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Abstract We then explore the relationship between the
performance on common unsupervised tagging
metrics and the performance of resulting grammar
induction systems. Disconcertingly we find that
they bear little to no relationship.

This paper is organized as follows. In Section 2
we discuss unsupervised part-of-speech induction
systems and common methods of evaluation. In
Section 3, we describe grammar induction in gen-
eral and discuss the systems with which we evalu-
ate taggings. We present our experiments in Sec-
tion 4, and finally conclude in Section 5.

This paper explores the relationship be-
tween various measures of unsupervised
part-of-speech tag induction and the per-
formance of both supervised and unsuper-
vised parsing models trained on induced
tags. We find that no standard tagging
metrics correlate well with unsupervised
parsing performance, and several metrics
grounded in information theory have no
strong relationship with even supervised
parsing performance.

1 Introduction 2 Part-of-speech Tag Induction

. Part-of-speech tag induction can be thought of as a
There has been a great deal of recent interest In . :

. N . clustering problem where, given a corpus of words,
the unsupervised discovery of syntactic structure

fom e, bth pars.ofspeech Gohnson, 2001501 [0 00 IO okeniiio yactcclases
Goldwater and Griffiths, 2007; Biemann, 2006; y P

Dasgupta and Ng, 2007) and deeper grammaticg?rt_Of_SpeeCh induction. In the first, 'Fag |ngctlon
. . sg/stems are allowed the use of a tagging dictionary,
structure like constituency and dependency tree

(Klein and Manning, 2004; Smith, 2006 Bod which specifies for each word a set of possible

. .parts-of-speech (Merialdo, 1994; Smith and Eis-
2006; iner, 2007; Van Zaanen, 2001). Whil
006; Seginer, .00 » van caanen, 001) %er, 2005; Goldwater and Griffiths, 2007). In the
some grammar induction systems operate on raw
second, only the word tokens and sentence bound-
text, many of the most successful ones presume. . , )
. . . aries are given. In this work we focus on this latter
prior part-of-speech tagging. Meanwhile, most re- . L .
. : . task to explore grammar induction in a maximally
cent work in part-of-speech induction focuses on

. , . . nsupervised context.
increasing the degree to which their tags matc : . .

. Tag induction systems typically focus on two
hand-annotated ones such as those in the Penn AT .
Treebank sorts of features: distributional and morphologi-

. . . cal. Distributional refers to what sorts of words
In this work our goal is to evaluate how im-

. ) : appear in close proximity to the word in question,
provements in part-of-speech tag induction affects;, . . . .
. . ) . while morphological refers to modeling the inter-
grammar induction. Using several different unsu-
. . . nal structure of a word. All the systems below
pervised taggers, we induce tags and train three o . .
. , make use of distributional information, whereas
grammar induction systems on the results.

only two use morphological features.
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the tagging metrics using a few systems. RecefEM) algorithm, which searches for a local max-
work that we do not explore explicitly includesimum in the likelihood of the observed words.
(Biemann, 2006; Dasgupta and Ng, 2007; Freitag, Other methods approach the problem from
2004; Smith and Eisner, 2005). We have selectesl Bayesian perspective. These methods place
a few systems, described below, that representGirichlet priors over the parameters of each transi-
broad range of features and techniques to make otivn and emission multinomial. For an HMM with
evaluation of the metrics as broad as possible. a set of state§’ and a set of output symbols:

