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Abstract

Much previous work has investigated weak
supervision with HMMs and tag dictionar-
ies for part-of-speech tagging, but there
have been no similar investigations for the
harder problem of supertagging. Here, I
show that weak supervision for supertag-
ging does work, but that it is subject to
severe performance degradation when the
tag dictionary is highly ambiguous. I show
that lexical category complexity and infor-
mation about how supertags may combine
syntactically can be used to initialize the
transition distributions of a first-order Hid-
den Markov Model for weakly supervised
learning. This initialization proves more
effective than starting with uniform tran-
sitions, especially when the tag dictionary
is highly ambiguous.

1 Introduction

Supertagging involves assigning words lexical en-
tries based on a lexicalized grammatical theory,
such as Combinatory Categorial Grammar (CCG)
(Steedman, 2000) Tree-adjoining Grammar (Joshi,
1988), or Head-driven Phrase Structure Grammar
(Pollard and Sag, 1994). Supertag sets are larger
than part-of-speech (POS) tag sets and their ele-
ments are generally far more articulated. For ex-
ample, the English verb join has the POS VB and
the CCG category ((Sp\NP)/PP)/NP in CCG-
bank (Hockenmaier and Steedman, 2007). This
category indicates that join requires a noun phrase
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to its left, another to its right, and a prepositional
phrase to the right of that.

Supertags convey such detailed syntactic sub-
categorization information that supertag disam-
biguation is referred to as almost parsing (Banga-
lore and Joshi, 1999). Standard sequence predic-
tion models are highly effective for supertagging,
including Hidden Markov Models (Bangalore and
Joshi, 1999; Nielsen, 2002), Maximum Entropy
Markov Models (Clark, 2002; Hockenmaier et al.,
2004; Clark and Curran, 2007), and Conditional
Random Fields (Blunsom and Baldwin, 2006).
The original motivation for supertags—parse pre-
filtering for lexicalized grammars—of Bangalore
and Joshi (1999) has been realized to good effect:
the supertagger of Clark and Curran (2007) pro-
vides staged n-best lists of multi-tags that dramat-
ically improve parsing speed and coverage without
much loss in accuracy. Espinosa et al. (2008) have
shown that hypertagging (predicting the supertag
associated with a logical form) can improve both
speed and accuracy of wide-coverage sentence re-
alization with CCG. Supertags have gained fur-
ther relevance as they are increasingly used as fea-
tures for other tasks, including machine translation
(Birch et al., 2007; Hassan et al., 2007).

Supertaggers typically rely on a significant
amount of carefully annotated sentences. As with
many problems, there is pressing need to find
strategies for reducing the amount of supervision
required for producing accurate supertaggers, but
as yet, no one has explored the use of weak super-
vision for the task. In particular, there are many di-
alog systems which rely on hand-crafted lexicons
that both provide a starting point for bootstrapping
a supertagger and which could benefit greatly from
supertag pre-parse filter. For example, the dialog
system used by Kruijff et al. (2007) uses a hand-
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crafted CCG grammar for OpenCCG (White and
Baldridge, 2003). It is important to stress that there
are many such uses of CCG and related frame-
works which do not rely on first annotating (even a
small number of) sentences in a corpus: these de-
fine a lexicon that maps from words to categories
(supertags) for a particular domain/application.

This scenario is a natural fit for learning taggers
from tag dictionaries using hidden Markov mod-
els with Expectation-Maximization (EM). Here,
I investigate such weakly supervised learning for
supertagging and demonstrate the importance of
proper initialization of the tag transition distribu-
tions of the HMM. In particular, such initializa-
tion can be done using inherent properties of the
CCG formalism itself regarding how categories'
may combine. Informed initialization should help
with supertagging for two reasons. First, cate-
gories have structure—lacking in POS tags—waiting
to be exploited. For example, it is far more likely
a priori to see the category sequence (S\NP)/NP
NP/N than the sequence S/S NP\NP. Given the
categories for a word, this information can be used
to influence our expectations about categories for
adjacent words. Second, this kind of information
truly matters for the task: a key aspect of supertag-
ging that differentiates it from POS tagging is that
the contextual information is much more important
for the former. Lexical probabilities handle most
of the ambiguity for POS tagging, but supertags
are inherently about context and, furthermore, lex-
ical ambiguity is much greater for supertagging,
making lexical probabilities less effective.

