metrics and the performance of resulting grammar
induction systems. Disconcertingly we find that
they bear little to no relationship.

This paper is organized as follows. In Section 2
we discuss unsupervised part-of-speech induction
systems and common methods of evaluation. In
Section 3, we describe grammar induction in gen-
eral and discuss the systems with which we evalu-
ate taggings. We present our experiments in Sec-
tion 4, and finally conclude in Section 5.

2 Part-of-speech Tag Induction

Part-of-speech tag induction can be thought of as a
clustering problem where, given a corpus of words,
we aim to group word tokens into syntactic classes.

Two tasks are commonly labeled unsupervised
part-of-speech induction. In the first, tag induction
systems are allowed the use of a tagging dictionary,
which specifies for each word a set of possible
parts-of-speech (Merialdo, 1994; Smith and Eis-
ner, 2005; Goldwater and Griffiths, 2007). In the
second, only the word tokens and sentence bound-
aries are given. In this work we focus on this latter
task to explore grammar induction in a maximally
unsupervised context.

Tag induction systems typically focus on two
sorts of features: distributional and morphologi-
cal. Distributional refers to what sorts of words
appear in close proximity to the word in question,
while morphological refers to modeling the inter-
nal structure of a word. All the systems below
make use of distributional information, whereas
only two use morphological features.

We primarily focus on the metrics used to evalu-
ate induced taggings. The catalogue of recent part-
of-speech systems is large, and we can only test
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the tagging metrics using a few systems. Recent
work that we do not explore explicitly includes
(Biemann, 2006; Dasgupta and Ng, 2007; Freitag,
2004; Smith and Eisner, 2005). We have selected
a few systems, described below, that represent a
broad range of features and techniques to make our
evaluation of the metrics as broad as possible.

2.1 Clustering using SVD and K-means

Schütze (1995) presents a series of part-of-speech
inducers based on distributional clustering. We
implement the baseline system, which Klein and
Manning (2002) use for their grammar induction
experiments with induced part-of-speech tags. For
each word typew in the vocabularyV , the system
forms a feature row vector consisting of the num-
ber of times each of theF most frequent words oc-
cur to the left ofw and to the right ofw. It normal-
izes these row vectors and assembles them into a
|V |×2F matrix. It then performs a Singular Value
Decomposition on the matrix and rank reduces it to
decrease its dimensionality tod principle compo-
nents (d < 2F ). This results in a representation
of each word as a point in ad dimensional space.
We follow Klein and Manning (2002) in using K-
means to cluster thed dimensional word vectors
into parts-of-speech. We use theF = 500 most
frequent words as left and right context features,
and reduce to a dimensionality ofd = 50. We re-
fer to this system as SVD in our experiments.

The other systems described in Schütze (1995)
make use of more complicated feature models. We
chose the baseline system primarily to match pre-
vious evaluations of grammar induction using in-
duced tags (Klein and Manning, 2002).

2.2 Hidden Markov Models

One simple family of models for part-of-speech in-
duction are the Hidden Markov Models (HMMs),
in which there is a sequence of hidden state vari-
ablest1...tn (for us, the part-of-speech tags). Each
stateti is conditioned on the previousn − 1 states
ti−1...ti−n+1, and everyti emits an observed word
wi conditioned onti. There is a single start state
that emits nothing, as well as a single stop state,
which emits an end-of-sentence marker with prob-
ability 1 and does not transition further. In our ex-
periments we use the bitag HMM, in which each
stateti depends only on stateti−1.

The classic method of training HMMs for part-
of-speech induction is the Baum-Welch (Baum,
1972) variant of the Expectation-Maximization

(EM) algorithm, which searches for a local max-
imum in the likelihood of the observed words.

Other methods approach the problem from
a Bayesian perspective. These methods place
Dirichlet priors over the parameters of each transi-
tion and emission multinomial. For an HMM with
a set of statesT and a set of output symbolsV :

∀t ∈ T θt ∼ Dir(α1, ...α|T |) (1)

∀t ∈ T ηt ∼ Dir(β1, ...β|V |) (2)

ti|ti−1, θti−1 ∼ Multi(θti−1) (3)

wi|ti, ηti ∼ Multi(ηti) (4)

One advantage of the Bayesian approach is that
the prior allows us to bias learning toward sparser
structures, by setting the Dirichlet hyperparame-
tersα, β to a value less than one (Johnson, 2007;
Goldwater and Griffiths, 2007). This increases the
probability of multinomial distributions which put
most of their mass on a few events, instead of dis-
tributing them broadly across many events. There
is evidence that this leads to better performance
on some part-of-speech induction metrics (John-
son, 2007; Goldwater and Griffiths, 2007).

