
Linguistically Informed Statistical Models of Constituent Structure for
Ordering in Sentence Realization

Eric RINGGER1, Michael GAMON1, Robert C. MOORE1,
David ROJAS2, Martine SMETS1, Simon CORSTON-OLIVER1

1Microsoft Research
One Microsoft Way

Redmond, Washington 98052, USA
{ringger, mgamon, bobmoore, msmets,

simonco}@microsoft.com

2Butler Hill Group, LLC
& Indiana University Linguistics Dept.

1021 East 3rd Street, MM 322
Bloomington, Indiana 47405, USA

drojas@indiana.edu

Abstract

We present several statistical models of syntactic
constituent order for sentence realization. We
compare several models, including simple joint
models inspired by existing statistical parsing
models, and several novel conditional models. The
conditional models leverage a large set of linguistic
features without manual feature selection. We apply
and evaluate the models in sentence realization for
French and German and find that a particular
conditional model outperforms all others. We
employ a version of that model in an evaluation on
unordered trees from the Penn TreeBank. We offer
this result on standard data as a reference-point for
evaluations of ordering in sentence realization.

1 Introduction

Word and constituent order play a crucial role in
establishing the fluency and intelligibility of a
sentence. In some systems, establishing order
during the sentence realization stage of natural
language generation has been accomplished by
hand-crafted generation grammars in the past (see
for example, Aikawa et al. (2001) and Reiter and
Dale (2000)). In contrast, the Nitrogen (Langkilde
and Knight, 1998a, 1998b) system employs a word
n-gram language model to choose among a large
set of word sequence candidates which vary in
constituent order, word order, lexical choice, and
morphological inflection. Nitrogen’s model does
not take into consideration any non-surface
linguistic features available during realization.

The Fergus system (Bangalore and Rambow,
2000) employs a statistical tree model to select
probable trees and a word n-gram model to rank
the string candidates generated from the best trees.
Like Nitrogen, the HALogen system (Langkilde,
2000; Langkilde-Geary, 2002a, 2002b) uses word
n-grams, but it extracts the best-scoring surface
realizations efficiently from a packed forest by
constraining the search first within the scope of
each constituent.

Our research is carried out within the Amalgam
broad coverage sentence realization system.
Amalgam generates sentence strings from abstract
predicate-argument structures (Figure 1), using a
pipeline of stages, many of which employ
machine-learned models to predict where to
perform specific linguistic operations based on the
linguistic context (Corston-Oliver et al., 2002;
Gamon et al., 2002a, 2002b; Smets et al., 2003).
Amalgam has an explicit ordering stage that
determines the order of constituents and their
daughters. The input for this stage is an unordered
tree of constituents; the output is an ordered tree of
constituents or a ranked list of such trees. For
ordering, Amalgam leverages tree constituent
structure and, importantly, features of those
constituents and the surrounding context. By
separately establishing order within constituents,
Amalgam heavily constrains the possible
alternatives in later stages of the realization
process. The design allows for interaction between
ordering choices and other realization decisions,
such as lexical choice (not considered in the
present work), through score combinations from
distinct Amalgam pipeline stages.

Most previous research into the problem of
establishing order for sentence realization has
focused on English, a language with fairly strict
word and constituent order. In the experiments
described here we first focus on German and
French which present novel challenges.1 We also
describe an English experiment involving data
from the Penn Treebank. Our ultimate goal is to
develop a model that handles all ordering
phenomena in a unified and elegant way across
typologically diverse languages. In the present
paper, we explore the space of possible models and
examine some of these closely.

1 For an overview of some of the issues in

determining word and constituent order in German and
French, see (Ringger et al., 2003).

Figure 1: Abstract predicate-argument structure (NLPWin logical form) for the German sentence:

In der folgenden Tabelle werden die Optionen sowie deren Funktionen aufgelistet.
(The options and their functions are listed in the following table.)

2 Models of Constituent Order

In order to develop a model of constituent
structure that captures important order phenomena,
we will consider the space of possible joint and
conditional models in increasing complexity. For
each of the models, we will survey the
independence assumptions and the feature set used
in the models.

