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Abstract 

We present several statistical models of syntactic 
constituent order for sentence realization. We 
compare several models, including simple joint 
models inspired by existing statistical parsing 
models, and several novel conditional models. The 
conditional models leverage a large set of linguistic 
features without manual feature selection. We apply 
and evaluate the models in sentence realization for 
French and German and find that a particular 
conditional model outperforms all others. We 
employ a version of that model in an evaluation on 
unordered trees from the Penn TreeBank. We offer 
this result on standard data as a reference-point for 
evaluations of ordering in sentence realization. 

1 Introduction 

Word and constituent order play a crucial role in 
establishing the fluency and intelligibility of a 
sentence. In some systems, establishing order 
during the sentence realization stage of natural 
language generation has been accomplished by 
hand-crafted generation grammars in the past (see 
for example, Aikawa et al. (2001) and Reiter and 
Dale (2000)). In contrast, the Nitrogen (Langkilde 
and Knight, 1998a, 1998b) system employs a word 
n-gram language model to choose among a large 
set of word sequence candidates which vary in 
constituent order, word order, lexical choice, and 
morphological inflection. Nitrogen’s model does 
not take into consideration any non-surface 
linguistic features available during realization.  

The Fergus system (Bangalore and Rambow, 
2000) employs a statistical tree model to select 
probable trees and a word n-gram model to rank 
the string candidates generated from the best trees. 
Like Nitrogen, the HALogen system (Langkilde, 
2000; Langkilde-Geary, 2002a, 2002b) uses word 
n-grams, but it extracts the best-scoring surface 
realizations efficiently from a packed forest by 
constraining the search first within the scope of 
each constituent.  

Our research is carried out within the Amalgam 
broad coverage sentence realization system. 
Amalgam generates sentence strings from abstract 
predicate-argument structures (Figure 1), using a 
pipeline of stages, many of which employ 
machine-learned models to predict where to 
perform specific linguistic operations based on the 
linguistic context (Corston-Oliver et al., 2002; 
Gamon et al., 2002a, 2002b; Smets et al., 2003). 
Amalgam has an explicit ordering stage that 
determines the order of constituents and their 
daughters. The input for this stage is an unordered 
tree of constituents; the output is an ordered tree of 
constituents or a ranked list of such trees. For 
ordering, Amalgam leverages tree constituent 
structure and, importantly, features of those 
constituents and the surrounding context. By 
separately establishing order within constituents, 
Amalgam heavily constrains the possible 
alternatives in later stages of the realization 
process.  The design allows for interaction between 
ordering choices and other realization decisions, 
such as lexical choice (not considered in the 
present work), through score combinations from 
distinct Amalgam pipeline stages. 

Most previous research into the problem of 
establishing order for sentence realization has 
focused on English, a language with fairly strict 
word and constituent order. In the experiments 
described here we first focus on German and 
French which present novel challenges.1 We also 
describe an English experiment involving data 
from the Penn Treebank. Our ultimate goal is to 
develop a model that handles all ordering 
phenomena in a unified and elegant way across 
typologically diverse languages. In the present 
paper, we explore the space of possible models and 
examine some of these closely. 

                                                           
1 For an overview of some of the issues in 

determining word and constituent order in German and 
French, see (Ringger et al., 2003).  



 
Figure 1: Abstract predicate-argument structure (NLPWin logical form) for the German sentence: 

In der folgenden Tabelle werden die Optionen sowie deren Funktionen aufgelistet. 
(The options and their functions are listed in the following table.) 

2 Models of Constituent Order 

In order to develop a model of constituent 
structure that captures important order phenomena, 
we will consider the space of possible joint and 
conditional models in increasing complexity. For 
each of the models, we will survey the 
independence assumptions and the feature set used 
in the models. 

Our models differ from the previous statistical 
approaches in the range of input features. Like the 
knowledge-engineered approaches, the models 
presented here incorporate lexical features, parts-
of-speech, constituent-types, constituent 
boundaries, long-distance dependencies, and 
semantic relations between heads and their 
modifiers. 

Our experiments do not cover the entire space of 
possible models, but we have chosen significant 
points in the space for evaluation and comparison. 

