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Meguro Ôokayama 2-12-1,

Tokyo 152-8552, Japan
take@cl.cs.titech.ac.jp

Abstract
Past work of generating referring expressions
mainly utilized attributes of objects and bi-
nary relations between objects. However, such
an approach does not work well when there
is no distinctive attribute among objects. To
overcome this limitation, this paper proposes a
method utilizing the perceptual groups of ob-
jects and n-ary relations among them. The key
is to identify groups of objects that are natu-
rally recognized by humans. We conducted psy-
chological experiments with 42 subjects to col-
lect referring expressions in such situations, and
built a generation algorithm based on the re-
sults. The evaluation using another 23 subjects
showed that the proposed method could effec-
tively generate proper referring expressions.

1 Introduction

In the last two decades, many researchers have stud-
ied the generation of referring expressions to enable
computers to communicate with humans about con-
crete objects in the world.

For that purpose, most past work (Appelt, 1985;
Dale and Haddock, 1991; Dale, 1992; Dale and
Reiter, 1995; Heeman and Hirst, 1995; Horacek,
1997; Krahmer and Theune, 2002; van Deemter,
2002; Krahmer et al., 2003) makes use of attributes
of an intended object (the target) and binary rela-
tions between the target and others (distractors) to
distinguish the target from distractors. Therefore,
these methods cannot generate proper referring ex-
pressions in situations where no significant surface
difference exists between the target and distractors,
and no binary relation is useful to distinguish the
target. Here, a proper referring expression means
a concise and natural linguistic expression enabling
hearers to distinguish the target from distractors.

For example, consider indicating object b to per-
son P in the situation shown in Figure 1. Note that
person P does not share the label information such
as a and b with the speaker. Because object b is
not distinguishable from objects a or c by means of
their appearance, one would try to use a binary re-
lation between object b and the table, i.e., “A ball
to the right of the table”. 1 However, “to the right
of ” is not a discriminatory relation, for objects a
and c are also located to the right of the table. Us-
ing a and c as a reference object instead of the ta-
ble does not make sense, since a and c cannot be
uniquely identified because of the same reason that
b cannot be identified. Such situations have never
drawn much attention, but can occur easily and fre-
quently in some domains such as object arrange-
ment (Tanaka et al., 2004).

van der Sluis and Krahmer (2000) proposed us-
ing gestures such as pointing in situations like those
shown in Figure 1. However, pointing and gazing
are not always available depending on the positional
relation between the speaker and the hearer.

In the situation shown in Figure 1, a speaker can
indicate object b to person P with a simple expres-
sion “the front ball” without using any gesture. In
order to generate such an expression, one must be
able to recognize the salient perceptual group of the
objects and use the n-ary relative relations in the
group. 2

In this paper, we propose a method of generat-

1In this paper, we simply assume that all participants share
the appropriate reference frame (Levinson, 2003). We mention
this issue in the last section.

2Although Krahmer et al. claim that their method can han-
dle n-ary relations (Krahmer et al., 2003), they provide no de-
tails. We think their method cannot directly handle situations
we discuss here.



ing referring expressions that utilizes n-ary relations
among members of a group. Our method recognizes
groups by using Thórisson’s algorithm (Thórisson,
1994). As the first step of our research project, we
deal with the limited situations where only homoge-
neous objects are randomly arranged (see Figure 2).
Therefore, we handle positional n-ary relation only,
and other types of n-ary relation such as size, e.g.,
“the biggest one”, are not mentioned.

Speakers often refer to multiple groups in the
course of referring to the target. In these cases, we
can observe two types of relations: the intra-group
relation such as “the front two among the five near
the desk”, and the inter-group relation such as “the
two to the right of the five”. We define that a sub-
sumption relation between two groups is an intra-
group relation.

In what follows, Section 2 explains the exper-
iments conducted to collect expressions in which
perceptual groups are used. The proposed method is
described and evaluated in Section 3. In Section 4,
we examine a possibility to predict the adequacy of
an expression in terms of perceptual grouping. Fi-
nally, we conclude the paper in Section 5.
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Figure 1: An example of problematic situations

2 Data Collection
We conducted a psychological experiment with 42
Japanese undergraduate students to collect referring
expressions in which perceptual groups are used. In
order to evaluate the collected expressions, we con-
ducted another experiment with a different group of
44 Japanese undergraduate students. There is no
overlap between the subjects of those two experi-
ments. Details of this experiment are described in
the following subsections.

