
Why Nitpicking Works: Evidence for Occam’s Razor in Error Correctors

Dekai WU†1 Grace NGAI ‡2 Marine C ARPUAT †

dekai@cs.ust.hk csgngai@polyu.edu.hk marine@cs.ust.hk

† Human Language Technology Center
HKUST

Department of Computer Science
University of Science and Technology

Clear Water Bay, Hong Kong

‡ Hong Kong Polytechnic University
Department of Computing

Kowloon
Hong Kong

Abstract
Empirical experience and observations have shown us when
powerful and highly tunable classifiers such as maximum en-
tropy classifiers, boosting and SVMs are applied to language
processing tasks, it is possible to achieve high accuracies, but
eventually their performances all tend to plateau out at around
the same point. To further improve performance, various error
correction mechanisms have been developed, but in practice,
most of them cannot be relied on to predictably improve per-
formance on unseen data; indeed, depending upon the test set,
they are as likely to degrade accuracy as to improve it. This
problem is especially severe if the base classifier has already
been finely tuned.

In recent work, we introduced N-fold Templated Piped Cor-
rection, or NTPC (“nitpick”), an intriguing error corrector that
is designed to work in these extreme operating conditions. De-
spite its simplicity, it consistently and robustly improves the ac-
curacy of existing highly accurate base models. This paper in-
vestigates some of the more surprising claims made by NTPC,
and presents experiments supporting an Occam’s Razor argu-
ment that more complex models are damaging or unnecessary
in practice.

1 Introduction
The investigation we describe here arose from a very
commonly discussed experience, apparently triggered by
the recent popularity of shared task evaluations that have
opened opportunities for researchers to informally com-
pare their experiences “with a common denominator”, so
to speak.

Among the perennial observations which are made
during the analysis of the results is that (1) methods de-
signed to “fine-tune” the high-accuracy base classifiers
behave unpredictably, their success or failure often ap-
pearing far more sensitive to where the test set was drawn
from, rather than on any true quality of the “fine-tuning”,
and consequently, (2) the resulting system rankings are
often unpredictable, especially as they are typically con-
ducted only on a single new test set, often drawn from
a single arbitrary new source of a significantly different
nature than the training sets. One could argue that such
evaluations do not constitute a fair test, but in fact, this is

1The author would like to thank the Hong Kong Research Grants
Council (RGC) for supporting this research in part through research
grants RGC6083/99E, RGC6256/00E, and DAG03/04.EG09.

2The author would like to thank the Hong Kong Polytechnic Univer-
sity for supporting this research in part through research grants A-PE37
and 4-Z03S.

where computational linguistics modeling diverges from
machine learning theory, since for any serious NLP ap-
plication, such evaluations constitute a much more accu-
rate representation of the real world.

We believe one primary reason for this common ex-
perience is that the models involved are typically al-
ready operating well beyond the limits of accuracy of
the models’ assumptions about the nature of distributions
from which testing samples will be drawn. For this rea-
son, even “sophisticated” discriminative training crite-
ria, such as maximum entropy, minimum error rate, and
minimum Bayes risk, are susceptible to these stability
problems. There has been much theoretical work done
on error correction, but in practice, any error correction
usually lowers the performance of the combined system
on unseen data, rather than improving it. Unfortunately,
most existing theory simply does not apply.

This is especially true if the base model has been
highly tuned. For the majority of tasks, the performance
of the trained models, after much fine tuning, tend to
plateau out at around the same point, regardless of the
theoretical basis of the underlying model. This holds
true with most highly accurate classifiers, including max-
imum entropy classifiers, SVMs, and boosting models.
In addition, even though data analysis gives us some gen-
eral idea as to what kinds of feature conjunctions might
help, the classifiers are not able to incorporate those
into their model (usually because the computational cost
would be infeasible), and any further post-processing
tends to degrade accuracy on unseen data. The common
practice of further improving accuracy at this point is to
resort toad hocclassifier combination methods, which
are usually not theoretically well justified and, again, un-
predictably improve or degrade performance—thus con-
suming vast amounts of experimental resources with rel-
atively low expected payoff, much like a lottery.