Our models differ from the previous statistical
approaches in the range of input features. Like the
knowledge-engineered approaches, the models
presented here incorporate lexical features, parts-
of-speech, constituent-types, constituent
boundaries, long-distance dependencies, and
semantic relations between heads and their
modifiers.

Our experiments do not cover the entire space of
possible models, but we have chosen significant
points in the space for evaluation and comparison.

2.1 Joint Models

We begin by considering joint models of
constituent structure of the form (),P π ρ over
ordered syntax trees π and unordered syntax trees
ρ . An ordered tree π contains non-terminal
constituents C, each of which is the parent of an
ordered sequence of daughters (1,..., nD D), one of
which is the head constituent H.2 Given an ordered
tree π , the value of the function

_ ()unordered tree π is an unordered tree ρ
corresponding to π that contains a constituent B
for each C in π , such that

() ()
1

_ ()

{ ,..., }n

unordered set daughters Cdaughters B

D D

=
=

again with iH D= for some i in ()1..n . The
hierarchical structure of ρ is identical to that of
π .

We employ joint models for scoring alternative
ordered trees as follows: given an unordered
syntax tree ρ , we want the ordered syntax tree π̂
that maximizes the joint probability:

2 All capital Latin letters denote constituents, and

corresponding lower-case Latin letters denote their
labels (syntactic categories).

() ()
: _ ()

ˆ arg max , arg max
unordered tree

P P
π π ρ π

π π ρ π
=

= = (1)

As equation (1) indicates, we can limit our search
to those trees π which are alternative orderings of
the given tree ρ .

Inter-dependencies among ordering decisions
within different constituents (e.g., for achieving
parallelism) make the global sentence ordering
problem challenging and are certainly worth
investigating in future work. For the present, we
constrain the possible model types considered here
by assuming that the ordering of any constituent is
independent of the ordering within other
constituents in the tree, including its daughters;
consequently,

() ()
()C constits

P P C
π

π
∈

= ∏

Given this independence assumption, the only
possible ordered trees are trees built with non-
terminal constituents computed as follows: for
each ()B constits ρ∈ ,

()
: _ ()

* arg max
C B unordered set C

C P C
=

=

In fact, we can further constrain our search for the
best ordering of each unordered constituent B,
since C’s head must match B’s head:

()
: _ ()
& () ()

* arg max
C B unordered set C

head B head C

C P C
=

=

=

Thus, we have reduced the problem to finding the
best ordering of each constituent of the unordered
tree.

Now if we wish to condition on some feature
()x f ρ= , then we must first predict it as follows:

() ()
: _ ()
& () ()

* arg max
C B unordered set C

head B head C

C P x P C x
=

=

=

If x is truly a feature of ρ and does not depend on
any particular ordering of any constituent in ρ ,
then ()P x is constant, and we do not need to
compute it in practice. In other words,

()
: _ ()
& () ()

* arg max
C B unordered set C

head B head C

C P C x
=

=

= (2)

Hence, even for a joint model ()P C , we can
condition on features that are fixed in the given
unordered tree ρ without first predicting them.
The joint models described here are of this form.

For this reason, when we describe a distribution
()P C x , unless we explicitly state otherwise, we

are actually describing the part of the joint model
that is of interest. As justified above, we do not
need to compute ()P x and will simply present
alternative forms of ()P C x .

We can factor a distribution ()P C x in many
different ways using the chain rule. As our starting
point we adopt the class of models called Markov
grammars.3 We first consider a left-to-right
Markov grammar of order j that expands C by
predicting its daughters 1,..., nD D from left-to-
right, one at a time, as shown in Figure 2: in the
figure. iD depends only on (i jD − , …, 1iD −), and
the parent category C ., according to the
distribution in equation (3).

iα

Figure 2: Left-to-right Markov grammar.

() ()1
1

,..., , ,
n

i i i j
i

P C h P d d d c h− −
=

= ∏ (3)

In order to condition on another feature of each
ordered daughter iD , such as its semantic relation

iψ to the head constituent H, we also first predict
it, according to the chain rule. The result is the
semantic Markov grammar in equation (4):

()
()
()

1 1

1
1 1

, ,..., , , ,

, , ,..., , , ,

n i i i i j i j

i
i i i i i j i j

P d d c h
P C h

P d d d c h

ψ ψ ψ

ψ ψ ψ

− − − −

= − − − −

⎡ ⎤
⎢ ⎥=
⎢ ⎥×⎢ ⎥⎣ ⎦

∏ (4)

Thus, the model predicts semantic relation iψ and
then the label id in the context of that semantic
relation. We will refer to this model as Type 1
(T1).