2.1 Joint Models 

We begin by considering joint models of 
constituent structure of the form ( ),P π ρ  over 
ordered syntax trees π  and unordered syntax trees 
ρ . An ordered tree π  contains non-terminal 
constituents C, each of which is the parent of an 
ordered sequence of daughters ( 1,..., nD D ), one of 
which is the head constituent H.2 Given an ordered 
tree π , the value of the function 

_ ( )unordered tree π  is an unordered tree ρ  
corresponding to π  that contains a constituent B 
for each C in π , such that 

( ) ( )
1

_ ( )

{ ,..., }n

unordered set daughters Cdaughters B

D D

=
=

 

again with iH D=  for some i in ( )1..n . The 
hierarchical structure of ρ  is identical to that of 
π . 

We employ joint models for scoring alternative 
ordered trees as follows: given an unordered 
syntax tree ρ , we want the ordered syntax tree π̂  
that maximizes the joint probability: 

                                                           
2 All capital Latin letters denote constituents, and 

corresponding lower-case Latin letters denote their 
labels (syntactic categories). 

( ) ( )
: _ ( )

ˆ arg max , arg max
unordered tree

P P
π π ρ π

π π ρ π
=

= =    (1) 

As equation (1) indicates, we can limit our search 
to those trees π  which are alternative orderings of 
the given tree ρ . 

Inter-dependencies among ordering decisions 
within different constituents (e.g., for achieving 
parallelism) make the global sentence ordering 
problem challenging and are certainly worth 
investigating in future work.  For the present, we 
constrain the possible model types considered here 
by assuming that the ordering of any constituent is 
independent of the ordering within other 
constituents in the tree, including its daughters; 
consequently, 

( ) ( )
( )C constits

P P C
π

π
∈

= ∏  

Given this independence assumption, the only 
possible ordered trees are trees built with non-
terminal constituents computed as follows: for 
each ( )B constits ρ∈ , 

( )
: _ ( )

* arg max
C B unordered set C

C P C
=

=  

In fact, we can further constrain our search for the 
best ordering of each unordered constituent B, 
since C’s head must match B’s head: 

( )
: _ ( )
& ( ) ( )

* arg max
C B unordered set C

head B head C

C P C
=

=

=  

Thus, we have reduced the problem to finding the 
best ordering of each constituent of the unordered 
tree. 

Now if we wish to condition on some feature 
( )x f ρ= , then we must first predict it as follows: 

( ) ( )
: _ ( )
& ( ) ( )

* arg max
C B unordered set C

head B head C

C P x P C x
=

=

=  

If x is truly a feature of ρ  and does not depend on 
any particular ordering of any constituent in ρ , 
then ( )P x  is constant, and we do not need to 
compute it in practice. In other words, 

( )
: _ ( )
& ( ) ( )

* arg max
C B unordered set C

head B head C

C P C x
=

=

=       (2) 

Hence, even for a joint model ( )P C , we can 
condition on features that are fixed in the given 
unordered tree ρ  without first predicting them. 
The joint models described here are of this form. 



For this reason, when we describe a distribution 
( )P C x , unless we explicitly state otherwise, we 

are actually describing the part of the joint model 
that is of interest. As justified above, we do not 
need to compute ( )P x  and will simply present 
alternative forms of ( )P C x . 

We can factor a distribution ( )P C x  in many 
different ways using the chain rule. As our starting 
point we adopt the class of models called Markov 
grammars.3 We first consider a left-to-right 
Markov grammar of order j that expands C by 
predicting its daughters 1,..., nD D  from left-to-
right, one at a time, as shown in Figure 2: in the 
figure. iD  depends only on ( i jD − , …, 1iD − ), and 
the parent category C ., according to the 
distribution in equation (3). 

 

iα

Figure 2: Left-to-right Markov grammar. 

( ) ( )1
1

,..., , ,
n

i i i j
i

P C h P d d d c h− −
=

= ∏  (3) 

In order to condition on another feature of each 
ordered daughter iD , such as its semantic relation 

iψ to the head constituent H, we also first predict 
it, according to the chain rule. The result is the 
semantic Markov grammar in equation (4):  

( )
( )
( )

1 1

1
1 1

, ,..., , , ,

, , ,..., , , ,

n i i i i j i j

i
i i i i i j i j

P d d c h
P C h

P d d d c h

ψ ψ ψ

ψ ψ ψ

− − − −

= − − − −

⎡ ⎤
⎢ ⎥=
⎢ ⎥×⎢ ⎥⎣ ⎦

∏  (4) 

Thus, the model predicts semantic relation iψ and 
then the label id  in the context of that semantic 
relation. We will refer to this model as Type 1 
(T1). 

