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Abstract 
The paper presents a method for word sense 
disambiguation based on parallel corpora. The 
method exploits recent advances in word 
alignment and word clustering based on 
automatic extraction of translation equivalents 
and being supported by available aligned 
wordnets for the languages in the corpus. The 
wordnets are aligned to the Princeton 
Wordnet, according to the principles 
established by EuroWordNet. The evaluation 
of the WSD system, implementing the 
method described herein showed very 
encouraging results. The same system used in 
a validation mode, can be used to check and 
spot alignment errors in multilingually 
aligned wordnets as BalkaNet and 
EuroWordNet.  

1 Introduction 
Word Sense Disambiguation (WSD) is well-
known as one of the more difficult problems in 
the field of natural language processing, as noted 
in  (Gale et al, 1992; Kilgarriff, 1997; Ide and 
Véronis, 1998), and others. The difficulties stem 
from several sources, including the lack of means 
to formalize the properties of context that 
characterize the use of an ambiguous word in a 
given sense, lack of a standard (and possibly 
exhaustive) sense inventory, and the subjectivity 
of the human evaluation of such algorithms. To 
address the last problem, (Gale et al, 1992) argue 
for upper and lower bounds of precision when 
comparing automatically assigned sense labels 
with those assigned by human judges. The lower 
bound should not drop below the baseline usage 
of the algorithm (in which every word that is 
disambiguated is assigned the most frequent 

sense) whereas the upper bound should not be too 
restrictive” when the word in question is hard to 
disambiguate even for human judges (a measure 
of this difficulty is the computation of the 
agreement rates between human annotators). 

Identification and formalization of the 
determining contextual parameters for a word 
used in a given sense is the focus of WSD work 
that treats texts in a monolingual setting—that is, 
a setting where translations of the texts in other 
languages either do not exist or are not 
considered. This focus is based on the 
assumption that for a given word w and two of its 
contexts C1 and C2, if C1 ≡ C2 (are perfectly 
equivalent), then w is used with the same sense in 
C1 and C2. A formalized definition of context for 
a given sense would then enable a WSD system 
to accurately assign sense labels to occurrences 
of w in unseen texts. Attempts to characterize 
context for a given sense of a word have 
addressed a variety of factors: 
• Context length: what is the size of the window 
of text that should be considered to determine 
context?  Should it consist of only a few words, 
or include much larger portions of text? 
• Context content: should all context words be 
considered, or only selected words (e.g., only 
words in a certain part of speech or a certain 
grammatical relations to the target word)? Should 
they be weighted based on distance from the 
target or treated as a “bag of words”? 
• Context formalization: how can context 
information be represented to enable definitions 
of an inter-context equivalence function? Is there 
a single representation appropriate for all words, 
or does it vary according to, for example, the 
word’s part of speech? 



The use of multi-lingual parallel texts 
provides a very different approach to the problem 
of context identification and characterization. 
“Context” now becomes the word(s) by which 
the target word (i.e., the word to be 
disambiguated) is translated in one or more other 
languages. The assumption here is that different 
senses of a word are likely to be lexicalized 
differently in different languages; therefore, the 
translation can be used to identify the correct 
sense of a word. Effectively, the translation 
captures the context as the translator conceived it. 

The use of parallel translations for sense 
disambiguation brings up a different set of issues, 
primarily because the assumption that different 
senses are lexicalized differently in different 
languages is true only to an extent. For instance, 
it is well known that many ambiguities are 
preserved across languages (e.g. the French 
intérêt and the English interest), especially 
languages that are relatively closely related. This 
raises new questions: how many languages, and 
of which types (e.g., closely related languages, 
languages from different language families), 
provide adequate information for this purpose? 
How do we measure the degree to which 
different lexicalizations provide evidence for a 
distinct sense? 