As an extension to model Type 1, we include
features computed by the following functions on
the set iα of daughters of C already ordered (see
Figure 2):

• Number of daughters already ordered (size
of iα)

• Number of daughters in iα having a
particular label for each of the possible
constituent labels {NP, AUXP, VP, etc.}
(24 for German, 23 for French)

We denote that set of features in shorthand as
()if α . With this extension, a model of Markov

3 A “Markov grammar” is a model of constituent

structure that starts at the root of the tree and assigns
probability to the expansion of a non-terminal one
daughter at a time, rather than as entire productions
(Charniak, 1997 & 2000).

order j can potentially have an actual Markov order
greater than j. Equation (5) is the extended model,
which we will refer to as Type 2 (T2):

()
()()

()()
1 1

1
1 1

, ,..., , , , ,

, , ,..., , , , ,

n i i i i j i j i

i
i i i i i j i j i

P d d c h f
P C h

P d d d c h f

ψ ψ ψ α

ψ ψ ψ α

− − − −

= − − − −

⎡ ⎤
⎢ ⎥=
⎢ ⎥×⎢ ⎥⎣ ⎦

∏
 (5)

As an alternative to a left-to-right expansion, we
can also expand a constituent in a head-driven
fashion. We refer the reader to (Ringger et al.,
2003) for details and evaluations of several head-
driven models (the missing “T3”, “T4”, and “T6”
in this discussion).

2.2 Conditional Models

We now consider more complex models that use
additional features. We define a function ()g X on
constituents, where the value of ()g X represents a
set of many lexical, syntactic, and semantic
features of X (see section 5.2 for more details). No
discourse features are included for the present
work. We condition on

• ()g B , where B is the unordered constituent
being ordered

• ()g H , where H is the head of B
• ()Bg P , where BP is the parent of B, and
• ()Bg G , where BG is the grandparent of B.

These features are fixed in the given unordered tree
ρ , as in the discussion of equation (2), hence the
resulting complex model is still a joint model.

Up until this point, we have been describing joint
generative models that describe how to generate an
ordered tree from an unordered tree. These models
require extra effort and capacity to accurately
model the inter-relations among all features. Now
we move on to truly conditional models by
including features that are functions on the set iβ
of daughters of C yet to be ordered. In the
conditional models we do not need to model the
interdependencies among all features. We include
the following:

• Number of daughters remaining to be
ordered (size of iβ)

• Number of daughters in iβ having a
particular label

As before, we denote these feature sets in
shorthand as ()if β . The resulting distribution is
represented in equation (6), which we will refer to
as Type 5 (T5):

()

()

()

1 1

1 1 1

(), (), (), ()

, ,..., , , , ,

(), (), (), (), , ()

, , ,..., , , , ,

(), (), (), (), , ()

B B

i i i j i j

i
n B B i i

i i i i i j i j

i

B B i i

P C g H g B g P g G

d d c h
P

g H g B g P g G f f

d d c h
P d

g H g B g P g G f f

ψ ψ
ψ

α β

ψ ψ ψ

α β

− − − −

= − − − −

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎜ ⎟⎢ ⎥⎝ ⎠= ⎢ ⎥
⎛ ⎞⎢ ⎥

× ⎜ ⎟⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

∏

 (6)

All models in this paper are nominally Markov
order 2, although those models incorporating the
additional feature functions ()if α and ()if β
defined in Section 2.2 can be said to have higher
order.

2.3 Binary conditional model

We introduce one more model type called the
binary conditional model. It estimates a much
simpler distribution over the binary variable σ
called “sort-next” with values in {yes, no}
representing the event that an as-yet unordered
member D of iβ (the set of as-yet unordered
daughters of parent C, as defined above) should be
“sorted” next, as illustrated in Figure 3.

iβ
iα

σ

Figure 3: Binary conditional model.