There are a variety of reasons for this, ranging from
the aforementioned validity of the assumptions about the
distribution between the training and test corpora, to the
absence of a well justified stopping point for error cor-
rection. The latter problem is much more serious than it
seems at first blush, since without a well-justified stop-
ping criterion, the performance of the combined model
will be much more dependent upon the distribution of
the test set, than on any feature engineering. Empirical
evidence for this argument can be seen from the result of
the CoNLL shared tasks (Tjong Kim Sang, 2002)(Tjong
Kim Sang and Meulder, 2003), where the ranking of the



participating systems changes with the test corpora.
Inspired by the repeated observations of this phe-

nomenon by many participants, we decided to stop
“sweeping the issue under the rug”, and undertook to
confront it head-on. Accordingly, we challenged our-
selves to design an error corrector satisfying the follow-
ing criteria, which few if any existing models actually
meet: (1) it would leverage off existing base models,
while targeting their errors; (2) it wouldconsistentlyim-
prove accuracy, even on top of base models that already
deliver high accuracy; (3) it would be robust and con-
servative, so as to almostneveraccidentally degrade ac-
curacy; (4) it would be broadly applicable to any classi-
fication or recognition task, especially high-dimensional
ones such as named-entity recognition and word-sense
disambiguation; and (5) it would be template-driven and
easily customizable, which would enable it to target er-
ror patterns beyond the base models’ representation and
computational complexity limitations.

Our goal in this undertaking was to invent as little as
possible. We expected to make use of relatively sophis-
ticated error-minimization techniques. Thus the results
were surprising: thesimplestmodels kept outperform-
ing the “sophisticated” models. This paper attempts to
investigate some of the key reasons why.

To avoid reinventing the wheel, we originally
considered adapting an existing error-driven method,
transformation-based learning (TBL) for this purpose.
TBL seems well suited to the problem as it is inherently
an error corrector and, on its own, has been shown to
achieve high accuracies on a variety of problems (see
Section 4). Our original goal was to adapt TBL for
error correction of high-performing models (Wuet al.,
2004a), with two main principles: (1) since it is not clear
that the usual assumptions made about the distribution
of the training/test data are valid in such extreme oper-
ating ranges, empirical observations would take prece-
dence over theoretical models, which implies that (2) any
model would have to be empirically justified by testing
on a diverse range of data. Experimental observations,
however, increasingly drove us toward different goals.

Our resulting error corrector, NTPC, was instead con-
structed on the principle of making as few assumptions as
possible in order to robustly generalize over diverse situ-
ations and problems. One observation made in the course
of experimentation, after many attempts at fine-tuning
model parameters, was that many of the complex theo-
retical models for error correction often do not perform
consistently. This is perhaps not too surprising upon fur-
ther reflection, since the principle of Occam’s Razor does
prefer simpler hypotheses over more complex ones.

NTPC was introduced in (Wuet al., 2004b), where the
controversial issues it raised generated a number of in-
teresting questions, many of which were were directed at
NTPC’s seeming simplicity, which seems in opposition
to the theory behind many other error correcting models.
In this paper, we investigate the most commonly-asked
questions. We illuminate these questions by contrasting
NTPC against the more powerful TBL, presenting ex-
periments that show that NTPC’s simple model is indeed

Figure 1: Piped architecture with n-fold partitioning.

key to its robustness and reliability.
The rest of the paper is laid out as follows: Section 2

presents an introduction to NTPC, including an overview
of its architecture. Section 3 addresses key questions re-
lated to NTPC’s architecture and presents empirical re-
sults justifying its simplicity.

2 N-fold Templated Piped Correction
N-fold Templated Piped Correction or NTPC, is a
model that is designed to robustly improve the accuracy
of existing base models in a diverse range of operating
conditions. As was described above, the most challeng-
ing situations for any error corrector is when the base
model has been finely tuned and the performance has
reached a plateau. Most of the time, any further feature
engineering or error correction after that point will end
up hurting performance rather than improving it.