We have addressed these questions in 
experiments involving sense clustering based on 
translation equivalents extracted from parallel 
corpora (Ide, 199; Ide et al., 2002). Tufiş and Ion 
(2003) build on this work and further describe a 
method to accomplish a “neutral” labelling for 
the sense clusters in Romanian and English that 
is not bound to any particular sense inventory. 
Our experiments confirm that the accuracy of 
word sense clustering based on translation 
equivalents is heavily dependent on the number 
and diversity of the languages in the parallel 
corpus and the language register of the parallel 
text. For example, using six source languages 
from three language families (Romance, Slavic 
and Finno-Ugric), sense clustering of English 
words was approximately 74% accurate; when 
fewer languages and/or languages from less 
diverse families are used accuracy drops 
dramatically. This drop is obviously a result of 
the decreased chances that two or more senses of 
an ambiguous word in one language will be 
lexicalized differently in another when fewer 

languages, and languages that are more closely 
related, are considered. 

To enhance our results, we have explored the 
use of additional resources, in particular, the 
aligned wordnets in BalkaNet (Tufiş et al. 
2004a). BalkaNet  is a European project that is 
developing monolingual wordnets for five Balkan 
languages (Bulgarian, Greek, Romanian Serbian, 
and Turkish) and improving the Czech wordnet 
developed in the EuroWordNet project. The 
wordnets are aligned to the Princeton Wordnet 
(PWN2.0), taken as an interlingual index, 
following the principles established by the 
EuroWordNet consortium. The underlying 
hypothesis in this experiment exploits the 
common intuition that reciprocal translations in 
parallel texts should have the same (or closely 
related) interlingual meanings (in terms of 
BalkaNet, interlingual index (ILI) codes). 
However, this hypothesis is reasonable if the 
monolingual wordnets are reliable and correctly 
linked to the interlingual index (ILI). Quality 
assurance of the wordnets is a primary concern in 
the BalkaNet project, and to this end, the 
consortium developed several methods and tools 
for validation, described in various papers 
authored by BalkaNet consortium members (see 
Proceedings of the Global WordNet Conference, 
Brno, 2004).  

We previously implemented a language-
independent disambiguation program, called 
WSDtool, which has been extended to serve as a 
multilingual wordnet checker and specialized 
editor for error-correction. In (Tufiş, et al., 2004) 
it was demonstrated that the tool detected several 
interlingual alignment errors that had escaped 
human analysis. In this paper, we describe a 
disambiguation experiment that exploits the ILI 
information in the corrected wordnets 

2 Methodology and the algorithm 
Our methodology consists of the following steps: 
1. given a bitext TL1L2 in languages L1 and L2 for 
which there are aligned wordnets, extract all pairs 
of lexical items that are reciprocal 
translations:{<Wi

L1 Wj
L2>+} 

2. for each lexical alignment <Wi
L1 Wj

L2>, extract 
the ILI codes for the synsets that contain Wi

L1 and 
Wj

L2 respectively to yield two lists of ILI codes, 
L1

ILI(Wi
L1) and L2

ILI(Wj
L2) 



3. identify one ILI code common to the 
intersection L1

ILI(Wi
L1) ∩ L2

ILI(Wj
L2) or a pair of 

ILI codes ILI1∈ L1
ILI(Wi

L1)  and ILI2∈ L2
ILI(Wj

L2), 
so that ILI1 and ILI2 are the most similar ILI 
codes (defined below) among the candidate pairs 
(L1

ILI(Wi
L1)⊗L2

ILI(Wj
L2) [⊗ = Cartesian product]. 

The accuracy of step 1 is essential for the 
success of the validation method. A recent shared 
task evaluation) of different word aligners 
(www.cs.unt.edu/~rada/wpt, organized on the 
occasion of the Conference of the NAACL 
showed that step 1 may be solved quite reliably. 
Our system (Tufiş et al. 2003) produced lexicons 
relevant for wordnets evaluation, with an 
aggregated F-measure as high as 84.26%. 
Meanwhile, the word-aligner was further 
improved so that current performance on the 
same data is about 1% better on all scores in 
word alignment and about 2% better in wordnet-
relevant dictionaries. The word alignment 
problem includes cases of null alignment, where 
words in one part of the bitext are not translated 
in the other part; and cases of expression 
alignment, where multiple words in one part of 
the bitext are translated as one or more words in 
the other part. Word alignment algorithms 
typically do not take into account the part of 
speech (POS) of the words comprising a 
translation equivalence pair, since cross-POS 
translations are rather frequent. However, for the 
aligned wordnet-based word sense 
disambiguation we discard both translation pairs 
which do not preserve the POS and null 
alignments. Multiword expressions included in a 
wordnet are dealt with by the underlying 
tokenizer. Therefore, we consider only one-to-
one, POS-preserving alignments. 