The conditioning features are almost identical to
those used in the left-to-right conditional models
represented in equation (6) above, except that id
and iψ (the semantic relation of D with head H)
appear in the conditional context and need not first
be predicted. In its simple form, the model
estimates the following distribution:

()
1 1, , , ,..., , , , ,

(), (), (), (), , ()

i i i i i j i j

i

B B i i

d d d c h
P

g H g B g P g G f f

ψ ψ ψ
σ

α β
− − − −⎛ ⎞

⎜ ⎟
⎜ ⎟
⎝ ⎠

 (7)

In our shorthand, we will call this Type 7 (T7). We
describe how to apply this model directly in a left-
to-right “sorting” search later in the section on
search.

3 Estimation

We estimate a model’s distributions with
probabilistic decision trees (DTs).4 We build
decision trees using the WinMine toolkit
(Chickering, 2002). WinMine-learned decision
trees are not just classifiers; each leaf is a
conditional probability distribution over the target
random variable, given all features available in
training; hence the tree as a whole is an estimate of
the conditional distribution of interest. The primary
advantage of using decision trees, is the automatic
feature selection and induction from a large pool of
features.

We train four models for German and French
each. One model is joint (T1); one is joint with
additional features on the set of daughters already
ordered (T2); one is conditional (T5). In addition,
we employ one binary conditional DT model (T7),
both with and without normalization (see equation
(8)).

4 Other approaches to feature selection, feature

induction, and distribution estimation are certainly
possible, but they are beyond the scope of this paper.

One experiment using interpolated language modeling
techniques is described in (Ringger et al., 2003)

4 Search

4.1 Exhaustive search

Given an unordered tree ρ and a model of
constituent structure O of any of the types already
presented, we search for the best ordered tree π
that maximizes ()OP π or ()OP π ρ , as
appropriate, with the context varying according to
the complexity of the model. Each of our models
(except the binary conditional model) estimates the
probability of an ordering of any given constituent
C in π , independently of the ordering inside other
constituents in π . The complete search is a
dynamic programming (DP) algorithm, either left-
to-right in the daughters of C (or head-driven,
depending on the model type). The search can
optionally maintain one non-statistical constraint
we call Input-Output Coordination Consistency
(IOCC), so that the order of coordinated
constituents is preserved as they were specified in
the given unordered tree. For these experiments,
we employ the constraint.

4.2 Greedy search for binary conditional
model

The binary conditional model can be applied in a
left-to-right “sorting” mode (Figure 3). At stage i,
for each unordered daughter jD , in iβ , the model
is consulted for the probability of j yesσ = ,
namely the probability that jD should be placed to
the right of the already ordered sister constituents

iα . The daughter in iβ with the highest
probability is removed from iβ to produce 1iβ +
and added to the right of iα to produce 1iα + . The
search proceeds through the remaining unordered
constituents until all constituents have been
ordered in this greedy fashion.

4.3 Exhaustive search for binary conditional
model

In order to apply the binary conditional model in
the exhaustive DP search, we normalize the model
at every stage of the search and thereby coerce it
into a probability distribution over the remaining
daughters in iβ . We represent the distribution in
“equation” (7) in short-hand as (), , iP dσ ψ Γ ,
with iΓ representing the contextual features for the
given search hypothesis at search stage i. Thus, our
normalized distribution for stage i is given by
equation (8). Free variable j represents an index on
unordered daughters in iβ , as does k.

() ()
()

1

, ,
, ,

, ,
i

j j j i

j j j i

k k k i
k

P yes d
P D d

P yes d
β

σ ψ
ψ

σ ψ
=

= Γ
Γ =

= Γ∑

 (8)

This turns out to be the decision tree analogue of a
Maximum Entropy Markov Model (MEMM)
(McCallum et al., 2000), which we can refer to as a
DTMM.

5 Experiments

5.1 Training

We use a training set of 20,000 sentences, both
for French and German. The data come from
technical manuals in the computer domain. For a
given sentence in our training set, we begin by
analyzing the sentence as a surface syntax tree and
an abstract predicate argument structure using the
NLPWin system (Heidorn, 2000). By consulting
these two linked structures, we produce a tree with
all of the characteristics of trees seen by the
Amalgam ordering stage at generation run-time
with one exception: these training trees are
properly ordered. The training trees include all
features of interest, including the semantic
relations among a syntactic head and its modifiers.
We train our order models from the constituents of
these trees. NLPWin parser output naturally
contains errors; hence, the Amalgam training data
is imperfect.