2.1 Collecting Referring Expressions
Method Subjects were presented 2-dimensional
bird’s-eye images in which several objects of the
same color and the same size were arranged and the
subjects were requested to convey a target object to
the third person drawn in the same image. We used
12 images of arrangements. In each image, three

to nine objects were arranged manually so that the
objects distributes non-uniformly. An example of
images presented to subjects is shown in Figure 2.
Labels a, . . . , f, x in the image are assigned for pur-
poses of illustration and are not assigned in the ac-
tual images presented to the subjects. Each subject
was asked to describe a command so that the person
in the image picks a target object that is enclosed
with dotted lines. When a subject could not think
of a proper expression, she/he was allowed to aban-
don that arrangement and proceed to the next one.
Referring expressions designating the target object
were collected from these subjects’ commands.
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Figure 2: A visual stimulus of the experiment

Analysis We presented 12 arrangements to 42
subjects and obtained 476 referring expressions.
Twenty eight judgments were abandoned in the ex-
periment. Observing the collected expressions, we
found that starting from a group with all of the ob-
jects, subjects generally narrow down the group to
a singleton group that has the target object. There-
fore, a referring expression can be formalized as a
sequence of groups (SOG) reflecting the subject’s
narrowing down process.

The following example shows an observed ex-
pression describing the target x in Figure 2 with the
corresponding SOG representation below it.

“hidari oku ni aru mittu no tama no uti no
itiban migi no tama.”
(the rightmost ball among the three balls
at the back left)

SOG:[{a, b, c, d, e, f, x}, {a, b, x}, {x}] 3

where
{a, b, c, d, e, f, x} denotes all objects in
the image (total set),
{a, b, x} denotes the three objects at the
back left, and
{x} denotes the target.

3We denote an SOG representation by enclosing groups
with square brackets.



Since narrowing down starts from the total set,
the SOG representation starts with a set of all ob-
jects and ends with a singleton group with the tar-
get. Translating the collected referring expressions
into the SOG representation enables us to abstract
and classify the expressions. On average, we ob-
tained about 40 expressions for each arrangement,
and classified them into 8.4 different SOG represen-
tations.

Although there are two types of relations be-
tween groups as we mentioned in Section 1, the ex-
pressions using only intra-group relations made up
about 70% of the total.

2.2 Evaluating the Collected Expressions

Method Subjects were presented expressions col-
lected in the experiment described in Section 2.1 to-
gether with the corresponding images, and were re-
quested to indicate objects referred to by the expres-
sions. The presented images are the same as those
used in the previous experiment except that there are
no marks on the targets. At the same time, subjects
were requested to express their confidence in select-
ing the target, and evaluate the conciseness, and the
naturalness of the given expressions on a scale of 1
to 8.

Because the number of expressions that we could
evaluate with subjects was limited, we chose a max-
imum of 10 frequent expressions for each arrange-
ment. The expressions were chosen so that as many
different SOG representations were included as pos-
sible. If an arrangement had SOGs less than 10,
several expressions that had the same SOG but dif-
ferent surface realizations were chosen. The resul-
tant 117 expressions were evaluated by 49 subjects.
Each subject evaluated about 29.5 expressions.

Analysis Discarding incomplete answers, we ob-
tained 1,429 evaluations in total. 12.2 evaluations
were obtained for each expression on average.

We measured the quality of each expression in
terms of an evaluation value that is defined in (1).
This measure is used to analyze what kind of ex-
pressions are preferred and to set up a scoring func-
tion (6) for machine-generated expressions as de-
scribed in Section 3.1.

(evaluation value)
= (accuracy) × (confidence)

× (naturalness) + (conciseness)
2

(1)

According to our analysis, the expressions with
only intra-group relations (84 samples) obtained
high accuracies (Ave. 79.3%) and high evaluation

values (Ave. 33.1), while the expressions with inter-
group relations (33 samples) obtained lower accura-
cies (Ave. 69.1%) and lower evaluation values (Ave.
19.7).

The expressions with only intra-group relations
are observed more than double as many as the ex-
pressions with inter-group relations. We provide a
couple of example expressions indicating object x
in Figure 2 to contrast those two types of expres-
sions below.

• without inter-group relations

– “the rightmost ball among the three balls
at the back left”

• with inter-group relations

– “the ball behind the two front balls”

In addition, expressions explicitly mentioning all
the objects obtained lower evaluation values. Con-
sidering these observations, we built a generation
algorithm using only intra-group relations and did
not mention all the objects explicitly.

Among these expressions, we selected those with
which the subjects successfully identified the target
with more than 90% accuracy. These expressions
are used to extract parameters of our generation al-
gorithm in the following sections.