2.1 Clusteringusing SVD and K-means vteT 6 ~ Dir(ag,...ap) (1)

SchUtze (1995) prese.nts.a s_eries of part-.of-speech VieT n ~ Dir(Bi,.Byv) ()
inducers based on distributional clustering. We tilti, 0 Multi(6y, ) 3)
implement the baseline system, which Klein and it Pt i
Manning (2002) use for their grammar induction wilti; e, ~  Multi(ny,) (4)
experiments with induced part-of-speech tags. For _ _
each word typev in the vocabulany/, the system Ong advantage of thg BayeS|_an approach is that
forms a feature row vector consisting of the numthe prior allows us to bias learning toward sparser
ber of times each of th& most frequent words oc- structures, by setting the Dirichlet hyperparame-
cur to the left ofw and to the right ofu. It normal- €S« 3 to a value less than one (Johnson, 2007;
izes these row vectors and assembles them intgaPldwater and Griffiths, 2007). This increases the
V| x 2F matrix. It then performs a Singular Value Probability Qf multinomial dlstrlbutlon_s which put_
Decomposition on the matrix and rank reduces it t§10St Of their mass on a few events, instead of dis-
decrease its dimensionality tbprinciple compo- tributing them broadly across many events. There
nents ¢ < 2F). This results in a representationis evidence that this leads to better performance
of each word as a point in @dimensional space. N S0me part-of-speech induction metrics (John-
We follow Klein and Manning (2002) in using K- SON: 2007; Goldwater and Griffiths, 2007).
means to cluster thé dimensional word vectors ~There are both MCMC and variational ap-
into parts-of-speech. We use tfe = 500 most proaches to estimating HMMs with sparse Dirich-
frequent words as left and right context featured®t Priors; we chose the latter (Variational Bayes
and reduce to a dimensionality éf= 50. We re- O VB) due to its simple implementation as a
fer to this system as SVD in our experiments. ~ Minor modification to B_aum_—WeIch. _ Johnson
The other systems described in Schiitze (199@007)_ evalu_ates both estimation technlques_o_n the
make use of more complicated feature models. Weayesian bitag model; Goldwater and Griffiths
chose the baseline system primarily to match prd2007) emphasize the advantage in the MCMC ap-
vious evaluations of grammar induction using inProach of integrating out the HMM parameters in a

duced tags (Klein and Manning, 2002). tritag model, yielding a tagging supported by many
different parameter settings.
2.2 Hidden Markov Models Following the setup in Johnson (2007), we ini-

One simp|e fam"y of models for part-of-speech indialize the transition and emission distributions to
duction are the Hidden Markov Models (HMMs)’be uniform with a small amount of nOise, and run
in which there is a sequence of hidden state varEM and VB for 1000 iterations. We label these
ablest,...t,, (for us, the part-of-speech tags). Eactystems as HMM-EM and HMM-VB respectively
statet; is conditioned on the previous— 1 states in our experiments. In our VB experiments we set
ti—1...ti—n+1, and everyt; emits an observed word & = 3; = 0.1,Vi € {1,...,|T[},j € {1,..., [V[},
w,; conditioned ory;. There is a single start statewhich yielded the best performance on most re-
that emits nothing, as well as a single stop stat@orted metrics in Johnson (2007). We use max-
which emits an end-of-sentence marker with probmum marginal decoding, which Johnson (2007)
ability 1 and does not transition further. In our exeports performs better than Viterbi decoding.
periments we use the bitag HMM, in which each
statet; depends only on state ;. 2
The classic method of training HMMs for part- Clark (2003) presents several part-of-speech in-
of-speech induction is the Baum-Welch (Baumguction systems which incorporate morphological
1972) variant of the Expectation-Maximizationas well as distributional information. We use the