There are both MCMC and variational ap-
proaches to estimating HMMs with sparse Dirich-
let priors; we chose the latter (Variational Bayes
or VB) due to its simple implementation as a
minor modification to Baum-Welch. Johnson
(2007) evaluates both estimation techniques on the
Bayesian bitag model; Goldwater and Griffiths
(2007) emphasize the advantage in the MCMC ap-
proach of integrating out the HMM parameters in a
tritag model, yielding a tagging supported by many
different parameter settings.

Following the setup in Johnson (2007), we ini-
tialize the transition and emission distributions to
be uniform with a small amount of noise, and run
EM and VB for 1000 iterations. We label these
systems as HMM-EM and HMM-VB respectively
in our experiments. In our VB experiments we set
αi = βj = 0.1,∀i ∈ {1, ..., |T |} , j ∈ {1, ..., |V |},
which yielded the best performance on most re-
ported metrics in Johnson (2007). We use max-
imum marginal decoding, which Johnson (2007)
reports performs better than Viterbi decoding.

2.3 Systems with Morphology

Clark (2003) presents several part-of-speech in-
duction systems which incorporate morphological
as well as distributional information. We use the
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implementation found on his website.1

2.3.1 Ney-Essen with Morphology

The simplest model is based on work by (Ney et
al., 1994). It uses a bitag HMM, with the restric-
tion that each word type in the vocabulary can only
be generated by a single part-of-speech. Thus the
tag induction task here reduces to finding a multi-
way partition of the vocabulary. The learning al-
gorithm greedily reassigns each word type to the
part-of-speech that results in the greatest increase
in likelihood.

In order to incorporate morphology, Clark
(2003) associates with each part-of-speech a HMM
with letter emissions. The vocabulary is gener-
ated by generating a series of word types from
the letter HMM of each part-of-speech. These can
model very basic concatenative morphology. The
parameters of the HMMs are estimated by running
a single iteration of Forward-Backward after each
round of reassigning words to tags. In our exper-
iments we evaluate both the model without mor-
phology (NE in our experiments), and the morpho-
logical model, trying both 5 and 10 states in the let-
ter HMM (NEMorph5, NEMorph10 respectively).

2.3.2 Two-Level HMM

The final part-of-speech inducer we try from
Clark (2003) is a two-level HMM. This is similar
to the previous model, except it lifts the restriction
that a word appear under only one part-of-speech.
Alternatively, one could think of this model as a
standard HMM, whose emission distributions in-
corporate a mixture of a letter HMM and a stan-
dard multinomial. Training uses a simple variation
of Forward-Backward. In the experiments in this
paper, we initialize the mixture parameters to .5,
and try 5 states in the letter HMM. We refer to this
model as 2HMM.

2.4 Tag Evaluation

Objective evaluation in any clustering task is al-
ways difficult, since there are many ways to de-
fine good clusters. Typically it involves a mix-
ture of subjective evaluation and a comparison of
the clusters to those found by human annotators.
In the realm of part-of-speech induction, there are
several common ways of doing the latter. These
split into two groups: accuracy and information-
theoretic criteria.

1http://www.cs.rhul.ac.uk/home/alexc/pos.tar.gz

Accuracy, given some mapping between the set
of induced classes and the gold standard labels, is
the number of words in the corpus that have been
marked with the correct gold label divided by the
total number of word tokens. The main challenge
facing these metrics is deciding how to to map each
induced part-of-speech class to a gold tag. One
option is what Johnson (2007) calls “many-to-one”
(M-to-1) accuracy, in which each induced tag is
labeled with its most frequent gold tag. Although
this results in a situation where multiple induced
tags may share a single gold tag, it does not punish
a system for providing tags of a finer granularity
than the gold standard.