2.1 The architecture of NTPC is surprisingly
simple

One of the most surprising things about NTPC lies in
the fact that despite its simplicity, it outperforms math-
ematically much more “sophisticated” methods at error
correcting. Architecturally, it relies on a simple rule-
learning mechanism and cross-partitioning of the train-
ing data to learn very conservative, cautious rules that
make only a few corrections at a time.

Figure 1 illustrates the NTPC architecture. Prior to
learning, NTPC is given (1) a set of rule templates which
describe the types of rules that it is allowed to hypothe-



size, (2) a single base learning model, and (3) an anno-
tated training set.

The NTPC architecture is essentially a sequen-
tially chainedpiped ensemble that incorporates cross-
validation style n-fold partition sets generated from the
base model. The training set is partitionedn times in
order to trainn base models. Subsequently then held-
out validation sets are classified by the respective trained
base models, with the results combined into a “reconsti-
tuted” training set. The reconstituted training set is used
by Error Corrector Learner, which learns a set of rules.
Rule hypotheses are generated according to the given set
of allowable templates:

R = {r| r ∈ H ∧ τ (r) > τmin ∧ ε (r) = 0} (1)

τ(r) =
∑X

j=1

∑
r(xj ,ŷj) 6=∅

δ(r(xj , ŷj), yj) (2)

ε(r) =
∑X

j=1

∑
r(xj ,ŷj) 6=∅

1− δ(r(xj , ŷj), yj)(3)

whereX is a sequence ofX training examplesxi, Y
is a sequence of reference labelsyi for each example
respectively,Ŷ is a sequence of labelŝyi as predicted
by the base model for each example respectively,H is
the hypothesis space of valid rules implied by the tem-
plates, andτmin is a confidence threshold. Settingτmin

to a relatively high value (say 15) implements the re-
quirement of high reliability.R is subsequently sorted
by theτi value of each ruleri into an ordered list of rules
R∗ = (r∗0, . . . , r

∗
i−1).

During the evaluation phase, depicted in the lower por-
tion of Figure 1, the test set is first labeled by the base
model. The error corrector’s rulesr∗i are then applied in
the order ofR∗ to the evaluation set. The final classifica-
tion of a sample is then the classification attained when
all the rules have been applied.

2.2 NTPC consistently and robustly improves
accuracy of highly-accurate base models

In previous work (Wuet al., 2004b), we presented ex-
periments on named-entity identification and classifica-
tion across four diverse languages, using Adaboost.MH
as the base learner, which showed that NTPC was ca-
pable of robustly and consistently improving upon the
accuracy of the already-highly-accurate boosting model;
correcting the errors committed by the base model but
not introducing any of its own.

Table 1 compares results obtained with the base Ad-
aboost.MH model (Schapire and Singer, 2000) and the
NTPC-enhanced model for a total of eight different
named-entity recognition (NER) models. These experi-
ments were performed on the CoNLL-2002 and CoNLL-
2003 shared task data sets. It can be seen that the Ad-
aboost.MH base models clearly already achieve high ac-
curacy, setting the bar very high for NTPC to improve
upon. However, it can also be seen that NTPC yields fur-
ther F-Measure gains oneverycombination of task and
language, including English NE bracketing (Model M2)
for which the base F-Measure is the highest.

An examination of the rules (shown in the Appendix)
can give an idea as to why NTPC manages to identify

and correct errors which were overlooked by the highly
tuned base model. NTPC’s advantage comes from two
aspects: (1) its ability to handle complex conjunctions
of features, which often reflect structured, linguistically
motivated expectations, in the form of rule templates;
and (2) its ability to “look forward” at classifications
from the right context, even when processing the sen-
tence in a left-to-right direction. The base classifier is
unable to incorporate these two aspects, because (1) in-
cluding complex conjunctions of features would raise the
computational cost of searching the feature space to a
point where it would be infeasible, and (2) most classi-
fiers process a sentence from left-to-right, deciding on
the class label for each word before moving on to the
next one. Rules that exploit these advantages are eas-
ily picked out in the table; many of the rules (especially
those in the top 5 for both English and Spanish) consist of
complex conjunctions of features; and rules that consider
the right context classifications can be identified by the
string “ne<num>”, where<num> is a positive integer
(indicating how many words to the right).