I start by defining a distribution over lexical
categories and then use this distribution as part
of creating a CCG-informed transition distribution
that appropriately breaks the symmetry of uniform
HMM initialization. After describing how these
components are included in the HMM, I describe
experiments with CCGbank varying the ambiguity
of the lexicon provided. I show that using knowl-
edge about the formalism consistently improves
performance, and is especially important as cate-
gorial ambiguity increases.

2 Lexical category distribution

The categories of CCG are an inductively defined
set containing elements that are either atomic ele-
ments or (curried) functions specifying the canon-

"For the rest of the paper, I will refer to categories rather
supertags, but will still refer to the task as supertagging.
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ical linear direction in which they seek their argu-
ments. Some example entries from CCGbank are:

the := NP, /N

of := (NP\NP)/NP

of := ((S\NP)\(S\NP)/NP

were := (Sqcl\NP)/(Spss\NP)

buy = (de\NP)/NP

buy := ((((Sb\NP)/PP)/PP)/(Saqj\NP)) /NP
Words can be associated with multiple categories;
the distribution over these categories is typically
quite skewed. For example, the first entry for buy
occurs 33 times in CCGbank, compared with just
once for the second. That the simpler category is
more prevalent is unsurprising: a general strategy
when creating CCG lexicons is to use simpler cate-
gories whenever possible. This points to the possi-
bility of defining distributions over CCG lexicons
based on measures of the complexity of categories.
I use a simple distribution here: given a lexicon L,
the probability of a category 1 is inversely propor-
tional to its complexity:

-1
complexity(c;)
1

A=
djec compleity(c;)

)

Here, a very simple complexity measure is
assumed: the number of subcategories (to-
kens) contained in a category.>? For example,
((S\NP)\(S\NP)/NP contains 9: S (twice), NP
(thrice), S\NP (twice), (S\NP)\(S\NP), and
((S\NP)\(S\NP)/NP.

The tag transition distribution defined in the next
section uses A to bias transitions toward simpler
categories, e.g., preferring the first category for
buy over the second. Performance when using A
is compared to using a uniform distribution.

Other distributions could be given, e.g., one
which gives more mass to adjunct categories such
as (S\NP)\(S\NP) than to ones which are oth-
erwise similar but do not display such symmetry,
like (S/NP)\(NP\S). However, the most impor-
tant thing for present purposes is that simpler cate-
gories are more likely than more complex ones.

This distribution imposes no internal struc-
ture on the likelihood of a lexicon. As far
as A is concerned, lexicons can as well have
the category (S\NP)\NP for transitive verbs and
((S/NP)/NP)/NP for ditransitive verbs, even
though this is a highly unlikely pattern since we

This worked better than using category arity or number
of unique subcategory types.



Vinken will join the  board as non—ezxecutive director
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Figure 1: Normal form CCG derivation, using only application rules.

would expect both types of verbs to seek their ar-
guments in the same direction. Languages also
tend to prefer lexicons with one or the other slash
direction predominating (Villavicencio, 2002). In
the future, it would be interesting to consider
Bayesian approaches that could encode more com-
plex structure and assign priors over distributions
over lexicons, building on these observations.

An aspect of CCGbank that relevant for A; is
that some categories actually are not true cate-
gories. For example, many punctuation “cate-
gories” are given as LRB, ., :, etc. In most
grammars, the category of ‘. is usually assumed
to be S\S. The grammatical behavior of such
pseudo-categories is handled via special rules in
the parsers of Hockenmaier and Steedman (2007)
and Clark and Curran (2007). I relabeled three of
these: , to NP\NP, . to S\S and ; to (S\S)/S. A
single best change was not clear for others such as
LRB and :, so they were left as is.

3 Category transition distribution

CCG analyses of sentences are built up from lex-
ical categories combining to form derived cate-
gories, until an entire sentence is reduced to a sin-
gle derived category with corresponding depen-
dencies. One of CCG’s most interesting linguis-
tic properties is it allows alternative constituents.
Consider the derivations in Figures 1 and 2, which
show a normal form derivation (Eisner, 1996) and
fully incremental derivation, respectively. Both
produce the same dependencies, guaranteed by the
semantic consistency of CCG’s rules (Steedman,
2000). This property of CCG of supporting mul-
tiple derivations of the same analysis has been
termed spurious ambiguity. However, the extra
constituents are anything but spurious: they are
implicated in a range of CCG (along with other
forms of categorial grammar) linguistic analyses,
including coordination, long-distance extraction,
intonation, and incremental processing.