In contrast, “one-to-one” (1-to-1) accuracy re-
stricts each gold tag to having a single induced
tag. The mapping typically is made to try to give
the most favorable mapping in terms of accuracy,
typically using a greedy assignment (Haghighi and
Klein, 2006). In cases where the number of gold
tags is different than the number of induced tags,
some must necessarily remain unassigned (John-
son, 2007).

In addition to accuracy, there are several infor-
mation theoretic criteria presented in the literature.
These escape the problem of trying to find an ap-
propriate mapping between induced and gold tags,
at the expense of perhaps being less intuitive.

Let TI be the tag assignments to the words
in the corpus created by an unsupervised tag-
ger, and letTG be the gold standard tag as-
signments. Clark (2003) uses Shannon’s condi-
tional entropy of the gold tagging given the in-
duced taggingH(TG|TI). Lower entropy indi-
cates less uncertainty in the gold tagging if we al-
ready know the induced tagging. Freitag (2004)
uses the similar “cluster-conditional tag perplex-
ity” which is merely exp(H(TG|TI))2. Since
cluster-conditional tag perplexity is a monotonic
function ofH(TG|TI), we only report the latter.

Goldwater and Griffiths (2007) propose using
the Variation of Information of Meilǎ (2003):

V I(TG;TI) = H(TG|TI) + H(TI |TG)

VI represents the change in information when go-
ing from one clustering to another. It holds the
nice properties of being nonnegative, symmetric,
as well as fulfilling the triangle inequality.

2Freitag (2004) measures entropy in nats, while we use
bits. The difference is a constant factor.
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3 Grammar Induction

In addition to parts-of-speech, we also want to dis-
cover deeper syntactic relationships. Grammar in-
duction is the problem of determining these re-
lationships in an unsupervised fashion. This can
be thought of more concretely as an unsupervised
parsing task. As there are many languages and do-
mains with few treebank resources, systems that
can learn syntactic structure from unlabeled data
would be valuable. Most work on this problem has
focused on either dependency induction, which we
discuss in Section 3.2, or on constituent induction,
which we examine in the next section.

The Grammar Induction systems we use to eval-
uate the above taggers are the Constituent-Context
Model (CCM), the Dependency Model with Va-
lence (DMV), and a model which combines the
two (CCM+DMV) outlined in (Klein and Man-
ning, 2002; Klein and Manning, 2004).

3.1 Constituent Grammar Induction

Klein and Manning (2002) present a generative
model for inducing constituent boundaries from
part-of-speech tagged text. The model first gener-
ates a bracketingB = {Bij}1≤i≤j≤n, which spec-
ifies whether each span(i, j) in the sentence is a
constituent or a distituent. Next, given the con-
stituency or distituency of the spanBij , the model
generates the part-of-speech yield of the span
ti...tj , and the one-tag context window of the span
ti−1, tj+1. P (ti...tj |Bij) and P (ti−1, tj+1|Bij)
are multinomial distributions. The model is trained
using EM.

We evaluate induced constituency trees against
those of the Penn Treebank using the versions of
unlabeled precision, recall, and F-score used by
Klein and Manning (2002). These ignore triv-
ial brackets and multiple constituents spanning the
same bracket. They evaluate their CCM system
on the Penn Treebank WSJ sentences of length 10
or less, using part-of-speech tags induced by the
baseline system of Schütze (1995). They report
that switching to induced tags decreases the overall
bracketing F-score from 71.1 to 63.2, although the
recall of VP and S constituents actually improves.
Additionally, they find that NP and PP recall de-
creases substantially with induced tags. They at-
tribute this to the fact that nouns end up in many
induced tags.

There has been quite a bit of other work on
constituency induction. Smith and Eisner (2004)

present an alternative estimation technique for
CCM which uses annealing to try to escape local
maxima. Bod (2006) describes an unsupervised
system within the Data-Oriented-Parsing frame-
work. Several approaches try to learn structure
directly from raw text. Seginer (2007) has an in-
cremental parsing approach using a novel repre-
sentation called common-cover-links, which can
be converted to constituent brackets. Van Zaanen
(2001)’s ABL attempts to align sentences to deter-
mine what sequences of words are substitutable.