3 Experiments
The most commonly-raised issues about NTPC relate
to the differences between NTPC and TBL (though the
conceptual issues are much the same as for other error-
minimization criteria, such as minimum error rate or
minimum Bayes risk). This is expected, since it was
one of our goals to reinvent as little as possible. As
a result, NTPC does bear a superficial resemblance to
TBL, both of them being error-driven learning methods
that seek to incrementally correct errors in a corpus by
learning rules that are determined by a set of templates.
One of the most frequently asked questions is whether
theError Corrector Learnerportion of NTPC could be
replaced by a transformation-based learner. This section
will investigate the differences between NTPC and TBL,
and show the necessity of the changes that were incorpo-
rated into NTPC.

The experiments run in this section were performed
on the data sets used in the CoNLL-2002 and CoNLL-
2003 Named Entity Recognition shared tasks. The
high-performing base model is based on AdaBoost.MH
(Schapire and Singer, 2000), the multi-class generaliza-
tion of the original boosting algorithm, which imple-
ments boosting on top of decision stump classifiers (de-
cision trees of depth one).

3.1 Any Error is Bad
The first main difference between NTPC and TBL, and
also what seems to be an extreme design decision on
the part of NTPC, is the objective scoring function. To
be maximally certain of not introducing any new errors
with its rules, the first requirement that NTPC’s objective
function places onto any candidate rules is that they must
not introduce any new errors (ε (r) = 0). This is called
thezero error toleranceprinciple.

To those who are used to learners such as
transformation-based learning and decision lists, which
allow for some degree of error tolerance, this design prin-
ciple seems overly harsh and inflexible. Indeed, for al-



Table 1: NTPC consistently yields improvements on all eight different high-accuracy NER base models, across every
combination of task and language.

Model Task Language Model Precision Recall F-Measure1

M1 Bracketing Dutch Base 87.27 91.48 89.33
Base w/ NTPC 87.44 92.04 89.68

M2 Bracketing English Base 95.01 93.98 94.49
Base w/ NTPC 95.23 94.05 94.64

M3 Bracketing German Base 83.44 65.86 73.62
Base w/ NTPC 83.43 65.91 73.64

M4 Bracketing Spanish Base 89.46 87.57 88.50
Base w/ NTPC 89.77 88.07 88.91

M5 Classification + Bracketing Dutch Base 70.26 73.64 71.91
Base w/ NTPC 70.27 73.97 72.07

M6 Classification + Bracketing English Base 88.64 87.68 88.16
Base w/ NTPC 88.93 87.83 88.37

M7 Classification + Bracketing German Base 75.20 59.35 66.34
Base w/ NTPC 75.19 59.41 66.37

M8 Classification + Bracketing Spanish Base 74.11 72.54 73.32
Base w/ NTPC 74.43 73.02 73.72

most all models, there is an implicit assumption that the
scoring function will be based on the difference between
the positive and negative applications, rather than on an
absolute number of corrections or mistakes.

Results for eight experiments are shown in Figures 2
and 3. Each experiment compares NTPC against other
variants that allow relaxedε (r) ≤ εmax conditions for
variousεmax ∈ {1, 2, 3, 4,∞}. The worst curve in each
case is forεmax = ∞— in other words, the system that
only considers net performance improvement, as TBL
and many other rule-based models do. The results con-
firm empirically that theε (r) = 0 condition (1) gives the
most consistent results, and (2) generally yields accura-
cies among the highest, regardless of how long training is
allowed to continue. In other words, the presence ofany
negative application during the training phase will cause
the error corrector to behave unpredictably, and the more
complex model of greater error tolerance is unnecessary
in practice.

3.2 Rule Interaction is Unreliable

Another key difference between NTPC and TBL is the
process of rule interaction. Since TBL allows a rule to
use the current classification of a sample and its neigh-
bours as features, and a rule updates the current state of
the corpus when it applies to a sample, the application
of one rule could end up changing the applicability (or
not) of another rule. From the point of view of a sam-
ple, its classification could depend on the classification
of “nearby” samples. Typically, these “nearby” samples
are those found in the immediately preceding or succeed-
ing words of the same sentence. This rule interaction is
permitted in both training and testing.