5.2 Selected Features

A wide range of linguistic features is extracted
for the different decision tree models. The number
of selected features for German reaches 280 (out of
651 possible features) in the binary conditional
model T7. For the French binary conditional
model, the number of selected features is 218 (out
of 550). The binary conditional models draw from
the full set of available features, including:

• lexical sub-categorization features such as
transitivity and compatibility with clausal
complements

• lemmas (word-stems)
• semantic features such as the semantic

relation and the presence of
quantificational operators

• length of constituent in words
• syntactic information such as the label and

the presence of syntactic modifiers

5.3 Evaluation

To evaluate the constituent order models in
isolation, we designed our experiments to be
independent of the rest of the Amalgam sentence
realization process. We use test sets of 1,000
sentences, also from technical manuals, for each
language. To isolate ordering, for a given test
sentence, we process the sentence as in training to
produce an ordered tree π (the reference for
evaluation) and from it an unordered tree ρ .
Given ρ , we then search for the best ordered tree
hypothesis π̂ using the model in question.

We then compare π and π̂ . Because we are
only ordering constituents, we can compare π and
π̂ by comparing their respective constituents. For
each C in π , we measure the per-constituent edit

distance D, between C and its counterpart C’ in π̂
as follows:

1. Let d be the edit distance between the
ordered set of daughters in each, with the
only possible edit operators being insert and
delete

2. Let the number of moves / 2m d= , since
insertions and deletions can be paired
uniquely

3. Divide by the total number of
daughters: ()/D m daughters C=

This metric is like the “Generation Tree Accuracy”
metric of Bangalore & Rambow (2000), except
that there is no need to consider cross-constituent
moves. The total score for the hypothesis tree π̂ is
the mean of the per-constituent edit distances.

For each of the models under consideration and
each language, we report in Table 1 the average
score across the test set for the given language. The
first row is a baseline computed from randomly
scrambling constituents (mean over four
iterations).
Model German French
Baseline (random) 35.14 % 34.36 %
T1: DT joint 5.948% 3.828%
T2: DT joint

with ()if α 5.852% 4.008%

T5: DT conditional 6.053% 4.271%
T7: DT binary cond.,

greedy search
3.516% 1.986%

T7: DT normalized
binary conditional,
exhaustive search

3.400% 1.810%

Table 1: Mean per-constituent edit distances for
German & French.

5.4 Discussion

For both German and French, the binary
conditional DT model outperforms all other
models. Normalizing the binary conditional model
and applying it in an exhaustive search performs
better than a greedy search. All score differences
are statistically significant; moreover, manual
inspection of the differences for the various models
also substantiates the better quality of those models
with lower scores.

With regard to the question of conditional versus
joint models, the joint models (T1, T2) outperform
their conditional counterparts (T5). This may be
due to a lack of sufficient training data for the
conditional models. At this time, the training time
of the conditional models is the limiting factor.

There is a clear disparity between the
performance of the German models and the
performance of the French models. The best
German model is twice as bad as the best French
model. (For a discussion of the impact of
modeling German verb position, please consult
(Ringger et al., 2003).)

Baseline
(random)

Greedy,
IOCC Greedy

DP,
IOCC DP

Total Sentences 2416 2416 2416 2416 2416
Mean Tokens/Sentence 23.59 23.59 23.59 23.59 23.59
Time/Input (sec.) n/a 0.01 0.01 0.39 0.43
Exact Match 0.424% 33.14% 27.53% 33.53% 35.72%
Coverage 100% 100% 100% 100% 100%
Mean Per-Const. Edit Dist. 38.3% 6.02% 6.84% 5.25% 4.98%
Mean NIST SSA -16.75 74.98 67.19 74.65 73.24
Mean IBM Bleu Score 0.136 0.828 0.785 0.817 0.836

Table 2: DSIF-Amalgam ordering performance on WSJ section 23.