3 Systemswith Morphology

330



implementation found on his website. Accuracy, given some mapping between the set
_ of induced classes and the gold standard labels, is
2.3.1 Ney-Essen with Morphology the number of words in the corpus that have been
The simplest model is based on work by (Ney etmarked with the correct gold label divided by the
al., 1994). It uses a bitag HMM, with the restric-total number of word tokens. The main challenge
tion that each word type in the vocabulary can onlyacing these metrics is deciding how to to map each
be generated by a single part-of-speech. Thus tieduced part-of-speech class to a gold tag. One
tag induction task here reduces to finding a multioption is what Johnson (2007) calls “many-to-one”
way partition of the vocabulary. The learning al-(M-to-1) accuracy, in which each induced tag is
gorithm greedily reassigns each word type to th&beled with its most frequent gold tag. Although
part-of-speech that results in the greatest increa#igis results in a situation where multiple induced
in likelihood. tags may share a single gold tag, it does not punish
In order to incorporate morphology, Clarka system for providing tags of a finer granularity
(2003) associates with each part-of-speech a HMRnan the gold standard.
with letter emissions. The vocabulary is gener- In contrast, “one-to-one” (1-to-1) accuracy re-
ated by generating a series of word types fromstricts each gold tag to having a single induced
the letter HMM of each part-of-speech. These catag. The mapping typically is made to try to give
model very basic concatenative morphology. Théhe most favorable mapping in terms of accuracy,
parameters of the HMMs are estimated by runningypically using a greedy assignment (Haghighi and
a single iteration of Forward-Backward after eactKlein, 2006). In cases where the number of gold
round of reassigning words to tags. In our expertags is different than the number of induced tags,
iments we evaluate both the model without morsome must necessarily remain unassigned (John-
phology (NE in our experiments), and the morphoson, 2007).
logical model, trying both 5 and 10 states inthe let- In addition to accuracy, there are several infor-
ter HMM (NEMorph5, NEMorph10 respectively). mation theoretic criteria presented in the literature.
These escape the problem of trying to find an ap-
232 Two-Level HMM propriate mapping between induced and gold tags,
The final part-of-speech inducer we try fromat the expense of perhaps being less intuitive.
Clark (2003) is a two-level HMM. This is similar  Let 7; be the tag assignments to the words
to the previous model, except it lifts the restrictionin the corpus created by an unsupervised tag-
that a word appear under only one part-of-speeclger, and let7;; be the gold standard tag as-
Alternatively, one could think of this model as asignments. Clark (2003) uses Shannon’s condi-
standard HMM, whose emission distributions intional entropy of the gold tagging given the in-
corporate a mixture of a letter HMM and a standuced taggingH (T;|T7). Lower entropy indi-
dard multinomial. Training uses a simple variatiorcates less uncertainty in the gold tagging if we al-
of Forward-Backward. In the experiments in thiseady know the induced tagging. Freitag (2004)
paper, we initialize the mixture parameters to .Suses the similar “cluster-conditional tag perplex-
and try 5 states in the letter HMM. We refer to thisity” which is merely exp(H (T¢|T7))?.  Since

model as 2HMM. cluster-conditional tag perplexity is a monotonic
_ function of H (T¢|T7), we only report the latter.
2.4 TagEvaluation Goldwater and Griffiths (2007) propose using

Obijective evaluation in any clustering task is althe Variation of Information of Meila (2003):

ways difficult, since there are many ways to de-

fine good clusters. Typically it involves a mix- VI(Tg;Tr) = H(Te|Tr) + H(TT|T)

ture of subjective evaluation and a comparison of

the clusters to those found by human annotator¥.l represents the change in information when go-
In the realm of part-of-speech induction, there areng from one clustering to another. It holds the
several common ways of doing the latter. Thesaice properties of being nonnegative, symmetric,
split into two groups: accuracy and information-as well as fulfilling the triangle inequality.

theoretic criteria. -
- %Freitag (2004) measures entropy in nats, while we use
Yhttp:/ww.cs.rhul.ac.uk/home/alexc/pos.tar.gz bits. The difference is a constant factor.
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3 Grammar Induction present an alternative estimation technique for