This all boils down to associativity: just as
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(1+(4+2)=((14+4)+2)=7,CCG ensures
that (Ed-(saw-Ted)) = ((Ed-saw)-Ted) = S Such
multiple derivations arise when adjacent categories
can combine through either application or compo-
sition. Thus, we would expect that the lexical cat-
egories needed to analyze an entire sentence will
more often than not be able to combine with their
immediate neighbors. For example, six of seven
pairs of adjacent lexical categories in the sentence
in Figure 1 can combine. Only N PP /NP of board
as cannot.’

This observation can be used in different ways
by different models for CCG supertagging. For
example, discriminative tagging models could in-
clude features that capture whether or not the cur-
rent supertag can combine with the previous one
and possibly via which CCG rule. Here, I show
how it can be used to provide a non-uniform start-
ing point for the transition distributions 6 i in a
first-order Hidden Markov Model. This is similar
to how Grenager et al. (2005) use diagonal initial-
ization in an HMM for field segmentation to en-
courage the model to remain in the same state (and
thus predict the same label for adjacent words).
For CCG supertagging, the initialization should
discourage diagonalization and establish a prefer-
ence for some transitions over others.

There are many ways to define such a starting
point. The simplest would be to reserve a small
part of the mass spread uniformly over category
pairs which cannot combine and then spread the
rest of the mass uniformly over those which can.
However, we can provide a more refined distri-
bution, W;;, by incorporating the lexical category
distribution A; defined in the previous section to
weight these transitions according to this further
information. In a similar manner to Grenager et al.
(2005), I define ¥ as follows:

31 make the standard assumption that type-raising is per-
formed in the lexicon, so the possibility of combining these
through type-raising plus composition is not available.
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Figure 2: Incremental CCG derivation, using both application and composition (B) rules.
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where £(i,7) is an indicator function that returns
1 if categories ¢; and c¢; can combine when ¢; im-
mediately precedes c;, o is a global parameter that
specifying the total probability of transitions that
are combinable from ¢. Each j receives a propor-
tion of ¢ according to its lexical prior probability
over the sum of the lexical prior probabilities for
all categories that combine with . For the experi-
ments in this paper, o was set to .95. For the mod-
els referred to as YU and WU-EM in section 5, the
uniform lexical probability 1/|C| is used for A;.
For k(i,j), I use the standard rules assumed
for CCGbank parsers: forward and backward
application (>, <), order-preserving com-
position (>B, <B), and backward -crossed
composition (<B,) for S-rooted categories.

Thus, #(NP,S\NP)=1, #(S/NP,NP/N)=1,
k((S\NP)/NP, (S\NP)\(S\NP))=1 and
k(S/NP,NP\NP)=0. For application, left-

ward and rightward arguments are handled
separately by assuming that it would be possi-
ble to consume all preceding arguments of the
first category and all following arguments of
the second. So, x((S/NP)\S,NP/N)=1 and
x(NP, (S\NP)/NP)=1. Unification on categories
is standard (so x(NP[nb],S\NP)=1), except that
N unifies with NP only when N is the argument:
k(N,S\NP)=1, but x(NP/N,NP)=0. This is
to deal with the fact that CCGbank represents
many words with N (e.g., Mr|N/N Vinken|N
is|(S[dcl]\NP)/NP) and assumes that a parser will
include the unary type changing rule N—NP.

The HMM also has initial and final probabili-
ties; distributions can be defined based on which
categories are likely to start or end a sentence. For

60

this, I assume only that categories which seek ar-
guments to the left (e.g., S\NP) are less likely
at the beginning of a sentence and those which
seek rightward arguments are less likely at the end.
The initializations for these are defined similarly
to the transition distribution, substituting functions
noLeftArgs(i) and noRight Args(i) for k(i, ).