3 Generating Referring Expressions
3.1 Generation Algorithm
Given an arrangement of objects and a target, our al-
gorithm generates referring expressions by the fol-
lowing three steps:

Step 1: enumerate perceptual groups based on the
proximity between objects

Step 2: generate the SOG representations by com-
bining the groups

Step 3: translate the SOG representations into lin-
guistic expressions

In the rest of this section, we illustrate how these
three steps generate referring expressions in the sit-
uation shown in Figure 2.

Step 1: Enumerating Perceptual Groups.
To generate perceptual groups from an arrangement,
Thórisson’s algorithm (Thórisson, 1994) is adopted.

Given a list of objects in an arrangement, the al-
gorithm generates groups based on the proximity of
the objects and returns a list of groups. Only groups
containing the target, that is x, are chosen because



SOG: [{a, b, c, d, e, f, x}, {a, b, x}, {x}]

→ E(R({a, b, c, d, e, f, x}, {a, b, x})) + E({a, b, x}) + E(R({a, b, x}, {x})) + E({x})

→ “hidari oku no”+“mittu no tama”+“no uti no migihasi no”+“tama”
(at the back left) (three balls) (rightmost . . . among) (ball)

Figure 3: An example of surface realization

we handle intra-group relations only as mentioned
before, and that implies that all groups mentioned
in an expression must include the target. Then, the
groups are sorted in descending order of the group
size. Finally a singleton group consisting of the tar-
get is added to the end of the list if such a group is
missing in the list. The resultant group list, GL, is
the output of Step 1.

For example, the algorithm recognizes the fol-
lowing groups given the arrangement shown in Fig-
ure 2:

{{a, b, c, d, e, f, x}, {a, b, c, d, x},
{a, b, x}, {c, d}, {e, f}}.

After filtering out the groups without the target and
adding a singleton group with the target, we obtain
the following list:

{{a, b, c, d, e, f, x}, {a, b, c, d, x}, {a, b, x}, {x}}.
(2)

Step 2: Generating the SOG Representations.
In this step, the SOG representations introduced in
Section 2 are generated from the GL of Step 1,
which generally has a form like (3), where Gi de-
notes a group, and G0 is a group of all the objects.
Here, we narrow down the objects starting from the
total set (G0) to the target ({x}).

[G0, G1, . . . , Gm−2, {x}] (3)

Given a group list GL, all possible SOGs are gen-
erated. From a group list of size m, 2m−2 SOG
representations can be generated since G0 and {x}
should be included in the SOG representation. For
example, from a group list of {G0, G1, G2, {x}},
we obtain four SOGs: [G0, {x}], [G0, G1, {x}],
[G0, G2, {x}], and [G0, G1, G2, {x}].

For example, one of the SOG representations
generated from list (2) is

[{a, b, c, d, e, f, x}, {a, b, x}, {x}]. (4)

Note that any two groups Gi and Gj in a list of
groups generated by Thórisson’s algorithm with re-
gard to one feature, e.g., proximity in this paper, are

mutually disjoint (Gi∩Gj = φ), otherwise one sub-
sumes the other (Gi ⊂ Gj or Gj ⊂ Gi). No inter-
secting groups without a subsumption relation are
generated.

Step 3: Generating Linguistic Expressions.
In the last step, the SOG representations are trans-
lated into linguistic expressions. Since Japanese is
a head-final language, the order of linguistic ex-
pressions for groups are retained in the final lin-
guistic expression for the SOG representation. That
is, an SOG representation [G0, G1, . . . , Gn−2, {x}]
can be realized as shown in (5), where E(X) de-
notes a linguistic expression for X, R(X,Y ) de-
notes a relation between X and Y , and ‘+’ is a
string concatenation operator.

E(G0) + E(R(G0, G1)) + E(G1) + . . .

+E(R(Gn−2, {x})) + E({x}) (5)

As described in Section 2.2, expressions that ex-
plicitly mention all the objects obtain lower evalu-
ation values, and expressions using intra-group re-
lations obtain high evaluation values. Considering
these observations, our algorithm does not use the
linguistic expression corresponding to all the ob-
jects, that is E(G0), and only uses intra-group re-
lations for R(X,Y ).

Possible expressions of X are collected from the
experimental data in Section 2.1, and the first ap-
plicable expression is selected when realizing a lin-
guistic expression for X, i.e., E(X). Therefore,
this algorithm produces one linguistic expression
for each SOG even though there are some other pos-
sible expressions.

For example, the SOG representation (4) is real-
ized as shown in Figure 3.

Note that there is no mention of all the objects,
{a, b, c, d, e, f, x}, in the linguistic expression.