NTPC, however, does not allow for this kind of rule in-
teraction. Rule applications only update the output clas-
sification of a sample, and do not update the current state
of the corpus. In other words, the feature values for a

Figure 2: NTPC’s zero tolerance condition yields less
fluctuation and generally higher accuracy than the re-
laxed tolerance variations, in bracketing experiments.
(bold = NTPC, dashed = relaxed tolerance)

sample are initialized once, at the beginning of the pro-
gram, and not changed again thereafter. The rationale for
making this decision is the hypothesis that rule interac-
tion is in nature unreliable, since the high-accuracy base
model provides sparse opportunities for rule application
and thus much sparser opportunities for rule interaction,
making any rule that relies on rule interaction suspect.
As a matter of fact, by considering only rules that make
no mistake during the learning phase, NTPC’s zero error
tolerance already eliminates any correction of labels that
results from rule interaction—since a label correction on
a sample that results from the application of more than
one rule necessarily implies that at least one of the rules
made a mistake.

Since TBL is a widely used error-correcting method,



Figure 3: NTPC’s zero tolerance condition yields less
fluctuation and generally higher accuracy than the re-
laxed tolerance variations, in bracketing + classification
experiments. (bold = NTPC, dashed = relaxed tolerance)

Figure 4: Unpredictable fluctuations on the bracket-
ing task show that allowing TBL-style rule interaction
does not yield reliable improvement over NTPC. (bold =
NTPC, dashed = rule interaction)

Figure 5: Unpredictable fluctuations on the bracket-
ing + classification task show that allowing TBL-style
rule interaction does not yield reliable improvement over
NTPC. (bold = NTPC, dashed = rule interaction)

it is natural to speculate that NTPC’s omission of rule in-
teraction is a weakness. In order to test this question, we
implemented an iterative variation of NTPC that allows
rule interaction, where each iteration targets the residual
error from previous iterations as follows:

1. i← 0,X0 ← X
2. r∗i ← null, s∗i ← 0

3. foreach r ∈ H such thatεi (r) = 0

• if τi (r) > τ∗i then r∗i ← r, τ∗i ← τi (r)

4. if τ∗i < τmin then return

5. Xi+1 ← result of applyingr∗i toXi

6. i← i + 1
7. gotoStep 3

where

τi(r) =
∑X

j=1

∑
r(xi

j
,ŷj) 6=∅

δ(r(xi
j , ŷj), yj)

εi(r) =
∑X

j=1

∑
r(xi

j
,ŷj) 6=∅

1− δ(r(xi
j , ŷj), yj)

Here, incremental rule interaction is a natural conse-
quence of arranging the structure of the algorithm to ob-
serve the right context features coming from the base
model, as with transformation-based learning. In Step
5 of the algorithm, the current state of the corpus is up-
dated with the latest rule on each iteration. That is, in
each given iteration of the outer loop, the learner consid-
ers the corrected training data obtained by applying rules
learned in the previous iterations, so the learner has ac-
cess to the labels that result from applying the previous
rules. Since these rules may apply anywhere in the cor-
pus, the learner is not restricted to using only labels from
the left context.

The time complexity of this variation is an order of
magnitude more expensive than NTPC, due to the need
to allow rule interaction using nested loops. The ordered
list of output rulesr∗0 , . . . , r∗i−1is learned in a greedy
fashion, to progressively improve upon the performance
of the learning algorithm on the training set.

Results for eight experiments on this variation, shown
in Figures 4 and 5, demonstrate that this expensive extra
capability is rarely useful in practice and does not reli-
ably guarantee that accuracy will not be degraded. This
is yet another illustration of the principle that, in high-
accuracy error correction problems, at least, more simple
modes of operation should be preferred over more com-
plex arrangements.

3.3 NTPC vs. N-fold TBL
Another question on NTPC that is frequently raised is
whether or not ordinary TBL, which is after all, intrinsi-
cally an error-correcting model, can be used in place of
NTPC to perform better error correction. Figure 6 shows
the results of four sets of experiments evaluating this ap-
proach on top of boosting. As might be expected from
extrapolation from the foregoing experiments that inves-
tigated their individual differences, NTPC outperforms
the more complex TBL in all cases, regardless of how
long training is allowed to continue.