As an extension to model Type 1, we include 
features computed by the following functions on 
the set iα  of daughters of C already ordered (see 
Figure 2): 

• Number of daughters already ordered (size 
of iα ) 

• Number of daughters in iα  having a 
particular label for each of the possible 
constituent labels {NP, AUXP, VP, etc.} 
(24 for German, 23 for French) 

We denote that set of features in shorthand as 
( )if α . With this extension, a model of Markov 

                                                           
3 A “Markov grammar” is a model of constituent 

structure that starts at the root of the tree and assigns 
probability to the expansion of a non-terminal one 
daughter at a time, rather than as entire productions 
(Charniak, 1997 & 2000). 

order j can potentially have an actual Markov order 
greater than j. Equation (5) is the extended model, 
which we will refer to as Type 2 (T2): 

( )
( )( )

( )( )
1 1

1
1 1

, ,..., , , , ,

, , ,..., , , , ,

n i i i i j i j i

i
i i i i i j i j i

P d d c h f
P C h

P d d d c h f

ψ ψ ψ α

ψ ψ ψ α

− − − −

= − − − −

⎡ ⎤
⎢ ⎥=
⎢ ⎥×⎢ ⎥⎣ ⎦

∏
 (5) 

As an alternative to a left-to-right expansion, we 
can also expand a constituent in a head-driven 
fashion. We refer the reader to (Ringger et al., 
2003) for details and evaluations of several head-
driven models (the missing “T3”, “T4”, and “T6” 
in this discussion). 

2.2 Conditional Models 

We now consider more complex models that use 
additional features. We define a function ( )g X on 
constituents, where the value of ( )g X represents a 
set of many lexical, syntactic, and semantic 
features of X (see section 5.2 for more details). No 
discourse features are included for the present 
work. We condition on 

• ( )g B , where B is the unordered constituent 
being ordered 

• ( )g H , where H is the head of B 
• ( )Bg P , where BP  is the parent of B, and 
• ( )Bg G , where BG  is the grandparent of B. 

These features are fixed in the given unordered tree 
ρ , as in the discussion of equation (2), hence the 
resulting complex model is still a joint model.   

Up until this point, we have been describing joint 
generative models that describe how to generate an 
ordered tree from an unordered tree. These models 
require extra effort and capacity to accurately 
model the inter-relations among all features. Now 
we move on to truly conditional models by 
including features that are functions on the set iβ  
of daughters of C yet to be ordered. In the 
conditional models we do not need to model the 
interdependencies among all features. We include 
the following: 

• Number of daughters remaining to be 
ordered (size of iβ ) 

• Number of daughters in iβ  having a 
particular label 

As before, we denote these feature sets in 
shorthand as ( )if β . The resulting distribution is 
represented in equation (6), which we will refer to 
as Type 5 (T5): 

( )

( )

( )

1 1

1 1 1

( ), ( ), ( ), ( )

, ,..., , , , ,

( ), ( ), ( ), ( ), , ( )

, , ,..., , , , ,

( ), ( ), ( ), ( ), , ( )

B B

i i i j i j

i
n B B i i

i i i i i j i j

i

B B i i

P C g H g B g P g G

d d c h
P

g H g B g P g G f f

d d c h
P d

g H g B g P g G f f

ψ ψ
ψ

α β

ψ ψ ψ

α β

− − − −

= − − − −

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎜ ⎟⎢ ⎥⎝ ⎠= ⎢ ⎥
⎛ ⎞⎢ ⎥

× ⎜ ⎟⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

∏

   (6) 

All models in this paper are nominally Markov 
order 2, although those models incorporating the 
additional feature functions ( )if α  and ( )if β  
defined in Section 2.2 can be said to have higher 
order. 



2.3 Binary conditional model 

We introduce one more model type called the 
binary conditional model. It estimates a much 
simpler distribution over the binary variable σ  
called “sort-next” with values in {yes, no} 
representing the event that an as-yet unordered 
member D of iβ  (the set of as-yet unordered 
daughters of parent C, as defined above) should be 
“sorted” next, as illustrated in Figure 3. 

iβ
iα

σ

 
Figure 3: Binary conditional model. 

The conditioning features are almost identical to 
those used in the left-to-right conditional models 
represented in equation (6) above, except that id  
and iψ  (the semantic relation of D with head H) 
appear in the conditional context and need not first 
be predicted. In its simple form, the model 
estimates the following distribution: 

( )
1 1, , , ,..., , , , ,

( ), ( ), ( ), ( ), , ( )

i i i i i j i j

i

B B i i

d d d c h
P

g H g B g P g G f f

ψ ψ ψ
σ

α β
− − − −⎛ ⎞

⎜ ⎟
⎜ ⎟
⎝ ⎠

   (7) 

In our shorthand, we will call this Type 7 (T7). We 
describe how to apply this model directly in a left-
to-right “sorting” search later in the section on 
search. 