Once the translation equivalents were 
extracted, then, for any translation equivalence 
pair <WL1 WL2> and two aligned wordnets, the 
steps 2 and 3 above should ideally identify one 
ILI concept lexicalized by WL1 in language L1 
and by WL2 in language L2. However, due to 
various reasons, the wordnets alignment might 
reveal not the same ILI concept, but two concepts 
which are semantically close enough to license 
the translation equivalence of WL1 and WL2. This 
can be easily generalized to more than two 
languages. Our measure of interlingual concepts 
semantic similarity is based on PWN2.0 

structure. We compute semantic-similarity score 
by formula: 

ss(ILI1, ILI2) = 1/1+k 
where k is the number of links from ILI1 to ILI2 
or from both ILI1 and ILI2 to the nearest common 
ancestor. The semantic similarity score is 1 when 
the two concepts are identical, 0.33 for two sister 
concepts, and 0.5 for mother/daughter, 
whole/part, or concepts related by a single link. 
Based on empirical studies, we decided to set the 
significance threshold of the semantic similarity 
score to 0.33.  Other approaches to similarity 
measures are described in (Budanitsky and Hirst 
2001). 

In order to describe the algorithm for WSD 
based on aligned wordnets let us assume we have 
a parallel corpus containing texts in k+1 
languages (T, L1, L2…Lk), where T is the target 
language and L1, L2…Lk are the source languages 
and monolingual wordnets for each of the k+1 
languages interlinked via an ILI-like structure. 
For each source language and for all occurrences 
of a specific word in the target language T, we 
build a matrix of translation equivalents as shown 
in Table 1 (eqij represents the translation 
equivalent in the ith source language of the jth 
occurrence of the word in the target language).  

 Occ #1 Occ #2 … Occ #n 
L1 eq11 eq12 … eq1n 
L2 eq21 eq22 … eq2n 
… … … … … 
Lk eqk1 eqk2 … eqkn 

Table 1. The translation equivalents matrix 
(EQ matrix) 

If the target word is not translated in language Li, 
eqij is represented by the null string.  

The second step transforms the matrix in 
Table 1 to a VSA (Validation and Sense 
Assignment) matrix with the same dimensions 
(Table 2).  

 Occ #1 Occ #2 … Occ #n 
L1 VSA11  VSA12 … VSA 1n  
L2 VSA21 VSA22  VSA22 
… … … … … 
Lk VSAk1 VSAk2 … VSAkn 

Table 2. The VSA matrix 

Here,  VSAij = LEN
ILI(WEN) ∩ Li

ILI(Wj
Li),, where 



LEN
ILI(WEN) represent the ILI codes of all synsets 

in which the target word WEN occurs, and 
Li

ILI(Wj
Li) is the list of ILI-codes for all synsets in 

which the translation equivalent for the jth 
occurrence of WEN occurs. 

If no translation equivalent is found in 
language Li for the jth occurrence of WEN, 
VSA(i,j) is undefined; otherwise, it is a set 
containing 0, 1, or more ILI codes. For undefined 
VSAs, the algorithm cannot determine the sense 
number for the corresponding occurrence of the 
target word. However, it is very unlikely that an 
entire column in Table 2 is undefined, i.e., that 
there is no translation equivalent for an 
occurrence of the target word in any of the source 
languages.  

When VSA(i,j) contains a single ILI code, the 
target occurrence and its translation equivalent 
are assigned the same sense. 

When VSA(i,j) is empty—i.e., when none of 
the senses of the target word corresponds to an 
ILI code to which a sense of the translation 
equivalent was linked--the algorithm selects the 
pair in LEN

ILI(WEN) ⊗ Li
ILI(Wj

Li) with the highest 
similarity score. If no pair in LEN

ILI(WEN) ⊗ 
Li

ILI(Wj
Li) has a  the semantic similarity score 

above the significance threshold, neither the 
occurrence of the target word nor its translation 
equivalent can be semantically disambiguated; 
but once again, it is extremely rare that there is 
no translation equivalent for an occurrence of the 
target word in any of the source languages. 