Figure 6: NTPC consistently outperforms error correc-
tion using TBL even when n-fold partitioning is used.
(bold = NTPC, dashed = TBL with n-fold partitioning)

Table 2: The more complex partition-based voted er-
ror corrector degrades performance, while NTPC helps
(bracketing + classification, English).

Model Precision Recall F-Measure1

Base 95.01 93.98 94.49
Partition-Based
Voting

95.07 93.79 94.43

Base w/ NTPC 95.14 94.05 94.59

3.4 NTPC vs. Partition-Based Voting

Another valid question would be to ask if the way that
NTPC combines the results of the n-fold partitioning is
oversimplistic and could be improved upon. As was pre-
viously stated, the training corpus for the error correc-
tor in NTPC is the “reconstituted training set” gener-
ated by combining the held-out validation sets after they
have labeled with initial classifications by their respec-
tive trained base models. To investigate if NTPC could
benefit from a more complex model, we employed vot-
ing, a commonly-used technique in machine learning and
natural language processing. As before, the training set
was partitioned and multiple base learners were trained
and evaluated on the multiple training and validation sets,
respectively. However, instead of recombining the vali-
dation sets into a reconstituted training set, multiple er-
ror corrector models were trained on then partition sets.
During the evaluation phase, alln error correctors were
evaluated on the evaluation set after it had been labeled
by the base model, and they voted on the final output.

Table 2 shows the results of using such an approach
for the bracketing + classification task on English. The
empirical results clearly show that the more complex and
time-consuming voting model not only does not outper-
fom NTPC, but in fact againdegradesthe performance
from the base boosting-only model.

3.5 Experiment Summary
In our experiments, we set out to investigate whether
NTPC’s operating parameters were overly simple, and
whether more complex arrangements were necessary or
desirable. However, empirical evidence points to the fact
that, in this problem of error correction in high accuracy
ranges, at least, simple mechanisms will suffice to pro-
duce good results—in fact, the more complex operations
end up degrading rather than improving accuracy.

A valid question is to ask why methods such
as decision list learning (Rivest, 1987) as well as
transformation-based learning benefit from these more
complex mechanisms. Though structurally similar to
NTPC, these models operate in a very different environ-
ment, where many initially poorly labeled examples are
available to drive rule learning with. Hence, it is pos-
sibly advantageous to trade off some corrections with
some mistakes, provided that there is an overall posi-
tive change in accuracy. However, in an error-correcting
situation, most of the samples are already correctly la-
beled, errors are few and far in between and the sparse
data problem is exacerbated. In addition, the idea of er-
ror correction implies that we should, at the very least,
not do any worse than the original algorithm, and hence
it makes sense to err on the side of caution and minimize
any errors created, rather than hoping that a later rule ap-
plication will undo mistakes made by an earlier one.

Finally, note that the same point applies to many other
models where training criteria like minimum error rate
are used, since such criteria are functions of the trade-
off between correctly and incorrectly labeled examples,
without zero error tolerance to compensate for the sparse
data problem.

4 Previous Work
4.1 Boosting and NER
Boosting (Freund and Schapire, 1997) has been success-
fully applied to several NLP problems. In these NLP
systems boosting is typically used as the ultimate stage
in a learned system. For example, Shapire and Singer
(2000) applied it to Text Categorization while Escud-
ero et al.(2000) used it to obtain good results on Word
Sense Disambiguation. More closely relevant to the ex-
periments described here in, two of the best-performing
three teams in the CoNLL-2002 Named Entity Recog-
nition shared task evaluation used boosting as their base
system (Carreraset al., 2002)(Wuet al., 2002).

However, precedents for improving performanceaf-
ter boosting are few. At the CoNLL-2002 shared task
session, Tjong Kim Sang (unpublished) described an ex-
periment using voting to combine the NER outputs from
the shared task participants which, predictably, produced
better results than the individual systems. A couple of
the individual systems were boosting models, so in some
sense this could be regarded as an example.