3.2 Evaluation of Generated Expressions
We implemented the algorithm described in Sec-
tion 3.1, and evaluated the output with 23 under-
graduate students. The subjects were different from
those of the previous experiments but were of the
same age group, and the experimental environment



Accuracy (%) Naturalness Conciseness Confidence Eval. val.
Human-12-all 87.3 4.82 5.27 6.14 29.3
Human-12-90 97.9 5.20 5.62 6.50 35.0
Human-12-100 100 5.36 5.73 6.65 37.2
System-12 91.0 5.60 6.25 6.32 40.1
System-20 88.4 5.09 5.65 6.25 35.2
System-Average 89.2 5.24 5.82 6.27 36.6

Table 1: Summary of evaluation

was the same. The evaluation of the output was per-
formed in the same manner as that of Section 2.2.

The results are shown in Table 1. “Human-
12-all” shows the average values of all expres-
sions collected from humans with 12 arrangements
as described in Section 2.2. “Human-12-90” and
“Human-12-100” show the average values of ex-
pressions by humans that gained more than 90%
and 100% in accuracy in the same evaluation ex-
periment respectively.

“System-12” shows the average values of expres-
sions generated by the algorithm for the 12 arrange-
ments used in the data collection experiment de-
scribed in Section 2.1. The algorithm generated 18
expressions for the 12 arrangements, which were
presented to each subject in random order for eval-
uation.

“System-20” shows the average values of expres-
sions generated by the algorithm for 20 randomly
generated arrangements that generate at least two
linguistic expressions each. The algorithm gen-
erated 48 expressions for these 20 arrangements,
which were evaluated in the same manner as that
of “System-12”.

“System-Average” shows the micro average of
expressions of both “System-12” and “System-20”.

“Accuracy” shows the rates at which the sub-
jects could identify the correct target objects from
the given expressions. Comparing the accuracies of
“Human-12-*” and “System-12”, we find that the
algorithm generates good expressions. Moreover,
the algorithm is superior to human in terms of “Nat-
uralness” and “Conciseness”. However, this result
should be interpreted carefully. Further investiga-
tion of the expressions revealed that humans often
sacrificed naturalness and conciseness in order to
describe the target as precisely as possible for com-
plex arrangements.

4 Scoring SOG Representations

The algorithm presented in the previous section out-
puts several possible expressions. Therefore, we
have to choose one of the expressions by calculat-
ing their scores.

The scores can be computed using various mea-
sures, such as complexity of expressions, and
salience of referent objects. In this section, we in-
vestigate whether the adequacies of the courses of
narrowing down can be predicted: that is, whether
meaningful scores of SOG representations can be
calculated.

4.1 Method for SOG Scoring
An SOG representation has a form as stated in (3).
We presumed that, when a speaker tries to narrow
down an object group from Gi to Gi+1, there is
an optimal ratio between the dimensions of Gi and
Gi+1. In other words, narrowing down a group from
a very big one to a very small one might cause hear-
ers to become confused.

For example, consider the following two expres-
sions that both indicate object x in Figure 2. Hearers
would prefer (i) to (ii) though (ii) is simpler than (i).

(i) “the rightmost ball among the three balls at the
back left”

(ii) “the fourth ball from the right”

In fact, we found (i) among the expressions col-
lected in Section 2.1, but did not find (ii) among
them. Our algorithm generated both (i) and (ii)
in Section 3.2, and the two expressions gained the
evaluation values of 44.4 and 32.1 respectively.

If our presumption is correct, we can expect
to choose better expressions by choosing expres-
sions that have adequate dimension ratios between
groups.

Calculation Formula
The total score of an SOG representation is calcu-
lated by averaging the scores given by functions f1
and f2 whose parameters are dimension ratios be-
tween two consecutive groups as given in (6), where
n is the number of groups in the SOG.

score(SOG) =
1

n − 1
{

n−3∑
i=0

f1

(
dim(Gi+1)
dim(Gi)

)

+ f2

(
dim({x})

dim(Gn−2)

)
} (6)



The dimension of a group dim is defined as the
average distance between the centroid of the group
and that of each object. The dimension of the sin-
gleton group {x} is defined as a constant value. Be-
cause of this idiosyncrasy of the singleton group
{x} compared to other groups, f2 was introduced
separately from f1 even though both functions rep-
resent the same concept, as described below.

The optimal ratio between two groups, and that
from a group to the target were found through the
quadratic regression analysis of data collected in the
experiment described in Section 2.2. f1 and f2 are
the two regression curves found through analysis
representing correlations between dimension ratios
and values calculated based on human evaluation as
in formula (1).We could not find direct correlations
between dimension ratios and accuracies.