. . CCM which uses annealing to try to escape local
In addition to parts-of-speech, we also want to d'sr"naxima. Bod (2006) describes an unsupervised

cover de.eper syntactic relationship_s._ Grammar iré’ystem within the Data-Oriented-Parsing frame-
du_ctlon _'S the problem of _determlm_ng thes_e "®work. Several approaches try to learn structure
lationships in an unsupervised fashion. This 9a8irectly from raw text. Seginer (2007) has an in-
be thought of more concretely as an unsuperwse(:':}emental parsing approach using a novel repre-
par§|ng tgrs]kf. As therbe aLe many languages and dQéntation called common-cover-links, which can
mains with few treebank resources, systems thﬁte converted to constituent brackets. Van Zaanen

can learn syntactic structure from unlabeled dat&om),s ABL attempts to align sentences to deter-

would be valuable. Most work on this problem hag,ine \hat sequences of words are substitutable.
focused on either dependency induction, which we The work closest in spirit to this paper is Cramer

discuss in Section 3.2, or on constituent inductio 007), who evaluates several grammar induction
which we examine in ion. ' )

The Grammar Incli tTie :ext tserztlovr\; ¢ Fystems on the Eindhoven corpus (Dutch). One
uction systems We Uuse to evag; ;g experiments compares the grammar induc-
uate the above taggers are the Constltuent—Contq>|%n performance of these systems starting with
Model (CCM), the Dependency Model with Va-

lence (DMV), and a model which combines thérigfmm(dzli)co%(; ut(S)Ir;gethee;z?rtﬁ;?]:eechrﬁidsbgt:rfs_
two (CCM+DMV) outlined in (Klein and Man- ’ P y

) o : on manually-marked tags. However he does not
ning, 2002; Klein and Manning, 2004). evaluate to what degree better tagging performance

31 Constituent Grammar Induction leads to improvement in these systems.

Klein and Manning (2002) present a generativg , Dependency Grammar Induction
model for inducing constituent boundaries from

part-of-speech tagged text. The model first genef dependency tree is a directed graph whose nodes
ates a bracketingg = {Bij}1<i<j<n’ which spec- are words in the sentence. A directed edge exists
ifies whether each spap, 7)in the sentence is a between two words if the target word (argument) is
constituent or a distituent. Next, given the cona dependent of the source word (head). Each word
stituency or distituency of the spah;, the model token may be the argument of only one head, but a
generates the part-of-speech yield of the spdtead may have several arguments. One word is the
t;...t;, and the one-tag context window of the spafiead of the sentence, and is often thought of as the
ti1,tj41. P(ti..t;|Bi;) and P(t;_1,t;41|B;;) argument of a virtual “Root” node.
are multinomial distributions. The model is trained Klein and Manning (2004) present their Depen-
using EM. dency Model with Valence (DMV) for the un-
We evaluate induced constituency trees againsupervised induction of dependencies. Like the
those of the Penn Treebank using the versions ebnstituency model, DMV works from parts-of-
unlabeled precision, recall, and F-score used kspeech. Under this model, for a given head,
Klein and Manning (2002). These ignore triv-they first generate the parts-of-speech of the argu-
ial brackets and multiple constituents spanning theaents to the right of, and then those to the left.
same bracket. They evaluate their CCM systersenerating the arguments in a particular direction
on the Penn Treebank WSJ sentences of length boeaks down into two parts: deciding whether to
or less, using part-of-speech tags induced by ti&fop generating in this direction, and if not, what
baseline system of Schiitze (1995). They repopart-of-speech to generate as the argument. The ar-
that switching to induced tags decreases the overgliment decision conditions dnand the direction.
bracketing F-score from 71.1 to 63.2, although théhe stopping decision conditions on this and also
recall of VP and S constituents actually improveson whether: has already generated an argument in
Additionally, they find that NP and PP recall de-this direction, thereby capturing the limited notion
creases substantially with induced tags. They aof valence from which the model takes its name.
tribute this to the fact that nouns end up in manyt is worth noting that this model can only repre-
induced tags. sent projective dependency trees, i.e. those without
There has been quite a bit of other work orerossing edges.
constituency induction. Smith and Eisner (2004) Dependencies are typically evaluated using di-
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Tagging Metrics Grammar Induction Metrics
Tagger No. Tags CCM CCM+DMV DMV
1-to-1 | H(T¢|Tr) | M-to-1 | VI UF1 DA [ UA [ UFI DA [ UA