In case of ties, the pair corresponding to the 
most frequent sense of the target word in the 
current bitext pair is selected. If this heuristic in 
turn fails, the choice is made in favor of the pair 
corresponding to the lowest PWN2.0 sense 
number for the target word, since PWN senses 
are ordered by frequency.  

When the VSA cell contains two or more ILI-
codes, we have the case of cross-lingual 
ambiguity, i.e., two or more senses are common 
to the target word and the corresponding 
translation equivalent in the ith language.  

2.1 Agglomerative clustering   
As noted before, when VSA(i,j) is undefined, we 
may get the information from a VSA 
corresponding to the same occurrence of the 
target word in a different language. However, this 
demands that aligned wordnets are available for 

all languages in the parallel corpus, and that the 
quality of the inter-lingual linking is high for all 
languages concerned. In cases where we cannot 
fulfill these requirements, we rely on a “back-
off” method involving sense clustering based on 
translation equivalents, as discussed in (Ide, et 
al., 2002). We apply the clustering method after 
the wordnet-based method has been applied, and 
therefore each cluster containing an 
undisambiguated occurrence of the target word 
will also typically contain several occurrences 
that have already been assigned a sense. We can 
therefore assign the most frequent sense 
assignment in the cluster to previously unlabeled 
occurrences within the same cluster. The 
combined approach has two main advantages: 
• it eliminates reliance only on high-quality, k-1 
aligned wordnets. Indeed, having k+1 languages 
in our corpus, we need only apply the WSD 
method to the aligned wordnets for the target 
language (English in our case) and one source 
language, say Li, and alignment lexicons from the 
target language to every other language in the 
corpus. The WSD procedure in the bilingual 
setting would ensure the sense assignment for 
most of the non-null translation equivalence pairs 
and the clustering algorithm would classify the 
target words which were not translated (or for 
which the word alignment algorithm didn’t find a 
correct translation) in Li based on their 
equivalents in the other k-1 source languages. 
• it can reinforce or modify the sense 
assignment decided by the tie heuristics in case 
of cross-lingual ambiguity. 

To perform the clustering, we derive a set of 
m binary vectors VECT(Lp, TWi) for each source 
language Lp and each target word i occurring m 
times in the corpus. To compute the vectors, we 
first construct a Dictionary Entry List 
DEL(Lp,TWi)={Wj | <TWi, Wj> is a translation 
equivalence pair}, comprising the ordered list of 
all the translation equivalents in the source 
language pL of the target word TWi. In this part 
of the experiment, the translation equivalents are 
automatically extracted from the parallel corpus 
using a hypothesis testing algorithm described in 
(Tufiş 2002). VECT(Lp,TWi

k)  specifies which of 
the possible translations of TWi was actually 
used as an equivalent for the kth occurrence of 
TWi. All positions in VECT(Lp,TWi

k)  are set to 



0 except the bit at position h, which is 1 if the 
translation equivalent (Lp,TWi

k)=DELh(Lp,TWi). 
The vector for each target word occurrence is 
obtained by concatenating the VECT(Lp,TWi

k) 
for all k souce languages  and its length is 

∑
=

k

1p

i
p  |)TW,DEL(L| . 