3 Estimation 

We estimate a model’s distributions with 
probabilistic decision trees (DTs).4 We build 
decision trees using the WinMine toolkit 
(Chickering, 2002). WinMine-learned decision 
trees are not just classifiers; each leaf is a 
conditional probability distribution over the target 
random variable, given all features available in 
training; hence the tree as a whole is an estimate of 
the conditional distribution of interest. The primary 
advantage of using decision trees, is the automatic 
feature selection and induction from a large pool of 
features. 

We train four models for German and French 
each. One model is joint (T1); one is joint with 
additional features on the set of daughters already 
ordered (T2); one is conditional (T5). In addition, 
we employ one binary conditional DT model (T7), 
both with and without normalization (see equation 
(8)). 

                                                           
4 Other approaches to feature selection, feature 

induction, and distribution estimation are certainly 
possible, but they are beyond the scope of this paper. 

One experiment using interpolated language modeling 
techniques is described in (Ringger et al., 2003) 

4 Search 

4.1 Exhaustive search 

Given an unordered tree ρ  and a model of 
constituent structure O of any of the types already 
presented, we search for the best ordered tree π  
that maximizes ( )OP π  or ( )OP π ρ , as 
appropriate, with the context varying according to 
the complexity of the model. Each of our models 
(except the binary conditional model) estimates the 
probability of an ordering of any given constituent 
C in π , independently of the ordering inside other 
constituents in π . The complete search is a 
dynamic programming (DP) algorithm, either left-
to-right in the daughters of C (or head-driven, 
depending on the model type). The search can 
optionally maintain one non-statistical constraint 
we call Input-Output Coordination Consistency 
(IOCC), so that the order of coordinated 
constituents is preserved as they were specified in 
the given unordered tree. For these experiments, 
we employ the constraint. 

4.2 Greedy search for binary conditional 
model 

The binary conditional model can be applied in a 
left-to-right “sorting” mode (Figure 3). At stage i, 
for each unordered daughter jD , in iβ , the model 
is consulted for the probability of j yesσ = , 
namely the probability that jD  should be placed to 
the right of the already ordered sister constituents 

iα . The daughter in iβ  with the highest 
probability is removed from iβ  to produce 1iβ +  
and added to the right of iα to produce 1iα + . The 
search proceeds through the remaining unordered 
constituents until all constituents have been 
ordered in this greedy fashion. 

4.3 Exhaustive search for binary conditional 
model 

In order to apply the binary conditional model in 
the exhaustive DP search, we normalize the model 
at every stage of the search and thereby coerce it 
into a probability distribution over the remaining 
daughters in iβ . We represent the distribution in 
“equation” (7) in short-hand as ( ), , iP dσ ψ Γ , 
with iΓ  representing the contextual features for the 
given search hypothesis at search stage i. Thus, our 
normalized distribution for stage i is given by 
equation (8). Free variable j represents an index on 
unordered daughters in iβ , as does k. 

( ) ( )
( )

1

, ,
, ,

, ,
i

j j j i

j j j i

k k k i
k

P yes d
P D d

P yes d
β

σ ψ
ψ

σ ψ
=

= Γ
Γ =

= Γ∑

 (8) 

This turns out to be the decision tree analogue of a 
Maximum Entropy Markov Model (MEMM) 
(McCallum et al., 2000), which we can refer to as a 
DTMM. 



5 Experiments 

5.1 Training 

We use a training set of 20,000 sentences, both 
for French and German. The data come from 
technical manuals in the computer domain. For a 
given sentence in our training set, we begin by 
analyzing the sentence as a surface syntax tree and 
an abstract predicate argument structure using the 
NLPWin system (Heidorn, 2000). By consulting 
these two linked structures, we produce a tree with 
all of the characteristics of trees seen by the 
Amalgam ordering stage at generation run-time 
with one exception: these training trees are 
properly ordered. The training trees include all 
features of interest, including the semantic 
relations among a syntactic head and its modifiers. 
We train our order models from the constituents of 
these trees. NLPWin parser output naturally 
contains errors; hence, the Amalgam training data 
is imperfect. 