Gold 1.00 0.00 1.00 | 0.00 || 71.50 || 52.90 | 67.60 | 56.50 || 45.40 | 63.80
HMM-EM 10 0.39 2.67 041 439 5889 || 40.12 | 59.26 | 59.43 || 36.77 | 57.37
HMM-EM 20 0.43 2.28 0.48 | 454 || 57.31 || 51.16 | 64.66 | 61.33 || 38.65 | 58.57
HMM-EM 50 0.36 1.83 0.58 | 492 || 56.56 || 48.03 | 63.84 | 58.02 || 39.30 | 58.84
HMM-VB 10 0.40 2.75 0.41]| 4.42 || 39.05 | 27.72 | 52.84 | 58.64 || 23.94 | 51.64
HMM-VB 20 0.40 2.63 0.43| 465 || 37.60 | 33.77 | 55.97 | 40.30 || 30.36 | 51.53
HMM-VB 50 0.38 2.70 0.42 | 5.01 || 34.68| 37.29 | 57.72| 39.82 || 29.03 | 50.50
NE 10 0.34 2.74 0.40 | 4.32 ]| 28.80 ] 20.70 | 50.60 | 32.70 || 26.20 | 48.90
NE 20 0.48 2.02 0.55| 3.76 || 32.50 || 36.00 | 59.30 | 40.60 || 32.80 | 54.00
NEMorph10 10 0.44 2.46 0.47 | 3.74 || 29.03 || 25.99 | 53.80 | 34.58 || 26.98 | 48.72
NEMorph10 20 0.48 1.94 0.56 | 3.65 || 31.95] 35.85| 57.93| 38.22 || 30.45| 50.72
NEMorph10 50 0.47 1.24 0.72 | 3.60 || 31.07 || 36.29 | 57.76 | 39.28 || 31.50 | 52.83
NEMorph5 10 0.45 2.50 0.47 | 376 || 29.04 || 22.72 | 51.58 | 32.67 || 23.62 | 47.89
NEMorph5 20 0.44 2.02 0.56 | 380 || 31.94 || 24.17 | 52.43| 32.90 || 22.41 | 47.17
NEMorph5 50 0.47 127 072 | 364 || 31.39 || 38.63 | 59.44 | 40.23 || 34.26 | 54.63
2HMM 10 0.38 2.78 0.41| 455 | 31.63 | 36.35| 58.87 | 44.97 || 28.43 | 49.32
2HMM 20 0.41 2.35 0.48 | 4.71 || 42.39 | 4391 | 60.74 | 50.85 || 29.32 | 50.69
2HMM 50 0.37 1.92 0.58 | 5.11 || 41.18 || 49.94 | 64.87 | 57.84 || 39.24 | 59.14
SVD 10 0.31 3.07 0.34 | 499 || 37.77 || 27.64 | 49.56 | 36.46 || 20.74 | 45.52
SVD 20 0.33 2.73 0.40 | 499 || 37.17 ] 30.14 | 51.66 | 37.66 || 22.24 | 46.25
SVD 50 0.34 2.37 0.47 | 5.18 || 36.87 || 37.66 | 56.49 | 52.83 || 22.50 | 46.52
SVD 100 0.34 2.03 0.53 | 5.37 || 45.46 || 41.68 | 58.83 | 64.20 || 20.81 | 44.36
SVD 200 0.32 1.72 0.59 | 5.59 || 61.90 || 34.79 | 52.25| 59.93 || 22.66 | 42.30

Table 1: The performance of the taggers regarding both tdggeammar induction metrics on WSJ
sections 0-10, averaged over 10 runs. Bold indicates th#t kgas within 10 percent of the best-scoring
induced system for a given metric.