We use a Hierarchical Clustering Algorithm 
based on Stolcke’s Cluster2.9 to classify similar 
vectors into sense classes. Stolcke’s algorithm 
generates a clustering tree, the root of which 
corresponds to a baseline clustering (all the 
occurrences are clustered in one sense class) and 
the leaves are single element classes, 
corresponding to each occurrence vector of the 
target word. An interior cut in the clustering tree 
will produce a specific number (say X) of sub-
trees, the roots of which stand for X classes each 
containing the vectors of their leaves. We call an 
interior cut a pertinent cut if X is equal to the 
number of senses TWi has been used throughout 
the entire corpus. One should note that in a 
clustering tree many pertinent cuts could be 
possible. The pertinent cut which corresponds to 
the correct sense clustering of the m occurrences 
of TWi is called a perfect cut.  However, if TWi 
has Y possible senses, it is possible that only a 
subset of the Y senses will be used in an arbitrary 
text. Therefore, a perfect cut in a clustering tree 
cannot be deterministically computed. Instead of 
deriving the clustering tree and guessing at a 
perfect cut, we stop the clustering algorithm 
when Z clusters have been created, where Z is the 
number of senses in which the occurrences of 
TWi have been used in the text in question. 
However, the value of Z is specific to each word 
and depends on the type and size of the text; it 
cannot therefore be computed a priori. In our 
previous work (Tufiş and Ion, 2003), to 
approximate Z we imposed an exit condition for 
the clustering algorithm based on distance 
heuristics. In particular, the algorithm stops when 
the minimal distance between the existing classes 
increases beyond a given threshold level:  

α>
+
−+

)1(
)()1(

kdist
kdistkdist                                   (1) 

where dist(k) is the minimal distance between 
two clusters at the k-th  iteration  step and α is  an 
empirical numerical threshold. Experimentation 
revealed that reasonable results are achieved with 

a value for α is 0.12. However, although the 
threshold is a parameter for the clustering 
algorithm irrespective of the target words, the 
number of classes the clustering algorithm 
generates (Z) is still dependent on the particular 
target word and the corpus in which it appears. 

By using sense information produced by the 
ILI-similarity approach, the algorithm and its exit 
condition have been modified as described 
below:  
- the sense label of a cluster is given by the 
majority sense of its members as assigned by the 
wordnet-based sense labelling; a cluster 
containing only non-disambiguated occurrences 
has an wild-card sense label;    
- two joinable clusters (that is the clusters with 
the minimal distance and the exit condition (1) 
not satisfied) are joint only when their sense 
labels is the same or one of them has an wild-
card sense label; in this case the wild-card sense 
label is turned into the sense label of the sense-
assigned cluster. Otherwise the next distant 
clusters are tried. 
- the algorithm stops when no clusters can be 
further joined. 

3 The Experiment 
The parallel corpus we used for our experiments 
is based on Orwell’s novel “Ninety Eighty Four” 
(1984) which has been initially developed by the 
Multext-East consortium. Besides Orwell’s 
original text, the corpus contained professional 
translations in six languages (Bulgarian, Czech, 
Estonian, Hungarian, Romanian and Slovene). 
The Multext-East corpus (and other language 
resources) is maintained by Tomaž Erjavec and a 
new release of it may be found at 
http://nl.ijs.si/ME/V3. Later, the parallel corpus 
has been extended with many other new language 
translations. The BalkaNet consortium added 
three new translations to the “1984” corpus: 
Greek, Serbian and Turkish. Each language text 
is tokenized, tagged and sentence aligned to the 
English original. We extracted from the entire 
parallel corpus only the languages of concern in 
the BalkaNet project (English, Bulgarian, Czech, 
Greek, Romaniann, Serbian and Turkish) and 
further retained only the 1-1 sentence alignments 
between English and all the other languages. This 
way, we built a unique alignment for all the 



languages and, by exploiting the transitivity of 
sentence alignment, we are able to make 
experiments with any combination of languages. 

The BalkaNet version of the “1984” corpus is 
encoded as a sequence of translation units (TU), 
each containing one sentences per language, so 
that they are reciprocal translations.  In order to 
evaluate both the performance of the WSDtool 
and to assess the accuracy of the interlingual 
linking of the BalkaNet wordnets we selected a 
bag of English target words (nouns and verbs) 
occurring in the corpus. The selection considered 
only polysemous words (at least two senses per 
part of speech) implemented (and ILI linked) in 
all BalkaNet wordnets. There resulted 211 words 
with 1644 occurrences in the English part of the 
parallel corpus. 