The work closest in spirit to this paper is Cramer
(2007), who evaluates several grammar induction
systems on the Eindhoven corpus (Dutch). One
of his experiments compares the grammar induc-
tion performance of these systems starting with
tags induced using the system described by Bie-
mann (2006), to the performance of the systems
on manually-marked tags. However he does not
evaluate to what degree better tagging performance
leads to improvement in these systems.

3.2 Dependency Grammar Induction

A dependency tree is a directed graph whose nodes
are words in the sentence. A directed edge exists
between two words if the target word (argument) is
a dependent of the source word (head). Each word
token may be the argument of only one head, but a
head may have several arguments. One word is the
head of the sentence, and is often thought of as the
argument of a virtual “Root” node.

Klein and Manning (2004) present their Depen-
dency Model with Valence (DMV) for the un-
supervised induction of dependencies. Like the
constituency model, DMV works from parts-of-
speech. Under this model, for a given head,h,
they first generate the parts-of-speech of the argu-
ments to the right ofh, and then those to the left.
Generating the arguments in a particular direction
breaks down into two parts: deciding whether to
stop generating in this direction, and if not, what
part-of-speech to generate as the argument. The ar-
gument decision conditions onh and the direction.
The stopping decision conditions on this and also
on whetherh has already generated an argument in
this direction, thereby capturing the limited notion
of valence from which the model takes its name.
It is worth noting that this model can only repre-
sent projective dependency trees, i.e. those without
crossing edges.

Dependencies are typically evaluated using di-
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Tagging Metrics Grammar Induction Metrics
Tagger No. Tags CCM CCM+DMV DMV

1-to-1 H(TG|TI) M-to-1 VI UF1 DA UA UF1 DA UA
Gold 1.00 0.00 1.00 0.00 71.50 52.90 67.60 56.50 45.40 63.80
HMM-EM 10 0.39 2.67 0.41 4.39 58.89 40.12 59.26 59.43 36.77 57.37
HMM-EM 20 0.43 2.28 0.48 4.54 57.31 51.16 64.66 61.33 38.65 58.57
HMM-EM 50 0.36 1.83 0.58 4.92 56.56 48.03 63.84 58.02 39.30 58.84
HMM-VB 10 0.40 2.75 0.41 4.42 39.05 27.72 52.84 58.64 23.94 51.64
HMM-VB 20 0.40 2.63 0.43 4.65 37.60 33.77 55.97 40.30 30.36 51.53
HMM-VB 50 0.38 2.70 0.42 5.01 34.68 37.29 57.72 39.82 29.03 50.50
NE 10 0.34 2.74 0.40 4.32 28.80 20.70 50.60 32.70 26.20 48.90
NE 20 0.48 2.02 0.55 3.76 32.50 36.00 59.30 40.60 32.80 54.00
NEMorph10 10 0.44 2.46 0.47 3.74 29.03 25.99 53.80 34.58 26.98 48.72
NEMorph10 20 0.48 1.94 0.56 3.65 31.95 35.85 57.93 38.22 30.45 50.72
NEMorph10 50 0.47 1.24 0.72 3.60 31.07 36.29 57.76 39.28 31.50 52.83
NEMorph5 10 0.45 2.50 0.47 3.76 29.04 22.72 51.58 32.67 23.62 47.89
NEMorph5 20 0.44 2.02 0.56 3.80 31.94 24.17 52.43 32.90 22.41 47.17
NEMorph5 50 0.47 1.27 0.72 3.64 31.39 38.63 59.44 40.23 34.26 54.63
2HMM 10 0.38 2.78 0.41 4.55 31.63 36.35 58.87 44.97 28.43 49.32
2HMM 20 0.41 2.35 0.48 4.71 42.39 43.91 60.74 50.85 29.32 50.69
2HMM 50 0.37 1.92 0.58 5.11 41.18 49.94 64.87 57.84 39.24 59.14
SVD 10 0.31 3.07 0.34 4.99 37.77 27.64 49.56 36.46 20.74 45.52
SVD 20 0.33 2.73 0.40 4.99 37.17 30.14 51.66 37.66 22.24 46.25
SVD 50 0.34 2.37 0.47 5.18 36.87 37.66 56.49 52.83 22.50 46.52
SVD 100 0.34 2.03 0.53 5.37 45.46 41.68 58.83 64.20 20.81 44.36
SVD 200 0.32 1.72 0.59 5.59 61.90 34.79 52.25 59.93 22.66 42.30