4.2 Results

We checked to what extent the scores of generated
expressions given by formula (6) conformed with
the human evaluation given by formula (1) as agree-
ment. Agreement was calculated as follows using
20 randomly generated arrangements described in
Section 3.2.

First, the generated expressions were ordered ac-
cording to the score given by formula (6) and the
human evaluation given by formula (1). All binary
order relations between two expressions were ex-
tracted from these two ordered lists of expressions.
The agreement was defined as the ratio of the same
binary order relations among all binary order rela-
tions.

The agreement between scores and the human
evaluation was 45.8%. The score did not predict
SOG representations that would generate better ex-
pressions very well. Further research is required to
conclusively rule out the use of dimension ratios for
prediction or whether other factors are involved.

5 Concluding Remarks and Future Work

This paper proposed an algorithm that generates re-
ferring expressions using perceptual groups and n-
ary relations among them. The algorithm was built
on the basis of the analysis of expressions that were
collected through psychological experiments. The
performance of the algorithm was evaluated by 23
subjects and it generated promising results.

In the following, we look at future work to be
done.

Recognizing salient geometric formations:
Thórisson’s algorithm (Thórisson, 1994) cannot
recognize a linear arrangement of objects as a
group, although such arrangements are quite salient

for humans. This is one of the reasons for the
disconformity between the evaluations given by the
algorithm and those of the humans subjects.

We can enumerate most of such geometric ar-
rangements salient for human subject by referring to
geometric terms found in lexicons and thesauri such
as ”line”, ”circle”, ”square” and so on. Thórisson’s
algorithm should be extended to recognize these ar-
rangements.

Using relations other than positional relations:
In this paper, we focused on positional relations of
perceptual groups. Other relations such as degree of
color and size should be treated in the same manner.

Thórisson’s original algorithm (Thórisson, 1994)
takes into account these relations as well as posi-
tional relations of objects when calculating similar-
ity between objects to generate groups. However, if
we generate groups using multiple relations simul-
taneously, the assumption used in Step 1 of our al-
gorithm that any pair of groups in an output list do
not intersect without a subsumption relation cannot
be held. Therefore, the mechanism generating SOG
representations (Step 2 in Section 3.1) must be re-
considered.

Resolving reference frames and differences of
perspective: We assumed that all participants in
a conversation shared the same reference frame.
However, when we apply our method to conversa-
tional agent systems, e.g., (Cavazza et al., 2002;
Tanaka et al., 2004), reference frames must be prop-
erly determined each time to generate referring ex-
pressions. Although there are many studies con-
cerning reference frames, e.g., (Clark, 1973; Her-
skovits, 1986; Levinson, 2003), little attention has
been paid to how reference frames are determined in
terms of the perceptual groups and their elements.

In addition to reference frames, differences of
perspective also have to be taken into account to
produce proper referring expressions since humans
often view spatial relations between objects in a
3-dimensional space by projecting them on a 2-
dimensional plane. In the experiments, we pre-
sented the subjects with 2-dimensional bird’s-eye
images. The result might have been different if we
had used 3-dimensional images instead, because the
projection changes the sizes of objects and spatial
relations among them.

Integration with conventional methods: In this
paper, we focused on a limited situation where in-
herent attributes of objects do not serve any identi-
fying function, but this is not the case in general. An
algorithm integrating conventional attribute-based
methods and the proposed method should be formu-



lated to achieve the end goal.
A possible direction would be to enhance the al-

gorithm proposed by Krahmer et al. (Krahmer et
al., 2003). They formalize an object arrangement
(scene) as a labeled directed graph in which ver-
tices model objects and edges model attributes and
binary relations, and regard content selection as a
subgraph construction problem. Their algorithm
performs searches directed by a cost function on a
graph to find a unique subgraph.

If we consider a perceptual group as an ordinary
object as shown in Figure 4, their algorithm is appli-
cable. It will be able to handle not only intra-group
relations (e.g., the edges with labels “front”, “mid-
dle”, and “back” in Figure 4) but also inter-group re-
lations (e.g., the edge from “Group 1” to “Table” in
Figure 4). However, introducing perceptual groups
as vertices makes it difficult to design the cost func-
tion. A well-designed cost function is indispensable
for generating concise and comprehensible expres-
sions. Otherwise, an expression like “a ball in front
of a ball in front of a ball” for the situation shown in
Figure 1 would be generated.

Group 1

b c a
Table

front_of front_of right_of

back_of back_of left_of

front

middle back

right_of

right_of

right_of

Figure 4: A simplified graph with a group vertex for
the situation shown in Figure 1
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