4 Model

A first-order Hidden Markov Model (bitag HMM)
is used for bootstrapping a supertagger from a lex-
icon. See Rabiner (1989) for an extensive intro-
duction to and discussion of HMMs. There are
several reasons why this is an attractive tagging
model here. First, though extra context in the
form of tritag transition distributions or other tech-
niques can improve supervised POS tagging accu-
racy, the accuracy of bitag HMMs is not far behind.
The goal here is to investigate the relative gains
of using CCG-based information in weakly super-
vised HMM learning. Second, the expectation-
maximization algorithm for bitag HMMs is effi-
cient and has been shown to be quite effective for
acquiring accurate POS taggers given only a lex-
icon (tag dictionary) and certain favorable condi-
tions (Banko and Moore, 2004). Third, the model’s
simplicity makes it straightforward to test the idea
of CCGe-initialization on tag transitions.

Dirichlet priors can be used to bias HMMs to-
ward more skewed distributions (Goldwater and
Griffiths, 2007; Johnson, 2007), which is espe-
cially useful in the weakly supervised setting con-
sidered here. Following Johnson (2007), I use vari-
ational Bayes EM (Beal, 2003) during the M-step
for the transition distribution:

f(Eni ] + o)

1+1
% = R+ O] % a) ©)
fo) = expp®)) @



- glv—13) ifvo>7
vlv) = { Yv+1)— % 0.W. ®)
~ logla) + . 7
9(x) =~ 1og(@) + 505 ~ 56050
31 127
(6)

1806426~ 3072028

where V is the set of word types, ¢ is the digamma
function (which is approximated by g), and «; is
the hyperparameter of the Dirichlet priors. In all
experiments, the a; parameters were set symmet-
rically to .005.

For experiments using the transition prior W,
the initial expectations of the model were set as
E[nm} = |5Z| X \IJ]"L and E[nz] = ‘gz|, where 51
is the set of emissions for category c;. The uni-
form probability \%I was used in place of ¥, for
standard HMM initialization.

The emission distributions use standard EM ex-
pectations with more mass reserved for unknowns
for tags with more emissions as follows:*

Jli

E[nz,k] + |(€z| X \Tl/|
Elni] + |&il

I+1
Prji

(7)

The Viterbi algorithm is used for decoding.

5 Experiments

CCGbank (Hockenmaier and Steedman, 2007) is a
translation of phrase structure analyses of the Penn
Treebank into CCG analyses. Here, I consider
only the lexical category annotations and ignore
derivations. The standard split used for weakly su-
pervised HMM tagging experiments (Banko and
Moore, 2004; Wang and Schuurmans, 2005) is
used: sections 0-18 for training (frain), 19-21 for
development (dev), and 22-24 for testing (fest). All
parameters and models were developed using dev.
The test set was used only once to obtain the per-
formance figures reported here.

Counts for word types, word tokens and sen-
tences for each data set are given in Table 1. In
train, there are 1241 distinct categories, the am-
biguity per word type is 1.69, and the maximum
number of categories for a single word type is 126.
This is much greater than for POS tags in CCG-
bank, for which there are 48 POS tags with an av-

*1 also experimented with a Dirichlet prior on the emis-
sions, but it performed worse. Using a symmetric prior
was actually detrimental, while performance within a percent
of those achieved with the above update was achieved with
Dirichlet hyperparameters set relative to |€;|/|V].
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Dataset | Types Tokens Sentences
train 43063 893k 38,015
dev 14961 128k 5484
test 13898 127k 5435

Table 1: Basic statistics for the datasets.

erage ambiguity of 1.17 per word and a maximum
of 7 tags in train.’

The set of supertags was not reduced: any cat-
egory found in the data used to initialize a lexi-
con was considered. This is one of the advan-
tages of the HMM over using discriminative mod-
els, where typically only supertags seen at least 10
times in the training material are utilized for effi-
ciency (Clark and Curran, 2007). Ignoring some
supertags makes sense when building supervised
supertaggers for pre-parse filtering, but not for
learning from lexicons, where we cannot assume
we have such frequencies.

For supervised training with the HMM on train,
the performance is 87.6%. This compares to
91.4% for the c&C supertagger. The accuracy of
the HMM, though quite a bit lower than that of
C&C, is still quite good, indicating that it is an ad-
equate model for the task. Note also that it uses
only the words themselves and does not rely on
POS tags. The performance of the Cc&C tagger
was obtained by training the c&C POS tagger on
the given dataset and tagging the evaluation mate-
rial with it. Finally, the HMM trains in just a few
seconds as opposed to over an hour.®

Five different weakly supervised scenarios are
evaluated: (1) standard EM with 50 iterations
(EM), (2) ¥ initialization with uniform lexical
probabilities w/o EM (¥U), (3) ¥ with A proba-
bilities w/o EM (VA), (4) ¥ with uniform lexical
probabilities and 10 EM iterations, and (5) ¥ with
A and 10 EM iterations.” These scenarios com-
pare the effectiveness of standard EM with the use
of grammar informed transitions; these in turn are
of two varieties — one using a uniform lexical prior
or one that is biased in favor of less complex cate-
gories according to A.