Table 1: The performance of the taggers regarding both tag and grammar induction metrics on WSJ
sections 0-10, averaged over 10 runs. Bold indicates the result was within 10 percent of the best-scoring
induced system for a given metric.

rected and undirected accuracy. These are the to-
tal number of proposed edges that appear in the
gold tree divided by the total number of edges (the
number of words in the sentence). Directed accu-
racy gives credit to a proposed edge if it is in the
gold tree and is in the correct direction, while undi-
rected accuracy ignores the direction.

Klein and Manning (2004) also present a model
which combines CCM and DMV into a single
model, which we show as CCM+DMV. In their
experiments, this model performed better on both
the constituency and dependency induction tasks.
As with CCM, Klein and Manning (2004) simi-
larly evaluate the combined CCM+DMV system
using tags induced with the same method. Again
they find that overall bracketing F-score decreases
from 77.6 to 72.9 and directed dependency accu-
racy measures decreases from 47.5 to 42.3 when
switching to induced tags from gold. However for
each metric, the systems still do quite well with
induced tags.

As in the constituency case, Smith (2006)
presents several alternative estimation procedures
for DMV, which try to minimize the local maxi-
mum problems inherent in EM. It is thus possible
these methods might yield better performance for

the models when run off of induced tags.

4 Experiments

We induce tags with each system on the Penn Tree-
bank Wall Street Journal (Marcus et al., 1994), sec-
tions 0-10, which contain 20,260 sentences. We
vary the number of tags (10, 20, 50) and run each
system 10 times for a given setting. The result of
each run is used as the input to the CCM, DMV,
and CCM+DMV systems. While the tags are in-
duced from all sentences in the section, following
the practice in (Klein and Manning, 2002; Klein
and Manning, 2004), we remove punctuation, and
consider only sentences of length not greater than
10 in our grammar induction experiments. Tag-
gings are evaluated after punctuation is removed,
but before filtering for length.

To explore the relationship between tagging
metrics and the resulting performance of grammar
induction systems, we examine each pair of tag-
ging and grammar induction metrics. Consider the
following two examples: DMV directed accuracy
vs. H(TG|TI) (Figure 1), and CCM f-score vs.
variation of information (Figure 2). These were se-
lected because they have relatively high magnitude
τs. From these plots it is clear that although there
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may be a slight correspondence, the relationships
are weak at best.

Each tagging and grammar induction metric
gives us a ranking over the set of taggings of the
data generated over the course of our experiments.
These are ordered from best to worst according to
the metric, so for instanceH(TG|TI) would give
highest rank to its lowest value. We can com-
pare the two rankings using Kendall’sτ (see Lap-
ata (2006) for an overview), a nonparametric mea-
sure of correspondence for rankings.τ measures
the difference between the number of concordant
pairs (items the two rankings place in the same or-
der) and discordant pairs (those the rankings place
in opposite order), divided by the total number of
pairs. A value of 1 indicates the rankings have per-
fect correspondence, -1 indicates they are in the
opposite order, and 0 indicates they are indepen-
dent. Theτ values are shown in Table 2. The
scatter-plot in Figure 1 shows theτ with the great-
est magnitude. However, we can see that even
these rankings have barely any relationship.

An objection one might raise is that the lack of
correspondence reflects poorly not on these met-
rics, but upon the grammar induction systems we
use to evaluate them. There might be something
about these models in particular which yields these
low correlations. For instance these grammar in-
ducers all estimate their models using EM, which
can get caught easily in a local maximum.

To this possibility, we respond by pointing to
performance on gold tags, which is consistently
high for all grammar induction metrics. There is
clearly some property of the gold tags which is ex-
ploited by the grammar induction systems even in
the absence of better estimation procedures. This
property is not reflected in the tagging metrics.