Tsukamotoet al.(2002) used piped AdaBoost.MH
models for NER. Their experimental results were some-
what disappointing, but this could perhaps be attributable
to various reasons including the feature engineering or
not using cross-validation sampling in the stacking.



Appendix
The following examples show the top 10 rules learned for English and Spanish on the bracketing + classification task.
(Models M6 and M8)

English
ne -2=ZZZ ne-1=ZZZ word:[1,3]=21 nonnevocab0=inNonNeVocab nevocab0=inNeVocab captype0=firstword-firstupper => ne=I-ORG
ne 1=O ne2=O word-1=ZZZ nonnevocab0=inNonNeVocab nevocab0=not-inNeVocab captype0=firstword-firstupper => ne=O
captype0=notfirstword-firstupper captype-1=firstword-firstupper captype1=number nonnevocab0=inNonNeVocab nevocab0=inNeVocab ne0=I-LOC => ne=I-
ORG
ne -1=ZZZ ne0=I-ORG word1=, nonnevocab0=not-inNonNeVocab nevocab0=not-inNeVocab captype0=allupper => ne=I-LOC
ne 0=I-PER word:[1,3]=0 nonnevocab0=not-inNonNeVocab nevocab0=not-inNeVocab captype0=notfirstword-firstupper => ne=I-ORG
ne 0=I-ORG ne1=O ne2=O nonnevocab0=inNonNeVocab nevocab0=not-inNeVocab captype0=alllower => ne=O
ne 0=I-PER ne1=I-ORG => ne=I-ORG
ne -1=ZZZ ne0=I-PER word:[-3,-1]=ZZZ word:[1,3]=1 => ne=I-ORG
ne 0=I-ORG word:[-3,-1]=spd => ne=B-ORG
ne -1=I-ORG ne0=I-PER word:[1,3]=1 => ne=I-ORG
Spanish
wcaptype0=alllower ne-1=I-ORG ne0=I-ORG ne1=O => ne=O
captypeLex-1=inLex captypeGaz-1=not-inGaz wcaptype-1=alllower ne-1=O ne0=O captypeLex0=not-inLex captypeGaz0=not-inGaz wcaptype0=noneed-
firstupper => ne=I-ORG
wcaptype0=noneed-firstupper wcaptype-1=noneed-firstupper wcaptype1=alllower captypeLex0=not-inLex captypeGaz0=not-inGaz ne0=O => ne=I-ORG
ne 0=O word0=efe => ne=I-ORG
ne -1=O ne0=O word1=Num word2=. captypeLex0=not-inLex captypeGaz0=not-inGaz wcaptype0=allupper => ne=I-MISC
pos -1=ART pos0=NCF wcaptype0=noneed-firstupper ne-1=O ne0=O => ne=I-ORG
wcaptype0=alllower ne0=I-PER ne1=O ne2=O => ne=O
ne 0=O ne1=I-MISC word 2=Num captypeLex0=not-inLex captypeGaz0=not-inGaz wcaptype0=allupper => ne=I-MISC
ne 0=I-LOC word:[-3,-1]=universidad => ne=I-ORG
ne 1=O ne2=O word0=de captypeLex0=not-inLex captypeGaz0=inGaz wcaptype0=alllower => ne=O

The AdaBoost.MH base model’s high accuracy sets
a high bar for error correction. Aside from brute-force
en massevoting of the sort at CoNLL-2002 described
above, we do not know of any existing post-boosting
models that improve rather than degrade accuracy. We
aim to further improve performance, and propose using
a piped error corrector.

4.2 Transformation-based Learning

Transformation-based learning (Brill, 1995), or TBL, is
one of the most successful rule-based machine learning
algorithms. The central idea of TBL is to learn an or-
dered list of rules, each of which evaluates on the re-
sults of those preceding it. An initial assignment is made
based on simple statistics, and then rules are greedily
learned to correct the mistakes, until no net improvement
can be made.

Transformation-based learning has been used to tackle
a wide range of NLP problems, ranging from part-of-
speech tagging (Brill, 1995) to parsing (Brill, 1996) to
segmentation and message understanding (Dayet al.,
1997). In general, it achieves state-of-the-art perfor-
mances and is fairly resistant to overtraining.