5.2 Selected Features 

A wide range of linguistic features is extracted 
for the different decision tree models. The number 
of selected features for German reaches 280 (out of 
651 possible features) in the binary conditional 
model T7. For the French binary conditional 
model, the number of selected features is 218 (out 
of 550). The binary conditional models draw from 
the full set of available features, including: 

• lexical sub-categorization features such as 
transitivity and compatibility with clausal 
complements 

• lemmas (word-stems) 
• semantic features such as the semantic 

relation and the presence of 
quantificational operators 

• length of constituent in words 
• syntactic information such as the label and 

the presence of syntactic modifiers 

5.3 Evaluation 

To evaluate the constituent order models in 
isolation, we designed our experiments to be 
independent of the rest of the Amalgam sentence 
realization process. We use test sets of 1,000 
sentences, also from technical manuals, for each 
language. To isolate ordering, for a given test 
sentence, we process the sentence as in training to 
produce an ordered tree π  (the reference for 
evaluation) and from it an unordered tree ρ . 
Given ρ , we then search for the best ordered tree 
hypothesis π̂  using the model in question. 

We then compare π  and π̂ . Because we are 
only ordering constituents, we can compare π and 
π̂  by comparing their respective constituents. For 
each C in π , we measure the per-constituent edit 

distance D, between C and its counterpart C’ in π̂  
as  follows: 

1. Let d be the edit distance between the 
ordered set of daughters in each, with the 
only possible edit operators being insert and 
delete 

2. Let the number of moves / 2m d= , since 
insertions and deletions can be paired 
uniquely 

3. Divide by the total number of 
daughters: ( )/D m daughters C=  

This metric is like the “Generation Tree Accuracy” 
metric of Bangalore & Rambow (2000), except 
that there is no need to consider cross-constituent 
moves. The total score for the hypothesis tree π̂  is 
the mean of the per-constituent edit distances. 

For each of the models under consideration and 
each language, we report in Table 1 the average 
score across the test set for the given language. The 
first row is a baseline computed from randomly 
scrambling constituents (mean over four 
iterations). 
Model German French 
Baseline (random) 35.14 % 34.36 % 
T1: DT joint 5.948% 3.828% 
T2: DT joint 

with ( )if α   5.852% 4.008% 

T5: DT conditional 6.053% 4.271% 
T7: DT binary cond., 

greedy search 
3.516% 1.986% 

T7: DT normalized 
binary conditional, 
exhaustive search 

3.400% 1.810% 

Table 1: Mean per-constituent edit distances for 
German & French. 

5.4 Discussion 

For both German and French, the binary 
conditional DT model outperforms all other 
models. Normalizing the binary conditional model 
and applying it in an exhaustive search performs 
better than a greedy search. All score differences 
are statistically significant; moreover, manual 
inspection of the differences for the various models 
also substantiates the better quality of those models 
with lower scores. 

With regard to the question of conditional versus 
joint models, the joint models (T1, T2) outperform 
their conditional counterparts (T5). This may be 
due to a lack of sufficient training data for the 
conditional models. At this time, the training time 
of the conditional models is the limiting factor. 

There is a clear disparity between the 
performance of the German models and the 
performance of the French models. The best 
German model is twice as bad as the best French 
model.  (For a discussion of the impact of 
modeling German verb position, please consult 
(Ringger et al., 2003).) 



 
Baseline 
(random) 

Greedy, 
IOCC Greedy 

DP,  
IOCC DP 

Total Sentences 2416 2416 2416 2416 2416 
Mean Tokens/Sentence 23.59 23.59 23.59 23.59 23.59 
Time/Input (sec.) n/a 0.01 0.01 0.39 0.43 
Exact Match 0.424% 33.14% 27.53% 33.53% 35.72% 
Coverage 100% 100% 100% 100% 100% 
Mean Per-Const. Edit Dist. 38.3% 6.02% 6.84% 5.25% 4.98% 
Mean NIST SSA -16.75 74.98 67.19 74.65 73.24 
Mean IBM Bleu Score 0.136 0.828 0.785 0.817 0.836 

Table 2: DSIF-Amalgam ordering performance on WSJ section 23. 

6 Evaluation on the Penn TreeBank 

Our goal in evaluating on Penn Tree Bank (PTB) 
data is two-fold: (1) to enable a comparison of 
Amalgam’s performance with other systems 
operating on similar input, and (2) to measure 
Amalgam’s capabilities on less domain-specific 
data than technical software manuals. We derive 
from the bracketed tree structures in the PTB using 
a deterministic procedure an abstract 
representation we refer to as a Dependency 
Structure Input Format (DSIF), which is only 
loosely related to NLPWin’s abstract predicate-
argument structures. 