6 Evaluation on the Penn TreeBank

Our goal in evaluating on Penn Tree Bank (PTB)
data is two-fold: (1) to enable a comparison of
Amalgam’s performance with other systems
operating on similar input, and (2) to measure
Amalgam’s capabilities on less domain-specific
data than technical software manuals. We derive
from the bracketed tree structures in the PTB using
a deterministic procedure an abstract
representation we refer to as a Dependency
Structure Input Format (DSIF), which is only
loosely related to NLPWin’s abstract predicate-
argument structures.

The PTB to DSIF transformation pipeline
includes the following stages, inspired by
Langkilde-Geary’s (2002b) description:

A. Deserialize the tree
B. Label heads, according to Charniak’s head

labeling rules (Charniak, 2000)
C. Remove empty nodes and flatten any

remaining empty non-terminals
D. Relabel heads to conform more closely to the

head conventions of NLPWin
E. Label with logical roles, inferred from PTB

functional roles
F. Flatten to maximal projections of heads

(MPH), except in the case of conjunctions
G. Flatten non-branching non-terminals
H. Perform dictionary look-up and

morphological analysis
I. Introduce structure for material between

paired delimiters and for any coordination
not already represented in the PTB

J. Remove punctuation
K. Remove function words
L. Map the head of each maximal projection to

a dependency node, and map the head’s
modifiers to the first node’s dependents,
thereby forming a complete dependency tree.

To evaluate ordering performance alone, our data
are obtained by performing all of the steps above
except for (J) and (K). We employ only a binary
conditional ordering model, found in the previous
section to be the best of the models considered. To

train the order models, we use a set of 10,000
sentences drawn from the standard PTB training
set, namely sections 02–21 from the Wall Street
Journal portion of the PTB (the full set contains
approx. 40,000 sentences). For development and
parameter tuning we used a separate set of 2000
sentences drawn from sections 02–21.

Decision trees are trained for each of five
constituent types characterized by their head
labels: adjectival, nominal, verbal, conjunctions
(coordinated material), and other constituents not
already covered. The split DTs can be thought of
as a single DT with a five-way split at the top
node.

Our DSIF test set consists of the blind test set
(section 23) of the WSJ portion of the PTB. At
run-time, for each converted tree in the test set, all
daughters of a given constituent are first permuted
randomly with one another (scrambled), with the
option for coordinated constituents to remain
unscrambled, according to the Input-Output
Coordination Consistency (IOCC) option. For a
given unordered (scrambled) constituent, the
appropriate order model (noun-head, verb-head,
etc.) is used in the ordering search to order the
daughters. Note that for the greedy search, the
input order can influence the final result; therefore,
we repeat this process for multiple random
scramblings and average the results.

We use the evaluation metrics employed in
published evaluations of HALogen, FUF/SURGE,
and FERGUS (e.g., Calloway, 2003), although our
results are for ordering only. Coverage, or the
percentage of inputs for which a system can
produce a corresponding output, is uninformative
for the Amalgam system, since in all cases, it can
generate an output for any given DSIF. In addition
to processing time per input, we apply four other
metrics: exact match, NIST simple string accuracy
(the complement of the familiar word error rate),
the IBM Bleu score (Papineni et al., 2001), and the
intra-constituent edit distance metric introduced
earlier.

We evaluate against ideal trees, directly
computed from PTB bracketed tree structures. The

results in Table 2 show the effects of varying the
IOCC parameter. For both trials involving a greedy
search, the results were averaged across 25
iterations. As should be expected, turning on the
input-output faithfulness option (IOCC) improves
the performance of the greedy search. Keeping
coordinated material in the same relative order
would only be called for in applications that plan
discourse structure before or during generation.

7 Conclusions and Future Work

The experiments presented here provide
conclusive reasons to favor the binary conditional
model as a model of constituent order. The
inclusion of linguistic features is of great value to
the modeling of order, specifically in verbal
constituents for both French and German.
Unfortunately space did not permit a thorough
discussion of the linguistic features used. Judging
from the high number of features that were
selected during training for participation in the
conditional and binary conditional models, the
availability of automatic feature selection is
critical.