rected and undirected accuracy. These are the tfte models when run off of induced tags.
tal number of proposed edges that appear in the
gold tree divided by the total number of edges (thd Experiments

number of words in the sentence). Directed accu-

racy gives credit to a proposed edge if it is in the/V€ induce tags with each system on the Penn Tree-
bank Wall Street Journal (Marcus et al., 1994), sec-

gold tree and is in the correct direction, while undi-- : ]
rected accuracy ignores the direction. tions 0-10, which contain 20,260 sentences. We
_ _ vary the number of tags (10, 20, 50) and run each
Klein and Manning (2004) also present a modelystem 10 times for a given setting. The result of
which combines CCM and DMV into a single gach ryn is used as the input to the CCM, DMV,

model, which we show as CCM+DMV. In their ang ccM+DMV systems. While the tags are in-
experiments, this model performed better on Dot ceqd from all sentences in the section, following

the cgnstituency and dependen_cy induction_ta_skﬁw practice in (Klein and Manning, 2002; Klein
As with CCM, Klein and Manning (2004) simi- anq Manning, 2004), we remove punctuation, and
larly evaluate the combined CCM+DMV systemcqnsider only sentences of length not greater than
using tags induced with the same method. Agaifg i our grammar induction experiments. Tag-

they find that overall bracketing F-score decreasangs are evaluated after punctuation is removed,
from 77.6 to 72.9 and directed dependency accyyi pefore filtering for length.

racy measures decreases from 47.5 to 42.3 when-l-O explore the relationship between tagging

switching to induced tags from gold. However for, atics and the resulting performance of grammar
gach metric, the systems still do quite well W'thinduction systems, we examine each pair of tag-
induced tags. ging and grammar induction metrics. Consider the
As in the constituency case, Smith (2006Yollowing two examples: DMV directed accuracy
presents several alternative estimation procedures. H(T|T7) (Figure 1), and CCM f-score vs.
for DMV, which try to minimize the local maxi- variation of information (Figure 2). These were se-
mum problems inherent in EM. It is thus possibldected because they have relatively high magnitude
these methods might yield better performance fors. From these plots it is clear that although there
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may be a slight correspondence, the relationshigs Grammar Induction Metrics
y 9 P ’ H Tagging [ CCM CCM+DMV DMV
are weak at best. Metrics [ UFT | DA [ UA [UFT | DA [ UA
Each tagai q induct id Lol -0.22] -0.04] 0.05] -0.13] 0.13 0.12
~E=ach tagging and grammar inauction metrG -1 -0.09] 0.17] 0.24 0.03] 0.26/ 0.25
gives us a ranking over the set of taggings of thé A(T¢[T;)] 0.01]] 0.21] 0.27] 0.07|| 0.29] 0.28
data generated over the course of our experimentsV! -0.25]| -0.17] -0.06] -0.20] 0.07] 0.07

These are ordered from best to worst according t? ble 2 Kendall'sr. bet ; q
the metric, so for instancél (7 |77) would give . avie - mendalisr, between tag and grammar
induction criteria.

highest rank to its lowest value. We can com-
pare the two rankings using Kendal's(see Lap-
ata (2006) for an overview), a nonparametric meat.1 Supervised Experiments

sure of correspondence for rankings.measures Qne question we might ask is whether these tag-
the difference between the number of concordarfing metrics capture information relevant to any
pairs (items the two rankings place in the same oparsing task. We explored this by experimenting
der) and discordant pairs (those the rankings plaggith a supervised parser, training off trees where
in opposite order), divided by the total number ofhe gold parts-of-speech have been removed and
pairs. A value of 1 indicates the rankings have pefeplaced with induced tags. Our expectation was
fect correspondence, -1 indicates they are in th@at the brackets, the head propagation paths, and
opposite order, and 0 indicates they are indepekhe phrasal categories in the training trees would
dent. Ther values are shown in Table 2. Thepe sufficient to overcome any loss in information
scatter-plot in Figure 1 shows thewith the great- that the gold tags might provide. Additionally it
est magnitude. However, we can see that eveas possible the induced tags would ignore rare
these rankings have barely any relationship. parts-of-speech such as FW, and make better use