5 Conclusion
We have investigated frequently raised questions about
N-fold Templated Piped Correction (NTPC), a general-
purpose, conservative error correcting model, which has
been shown to reliably deliver small but consistent gains
on the accuracy of even high-performing base models
on high-dimensional NLP tasks, with little risk of acci-
dental degradation. Experimental evidence shows that
when error-correcting high-accuracy base models, sim-
ple models and hypotheses are more beneficial than com-
plex ones, while the more complex and powerful models
are surprisingly unreliable or damaging in practice.

References
Eric Brill. Transformation-based error-driven learning and natural language pro-

cessing: A case study in part of speech tagging.Computational Linguistics,
21(4):543–565, 1995.

Eric Brill. Recent Advances in Parsing Technology, chapter Learning to Parse
with Transformations. Kluwer, 1996.

Xavier Carreras, Llúıs Màrques, and Llúıs Padŕo. Named entity extraction using
adaboost. In Dan Roth and Antal van den Bosch, editors,Proceedings of
CoNLL-2002, pages 167–170. Taipei, Taiwan, 2002.

David Day, John Aberdeen, Lynette Hirshman, Robyn Kozierok, Patricia Robin-
son, and Marc Vilain. Mixed initiative development of language processing
systems. InProceedings of the Fifth Conference on Applied Natural Language
Processing, Washington, D.C., March 1997. Association of Computational
Linguistics.

Gerard Escudero, Lluis Marquez, and German Rigau. Boosting applied to word
sense disambiguation. InEuropean Conference on Machine Learning, pages
129–141, 2000.

Yoram Freund and Robert E. Schapire. A decision-theoretic generalization of
on-line learning and an application to boosting. InJournal of Computer and
System Sciences, 55(1), pages 119–139, 1997.

Ronald L. Rivest. Learning decision lists.Machine Learning, 2(3):229–246,
1987.

Robert E. Schapire and Yoram Singer. Boostexter: A boosting-based system for
text categorization.Machine Learning, 2(3):135–168, 2000.

Erik Tjong Kim Sang and Fien Meulder. Introduction to the conll-2003 shared
task: Language-independent named entity recognition. In Walter Daelemans
and Miles Osborne, editors,Proceedings of CoNLL-2003. Edmonton, Canada,
2003.

Erik Tjong Kim Sang. Introduction to the conll-2002 shared task: Language-
independent named entity recognition. In Dan Roth and Antal van den Bosch,
editors,Proceedings of CoNLL-2002, pages 155–158. Taipei, Taiwan, 2002.

Koji Tsukamoto, Yutaka Mitsuishi, and Manabu Sassano. Learning with multiple
stacking for named entity recognition. In Dan Roth and Antal van den Bosch,
editors,Proceedings of CoNLL-2002, pages 191–194. Taipei, Taiwan, 2002.

Dekai Wu, Grace Ngai, Marine Carpuat, Jeppe Larsen, and Yongsheng Yang.
Boosting for named entity recognition. In Dan Roth and Antal van den Bosch,
editors,Proceedings of CoNLL-2002, pages 195–198. Taipei, Taiwan, 2002.

Dekai Wu, Grace Ngai, and Marine Carpuat. N-fold templated piped correc-
tion. InFirst International Joint Conference on Natural Language Processing
(IJCNLP-2004), pages 632–637. Hainan Island, China, March 2004.

Dekai Wu, Grace Ngai, and Marine Carpuat. Raising the bar: Stacked conserva-
tive error correction beyond boosting. InFourth International Conference on
Language Resources and Evaluation (LREC-2004). Lisbon, May 2004.


	Introduction
	N-fold Templated Piped Correction
	The architecture of NTPC is surprisingly simple
	NTPC consistently and robustly improves accuracy of highly-accurate base models

	Experiments
	Any Error is Bad
	Rule Interaction is Unreliable
	NTPC vs. N-fold TBL
	NTPC vs. Partition-Based Voting
	Experiment Summary

	Previous Work
	Boosting and NER
	Transformation-based Learning

	Conclusion