The PTB to DSIF transformation pipeline 
includes the following stages, inspired by 
Langkilde-Geary’s (2002b) description: 

A. Deserialize the tree 
B. Label heads, according to Charniak’s head 

labeling rules (Charniak, 2000) 
C. Remove empty nodes and flatten any 

remaining empty non-terminals 
D. Relabel heads to conform more closely to the 

head conventions of NLPWin 
E. Label with logical roles, inferred from PTB 

functional roles 
F. Flatten to maximal projections of heads 

(MPH), except in the case of conjunctions 
G. Flatten non-branching non-terminals 
H. Perform dictionary look-up and 

morphological analysis 
I. Introduce structure for material between 

paired delimiters and for any coordination 
not already represented in the PTB 

J. Remove punctuation 
K. Remove function words 
L. Map the head of each maximal projection to 

a dependency node, and map the head’s 
modifiers to the first node’s dependents, 
thereby forming a complete dependency tree. 

To evaluate ordering performance alone, our data 
are obtained by performing all of the steps above 
except for (J) and (K). We employ only a binary 
conditional ordering model, found in the previous 
section to be the best of the models considered. To 

train the order models, we use a set of 10,000 
sentences drawn from the standard PTB training 
set, namely sections 02–21 from the Wall Street 
Journal portion of the PTB (the full set contains 
approx. 40,000 sentences). For development and 
parameter tuning we used a separate set of 2000 
sentences drawn from sections 02–21. 

Decision trees are trained for each of five 
constituent types characterized by their head 
labels: adjectival, nominal, verbal, conjunctions 
(coordinated material), and other constituents not 
already covered. The split DTs can be thought of 
as a single DT with a five-way split at the top 
node. 

Our DSIF test set consists of the blind test set 
(section 23) of the WSJ portion of the PTB. At 
run-time, for each converted tree in the test set, all 
daughters of a given constituent are first permuted 
randomly with one another (scrambled), with the 
option for coordinated constituents to remain 
unscrambled, according to the Input-Output 
Coordination Consistency (IOCC) option. For a 
given unordered (scrambled) constituent, the 
appropriate order model (noun-head, verb-head, 
etc.) is used in the ordering search to order the 
daughters. Note that for the greedy search, the 
input order can influence the final result; therefore, 
we repeat this process for multiple random 
scramblings and average the results. 

We use the evaluation metrics employed in 
published evaluations of HALogen, FUF/SURGE, 
and FERGUS (e.g., Calloway, 2003), although our 
results are for ordering only. Coverage, or the 
percentage of inputs for which a system can 
produce a corresponding output, is uninformative 
for the Amalgam system, since in all cases, it can 
generate an output for any given DSIF. In addition 
to processing time per input, we apply four other 
metrics: exact match, NIST simple string accuracy 
(the complement of the familiar word error rate), 
the IBM Bleu score (Papineni et al., 2001), and the 
intra-constituent edit distance metric introduced 
earlier. 

We evaluate against ideal trees, directly 
computed from PTB bracketed tree structures. The 



results in Table 2 show the effects of varying the 
IOCC parameter. For both trials involving a greedy 
search, the results were averaged across 25 
iterations. As should be expected, turning on the 
input-output faithfulness option (IOCC) improves 
the performance of the greedy search. Keeping 
coordinated material in the same relative order 
would only be called for in applications that plan 
discourse structure before or during generation. 

7 Conclusions and Future Work 

The experiments presented here provide 
conclusive reasons to favor the binary conditional 
model as a model of constituent order. The 
inclusion of linguistic features is of great value to 
the modeling of order, specifically in verbal 
constituents for both French and German. 
Unfortunately space did not permit a thorough 
discussion of the linguistic features used. Judging 
from the high number of features that were 
selected during training for participation in the 
conditional and binary conditional models, the 
availability of automatic feature selection is 
critical. 

Our conditional and binary conditional models 
are currently lexicalized only for function words; 
the joint models not at all. Experiments by Daumé 
et al (2002) and the parsing work of Charniak 
(2000) and others indicate that further 
lexicalization may yield some additional 
improvements for ordering. However, the parsing 
results of Klein & Manning (2003) involving 
unlexicalized grammars suggest that gains may be 
limited. 

For comparison, we encourage implementers of 
other sentence realization systems to conduct 
order-only evaluations using PTB data. 
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