As Banko and Moore (2004) discovered when

Note that the POS tag information is not used in these
experiments, except for by the C&C tagger.

®Tt should be stressed that the goal of this paper is not to
compete on supervised performance with C&C; instead, this
comparison shows that the HMM supervised performance is
reasonable and is thus relevant for bootstrapping.

"The number of iterations for standard and grammar in-
formed iteration were determined by performance on dev.



reimplementing several previous HMMs for POS
tagging, the lexicons had been limited to contain
only tags occurring above a particular frequency.
For POS tagging, this keeps a cleaner lexicon that
avoids errors in annotated data (such as the tagged
as VB) and rare tags (such as a tagged as SYM).
When learning from a lexicon alone, such elements
receive the same weight as their other (correct or
more fundamental) tags in initializing the HMM.
The problem of rare tags turns out to be very im-
portant for weakly supervised CCG supertagging.®

To consider the effect of the CCG-based initial-
ization for lexicons with differing ambiguity, I use
tag cutoffs that remove any lexical entry containing
a category that appears with a particular word less
than X% of the time (Banko and Moore, 2004),
as well as using no cutoffs at all. Recall that the
goal of these experiments is to investigate the rela-
tive difference in performance between using the
grammar-based initialization or not, given some
(possibly hand-crafted) lexicon. Lexicon cutoffs
actually constitute a strong source of supervision
because they use tag frequencies (which would not
be known for a hand-crafted lexicon), so it should
be stressed that they are used here only so that this
relative performance can be measured for different
ambiguity levels.

Table 2 provides accuracy for ambiguous words
(and not including punctuation) for the five scenar-
ios, varying the cutoff to measure the effect of pro-
gressively allowing more lexical ambiguity (and
much rarer categories). The number of ambiguous,
non-punctuation tokens is 101,167.

The first thing to note is performance given only
the lexicon and the WU or WA initialization of
the transitions. These correspond to taggers which
have only been given the lexicon and have not uti-
lized any data to improve their estimates of the
transition and emission probabilities. Interestingly,
both do quite well with a clean lexicon: see the
columns under WU and WA. These indicate that
initializing the transitions based on whether cate-
gories can combine does indeed appropriately cap-
ture key aspects of category transitions. Further-
more, using the lexical category distribution (ZA)
to create the transition initialization provides a bet-
ter starting point than the uniform one (VU), espe-

8CCGbank actually corrects many errors in the Penn Tree-
bank, and does not suffer as much from mistagged examples.
However, there were two instances of an ill-formed category
((S[b]\NP)/NP)/ in ws 30595 for the words own and keep.
These were corrected to (S[b]\NP)/NP.

62

Cutoff | EM YU WA WVU-EM WVA-EM
1 774 73.1 747 80.0 79.6
.05 69.1 706 725 79.2 79.2
.01 60.2 622 650 754 76.7
.005 522 578 590 725 73.8
.001 413 455 482  63.0 67.6
None | 33.0 339 3738 52.9 56.1

Table 2: Performance on ambiguous word types
of the HMM with standard EM (uniform starting
transitions), just the initial ¥ transitions (VU and
WA), and EM initialized with YU and WA, for
lexicons with varied cutoffs. Note also that these
scores do not include punctuation.

cially as lexical ambiguity increases.

Next, note that both WU-EM and WA-EM beat
the randomly initialized EM for all cutoff levels.
For the 10% tag cutoff (the first row), there is an
absolute difference of over 2% for both.” As the
ambiguity increases, the grammar-informed ini-
tialization has a much stronger effect. In the ex-
treme case of using no cutoff at all (the None row
of Table 2), VU-EM and WA -EM beat EM by 19.9%
and 23.1%, respectively. Finally, using the lexical
category distribution A instead of a uniform one
is much more effective when there is more lexi-
cal ambiguity (e.g., compare the .01 through None
rows of the WU-EM and WA-EM columns), but
has a negligible effect with less ambiguity (rows
.05 and .01). This demonstrates that the grammar-
based initialization can be effectively exploited — it
is in fact crucial for improving performance when
we are given much more ambiguous lexicons.