The scores for each system for tagging and
grammar induction, averaged over the 10 runs, are
shown in Table 1. Additionally, we included runs
of the SVD-tagger for 100 and 200 tags, since run-
ning this system is still practical with these num-
bers of tags. The Ney-Essen with Morphology tag-
gers perform at or near the top on the various tag-
ging metrics, but not well on the grammar induc-
tion tasks on average. HMM-EM seems to perform
on average quite well on all the grammar induction
tasks, while the SVD-based systems yield the top
bracketing F-scores, making use of larger numbers
of tags.

Grammar Induction Metrics
Tagging CCM CCM+DMV DMV
Metrics UF1 DA UA UF1 DA UA
1-to-1 -0.22 -0.04 0.05 -0.13 0.13 0.12
M-to-1 -0.09 0.17 0.24 0.03 0.26 0.25
H(TG|TI) 0.01 0.21 0.27 0.07 0.29 0.28
VI -0.25 -0.17 -0.06 -0.20 0.07 0.07

Table 2: Kendall’sτ , between tag and grammar
induction criteria.

4.1 Supervised Experiments

One question we might ask is whether these tag-
ging metrics capture information relevant to any
parsing task. We explored this by experimenting
with a supervised parser, training off trees where
the gold parts-of-speech have been removed and
replaced with induced tags. Our expectation was
that the brackets, the head propagation paths, and
the phrasal categories in the training trees would
be sufficient to overcome any loss in information
that the gold tags might provide. Additionally it
was possible the induced tags would ignore rare
parts-of-speech such as FW, and make better use
of the available tags, perhaps using new distribu-
tional clues not in the original tags.

To this end we modified the Charniak Parser
(Charniak, 2000) to train off induced parts-of-
speech. The Charniak parser is a lexicalized PCFG
parser for which the part-of-speech of a head word
is a key aspect of its model. During training, the
head-paths from the gold part-of-speech tags are
retained, but we replace the tags themselves.

We ran experiments using the bitag HMM from
Section 2.2 trained using EM, as well as with the
Schütze SVD tagger from Section 2.1. The parser
was trained on sections 2-21 of the Penn Treebank
for training and section 24 was used for evaluation.

As before we calculatedτ scores between each
tagging metric and supervised f-score. Unlike the
unsupervised evaluation where we used the metric
UF1, we use the standard EVALB calculation of
unlabeled f-score. The results are shown in Table
3.

The contrast with the unsupervised case is vast,
with very highτs for both accuracy metrics. Con-
sider f-score vs. many-to-one, plotted in Figure 3.
The correspondence here is very clear: taggings
with high accuracy do actually reflect on better
parser performance. Note, however, that the corre-
spondence between the information theoretic mea-
sures and parsing performance is still rather weak.
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Figure 1: DMV Directed Accuracy vs.H(TG|TI)
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Figure 2: CCM fscore vs. tagging variation of in-
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Figure 3: Supervised parsing f-score vs. tagging
many-to-one accuracy.

Tagging Metric Supervised F1
1-to-1 0.62
M-to-1 0.83
H(TG|TI) -0.19
VI 0.25

Table 3: Kendall’sτ , between tag induction cri-
teria and supervised parsing unlabeled bracketing
F-score.

Interestingly, parsing performance and speed
does degrade considerably when training off in-
duced tags. We are not sure what causes this. One
possibility is in the lexicalized stage of the parser,
where the probability of a head word is smoothed
primarily by its part-of-speech tag. This requires
that the tag be a good proxy for the syntactic role
of the head. In any case this warrants further in-
vestigation.

5 Conclusion and Future Work

In this work, we found that none of the most com-
mon part-of-speech tagging metrics bear a strong
relationship to good grammar induction perfor-
mance. Although our experiments only involve
English, the poor correspondence we find between
the various tagging metrics and grammar induc-
tion performance raises concerns about their re-
lationship more broadly. We additionally found
that while tagging accuracy measures do corre-
late with better supervised parsing, common infor-
mation theoretic ones do not strongly predict bet-
ter performance on either task. Furthermore, the
supervised experiments indicate that informative
part-of-speech tags are important for good parsing.

The next step is to explore better tagging met-
rics that correspond more strongly to better gram-
mar induction performance. A good metric should
use all the information we have, including the gold
trees, to evaluate. Finally, we should explore gram-
mar induction schemes that do not rely on prior
parts-of-speech, instead learning them from raw
text at the same time as deeper structure.
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