Our conditional and binary conditional models
are currently lexicalized only for function words;
the joint models not at all. Experiments by Daumé
et al (2002) and the parsing work of Charniak
(2000) and others indicate that further
lexicalization may yield some additional
improvements for ordering. However, the parsing
results of Klein & Manning (2003) involving
unlexicalized grammars suggest that gains may be
limited.

For comparison, we encourage implementers of
other sentence realization systems to conduct
order-only evaluations using PTB data.

Acknowledgements

We wish to thank Irene Langkilde-Geary and
members of the MSR NLP group for helpful
discussions. Thanks also go to the anonymous
reviewers for helpful feedback.

References

Aikawa T., Melero M., Schwartz L. Wu A. 2001.
Multilingual sentence generation. In Proc. of 8th
European Workshop on NLG. pp. 57-63.

Bangalore S. Rambow O. 2000. Exploiting a
probabilistic hierarchical model for generation.
In Proc. of COLING. pp. 42-48.

Calloway, C. 2003. Evaluating Coverage for Large
Symbolic NLG Grammars. In Proc. of IJCAI
2003. pp 811-817.

Charniak E. 1997. Statistical Techniques for
Natural Language Parsing, In AI Magazine.

Charniak E. 2000. A Maximum-Entropy-Inspired
Parser. In Proc. of ACL. pp.132-139.

Chickering D. M. 2002. The WinMine Toolkit.
Microsoft Technical Report 2002-103.

Corston-Oliver S., Gamon M., Ringger E., Moore
R. 2002. An overview of Amalgam: a machine-
learned generation module. In Proc. of INLG.
pp.33-40.

Daumé III H., Knight K., Langkilde-Geary I.,
Marcu D., Yamada K. 2002. The Importance of
Lexicalized Syntax Models for Natural
Language Generation Tasks. In Proc. of INLG.
pp. 9-16.

Gamon M., Ringger E., Corston-Oliver S. 2002a.
Amalgam: A machine-learned generation
module. Microsoft Technical Report 2002-57.

Gamon M., Ringger E., Corston-Oliver S., Moore
R. 2002b. Machine-learned contexts for
linguistic operations in German sentence
realization. In Proc. of ACL. pp. 25-32.

Heidorn G. 2000. Intelligent Writing Assistance. In
A Handbook of Natural Language Processing,,
R. Dale, H. Moisl, H. Somers (eds.). Marcel
Dekker, NY.

Klein D., Manning C. 2003. "Accurate
Unlexicalized Parsing." In Proceedings of ACL-
03.

Langkilde I. 2000. Forest-Based Statistical
Sentence generation. In Proc. of NAACL. pp.
170-177.

Langkilde-Geary I. 2002a. An Empirical
Verification of Coverage and Correctness for a
General-Purpose Sentence Generator. In Proc. of
INLG. pp.17-24.

Langkilde-Geary, I. 2002b. A Foundation for
General-purpose Natural Language Generation:
Sentence Realization Using Probabilistic Models
of Language. PhD Thesis, University of
Southern California.

Langkilde I., Knight K. 1998a. The practical value
of n-grams in generation. In Proc. of 9th
International Workshop on NLG. pp. 248-255.

Langkilde I., Knight K. 1998b. Generation that
exploits corpus-based statistical knowledge. In
Proc. of ACL and COLING. pp. 704-710.

McCallum A., Freitag D., & Pereira F. 2000.
„Maximum Entropy Markov Models for
Information Extraction and Segmentation.” In
Proc. Of ICML-2000.

Papineni, K.A., Roukos, S., Ward, T., and Zhu,
W.J. 2001. Bleu: a method for automatic
evaluation of machine translation. IBM
Technical Report RC22176 (W0109-022).

Reiter E. and Dale R. 2000. Building natural
language generation systems. Cambridge
University Press, Cambridge.

Ringger E., Gamon M., Smets M., Corston-Oliver
S. and Moore R. 2003 Linguistically informed
models of constituent structure for ordering in
sentence realization. Microsoft Research
technical report MSR-TR-2003-54.

Smets M., Gamon M., Corston-Oliver S. and
Ringger E. (2003) The adaptation of a machine-
learned sentence realization system to French.
In Proceedings of EACL.