Three experts independently sense-tagged all 
the occurrences of the target words and the 
disagreements were negotiated until consensus 
was obtained. The commonly agreed annotation 
represented the Gold Standard (GS) against 
which the WSD algorithm was evaluated. 
Additionally, a number of 13 students, enrolled in 
a Computational Linguistics Master program, 
were asked to manually sense-tag overlapping 
subsets of the same word occurrences.  The 
overlapping ensured that each target word 
occurrence was seen by at least three students. 
Based on the students’ annotations, using a 
majority voting, we computed another set of 
comparison data which below is referred to as 
SMAJ (Students MAJority). 

Finally, the same targeted words were 
automatically disambiguated by the WSDtool 
algorithm (ALG) which was run both with and 
without the back-off clustering algorithm.  For 
the basic wordnet-based WSD we used the 
Princeton Wordnet, the Romanian wordnet and 
the English-Romanian translation equivalence 
dictionary. For the back-off clustering we 
extracted a four1 language translation dictionary 
(EN-RO-CZ-BG) based on which we computed 
the initial clustering vectors for all occurrences of 
the target words. 

                                                      
1 Although we used only RO, CZ and BG 

translation texts, nothing prevents us from using any 
other translations, irrespective of whether their 
languages belong or not to the BalkaNet consortium.  

Out of the 211 set of targeted words, with 
1644 occurrences the system could not make a 
decision for 38 (18 %) words with 63 
occurrences (3.83%). Most of these words were 
happax legomena (21) for which neither the 
wordnet-based step not the clustering back-off 
could do anything. Others, were not translated by 
the same part of speech, were wrongly translated 
by the human translator or not translated at all 
(28). Finally, four occurrences remained 
untagged due to the incompleteness of the 
Romanian synsets linked to the relevant concepts 
(that is the four translation equivalents had their 
relevant sense missing from the Romanian 
wordnet). Applying the simple heuristics (SH) 
that says that any unlabelled target occurrence 
receives its most frequent sense, 42 out of 63 of 
them got a correct sense-tag. The table below 
summarizes the results.   

WSD annotation Precision Recall F 
AWN  74.88% 72.01% 73.41%
AWN + C 75.26% 72.38% 73.79%
AWN + C + SH 74.93% 74.93% 74.93%
SMAJ 72.99% 72.99% 72.99%

Table 4. WSD precision recall and F-measure for 
the algorithm based on aligned wordnets (AWN), 

for AWN with clustering (AWN+C) and for 
AWN+C and the simple heuristics 

(AWN+C+SH) and for the students’ majority 
voting (SMAJ) 

It is interesting to note that in this experiment 
the students’ majority annotation is less accurate 
than the one achieved by the automatic WSD 
annotation in all three variants. This is a very 
encouraging result since it shows that the tedious 
hand-made WSD in building word-sense 
disambiguated corpora for supervised training 
can be avoided. 

4 Conclusion 
Considering the fine granularity of the PWN2.0 
sense inventory, our disambiguation results using 
parallel resources are superior to the state of the 
art in monolingual WSD (with the same sense 
inventory). This is not surprising since the 
parallel texts contain implicit knowledge about 
the sense of an ambiguous word, which has been 
provided by human translators.  The drawback of 
our approach is that it relies on the existence of 



parallel data, which in the vast majority of cases 
is not available. On the other hand, supervised 
monolingual WSD relies on the existence of large 
samples of training data, and our method can be 
applied to produce such data to bootstrap 
monolingual applications. Given that parallel 
resources are becoming increasingly available, in 
particular on the World Wide Web (see for 
instance http://www.balkantimes.com where the 
same news is published in 10 languages), and 
aligned wordnets are being produced for more 
and more languages, it should be possible to 
apply our and similar methods to large amounts 
of parallel data in the not-too-distant future.  

One of the greatest advantages of our 
approach is that it can be used to automatically 
sense-tag corpora in several languages at once. 
That is, if we have a parallel corpus in multiple 
languages (such as the Orwell corpus), 
disambiguation performed on any one of them 
propagates to the rest via the ILI linkage. Also, 
given that the vast majority of words in any given 
language are monosemous (e.g., approximately 
82% of the words in PWN have only one sense), 
the use of parallel corpora in multiple languages 
for WSD offers the potential to significantly 
improve results and provide substantial sense-
annotated corpora for training in a range of 
languages.  
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