An objection one might raise is that the lack 01‘0f the available tags, perhaps using new distribu-

correspondence reflects poorly not on these metf9$al cr;1|.ues né)t in the %r_'?'réal r:agzh ik P
rics, but upon the grammar induction systems we ho t_'sk egoo\ge modife ;fe ; argla arsfer
use to evaluate them. There might be somethindharmiak, ) to train off induced parts-of-

about these models in particular which yields thes%peeCh' The Charniak parser is a lexicalized PCFG

low correlations. For instance these grammar irparser for which the part-of-speech of a head word

ducers all estimate their models using EM, whictt]S adkey ?]Spfe‘:t Ofr']ts mcl)(cjiel. Du;mg tralrr]nng, the
can get caught easily in a local maximum. ea -paths from the gold part-of-speech tags are
retained, but we replace the tags themselves.

To this possibility, we respond by pointing to We ran experiments using the bitag HMM from
performance on gold tags, which is consistenthBection 2.2 trained using EM, as well as with the
high for all grammar induction metrics. There isSchiutze SVD tagger from Section 2.1. The parser
clearly some property of the gold tags which is exwas trained on sections 2-21 of the Penn Treebank
ploited by the grammar induction systems even ifor training and section 24 was used for evaluation.
the absence of better estimation procedures. This
property is not reflected in the tagging metrics. As before we calculated scores between each
. tagging metric and supervised f-score. Unlike the
The scores for each system for tagging an nsupervised evaluation where we used the metric

grammar induction, averaged over the 10 runs, a5F1, we use the standard EVALB calculation of

shown in Table 1. Additionally, we mclud(_ed runSunlabeled f-score. The results are shown in Table
of the SVD-tagger for 100 and 200 tags, since runs

ning this system is st practicgl with these num- .The contrast with the unsupervised case is vast
bers of tags. The Ney-Essen with Morpholpgy tag\7vith very highrs for both accuracy metrics. Con-
gers perform at or near the top on the various ta%—

. trics. but not well on th ind ider f-score vs. many-to-one, plotted in Figure 3.
glngtmi fics, but no V\II—|eMI(\)/InEMe gramrr;ar mfuc'The correspondence here is very clear: taggings
on tasks on average. “EMSeems fo periorm, high accuracy do actually reflect on better
on average quite well on all the grammar mductlorg

. . arser performance. Note, however, that the corre-
tasks, while the SVD-based systems yield the to P

bracketing F-scores. making use of larger n mberéaondence between the information theoretic mea-
of tags ng ' ng u gernu sures and parsing performance is still rather weak.
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Table 3: Kendall'st, between tag induction cri-
teria and supervised parsing unlabeled bracketing
F-score.

Interestingly, parsing performance and speed
does degrade considerably when training off in-
duced tags. We are not sure what causes this. One
possibility is in the lexicalized stage of the parser,
where the probability of a head word is smoothed
primarily by its part-of-speech tag. This requires
that the tag be a good proxy for the syntactic role
of the head. In any case this warrants further in-
vestigation.

5 Conclusion and Future Work

In this work, we found that none of the most com-
mon part-of-speech tagging metrics bear a strong
relationship to good grammar induction perfor-
mance. Although our experiments only involve
English, the poor correspondence we find between
the various tagging metrics and grammar induc-
tion performance raises concerns about their re-
lationship more broadly. We additionally found
that while tagging accuracy measures do corre-
late with better supervised parsing, common infor-

Figure 2: CCM fscore vs. tagging variation of in-mation theoretic ones do not strongly predict bet-

formation.
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ter performance on either task. Furthermore, the
supervised experiments indicate that informative
part-of-speech tags are important for good parsing.

The next step is to explore better tagging met-
rics that correspond more strongly to better gram-
mar induction performance. A good metric should
use all the information we have, including the gold
trees, to evaluate. Finally, we should explore gram-
mar induction schemes that do not rely on prior
parts-of-speech, instead learning them from raw
text at the same time as deeper structure.
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