The majority of errors with WA-EM involve
marking adjectives (N/N) as nouns (N) or vice
versa, and assigning the wrong prepositional cat-
egory (usually the simpler noun phrase post-
modifier (NP\NP)/NP instead of the verb phrase
modifier ((S\NP)\(S\NP))/NP. Both of these
kinds of errors, and others, could potentially be
corrected if the categories proposed by the tagger
were further filtered by an attempt to parse each
sentence with the categories.

6 Related work

The idea of using knowledge from the formalism
for constraining supertagging originates with Ban-

°For comparison with the performance of 87.6% for the
fully supervised HMM on all tokens, W-EM achieves 82.1%
and 58.9% using a cutoff of .1 or no cutoff, respectively.



galore and Joshi (1999). They used constraints
based on how elementary trees of Tree-Adjoining
Grammar could or could not combine as filters to
block out tags that do not fit in certain locations
in the string. My approach is different is sev-
eral ways. First, they dealt with fully supervised
supertagging; here I show that using this knowl-
edge is important for weakly supervised supertag-
ging where we are given only a tag dictionary (lex-
icon). Second, my approach encodes grammar-
based cues only as an initial bias, so categories are
never explicitly filtered. Finally, I use CCG rather
than TAG, which makes it possible to exploit a
much higher degree of associativity in derivations.
This in turn makes it easier to utilize prior knowl-
edge about adjacent contexts — precisely what is
needed for using the grammar to influence the tran-
sition probabilities of a bigram HMM.

On the other hand, Bangalore and Joshi (1999)
use constraints that act at greater distances than
I have considered here. For example, if one
wishes to provide a word with the category
((S\NP)/PP)/NP, then there should be a word
with a category which results in a PP two or more
words to its right — this is something which the
bigram transitions considered here cannot capture.
An interesting way to extend the present approach
would be to enforce such patterns as posterior con-
straints during EM (Graca et al., 2007).

Recent work considers a damaged tag dictionary
by assuming that tags are known only for words
that occur more than once or twice (Toutanova
and Johnson, 2007). A very interesting aspect of
this work is that they explicitly model ambiguity
classes to exploit commonality in the lexicon be-
tween different word forms, which could be even
more useful for supertagging.

In a grammar development context, it is often
the case that only some of the categories for a word
have been assigned. This is the scenario consid-
ered by Haghighi and Klein (2006) for POS tag-
ging: how to construct an accurate tagger given
a set of tags and a few example words for each
of those tags. They use distributional similarity of
words to define features for tagging that effectively
allow such prototype words to stand in for others.
This idea could be used with my approach as well;
the most obvious way would be to use prototype
words to suggest extra categories (beyond the tag
dictionary) for known words and a reduced set of
categories for unknown words.
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Other work aims to do truly unsupervised learn-
ing of taggers, such as Goldwater and Griffiths
(2007) and Johnson (2007). No tag dictionaries
are assumed, and the models are parametrized with
Dirichlet priors. The states of these models implic-
itly represent tags; however, it actually is not clear
what the states in such models truly represent: they
are (probably interesting) clusters that may or may
not correspond to what we normally think of as
parts-of-speech. POS tags are relatively inert, pas-
sive elements in a grammar, whereas CCG cate-
gories are the very drivers of grammatical analy-
sis. That is, syntax is projected, quite locally, by
lexical categories. It would thus be interesting to
consider the induction of categories with grammar-
based priors with such models.

7 Conclusion

I have shown that weakly supervised learning can
indeed be used to induce supertaggers from a lex-
icon mapping words to their possible categories,
but that the extra ambiguity in the supertagging
task over that of POS tagging makes performance
much more sensitive to rare categories that occur
in larger, more ambiguous lexicons. However, |
have also shown that the CCG formalism itself can
provide the basis for useful distributions over lexi-
cal categories and tag transitions in a bitag HMM.
By using these distributions to initialize the HMM,
it is possible to improve performance regardless of
the underlying ambiguity. This is especially im-
portant for reducing error when the lexicon used
for bootstrapping is highly ambiguous and con-
tains very rare categories.
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