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Abstract

Word-aligned bilingual corpora are an
important knowledge source for many
tasks in natural language processing. We
improve the well-known IBM alignment
models, as well as the Hidden-Markov
alignment model using a symmetric lex-
icon model. This symmetrization takes
not only the standard translation direc-
tion from source to target into account,
but also the inverse translation direction
from target to source. We present a the-
oretically sound derivation of these tech-
niques. In addition to the symmetriza-
tion, we introduce a smoothed lexicon
model. The standard lexicon model is
based on full-form words only. We propose
a lexicon smoothing method that takes
the word base forms explicitly into ac-
count. Therefore, it is especially useful
for highly inflected languages such as Ger-
man. We evaluate these methods on the
German–English Verbmobil task and the
French–English Canadian Hansards task.
We show statistically significant improve-
ments of the alignment quality compared
to the best system reported so far. For
the Canadian Hansards task, we achieve
an improvement of more than 30% rela-
tive.

1 Introduction

Word-aligned bilingual corpora are an impor-
tant knowledge source for many tasks in nat-
ural language processing. Obvious applica-
tions are the extraction of bilingual word or
phrase lexica (Melamed, 2000; Och and Ney,
2000). These applications depend heavily on
the quality of the word alignment (Och and
Ney, 2000). Word alignment models were first
introduced in statistical machine translation
(Brown et al., 1993). The alignment describes
the mapping from source sentence words to
target sentence words.

Using the IBM translation models IBM-1
to IBM-5 (Brown et al., 1993), as well as

the Hidden-Markov alignment model (Vogel
et al., 1996), we can produce alignments of
good quality. In (Och and Ney, 2003), it is
shown that the statistical approach performs
very well compared to alternative approaches,
e.g. based on the Dice coefficient or the com-
petitive linking algorithm (Melamed, 2000).

A central component of the statistical trans-
lation models is the lexicon. It models the
word translation probabilities. The standard
training procedure of the statistical models
uses the EM algorithm. Typically, the models
are trained for one translation direction only.
Here, we will perform a simultaneous training
of both translation directions, source-to-target
and target-to-source. After each iteration of
the EM algorithm, we combine the two lexica
to a symmetric lexicon. This symmetric lex-
icon is then used in the next iteration of the
EM algorithm for both translation directions.
We will propose and justify linear and loglin-
ear interpolation methods.

Statistical methods often suffer from the
data sparseness problem. In our case, many
words in the bilingual sentence-aligned texts
are singletons, i.e. they occur only once. This
is especially true for the highly inflected lan-
guages such as German. It is hard to obtain
reliable estimations of the translation proba-
bilities for these rarely occurring words. To
overcome this problem (at least partially), we
will smooth the lexicon probabilities of the
full-form words using a probability distribu-
tion that is estimated using the word base
forms. Thus, we exploit that multiple full-
form words share the same base form and have
similar meanings and translations.

We will evaluate these methods on the
German–English Verbmobil task and the
French–English Canadian Hansards task. We
will show statistically significant improve-
ments compared to state-of-the-art results in
(Och and Ney, 2003). On the Canadian



Hansards task, the symmetrization methods
will result in an improvement of more than
30% relative.

2 Statistical Word Alignment Models

In this section, we will give a short description
of the commonly used statistical word align-
ment models. These alignment models stem
from the source-channel approach to statisti-
cal machine translation (Brown et al., 1993).
We are given a source language sentence fJ

1 :=
f1...fj ...fJ which has to be translated into
a target language sentence eI

1 := e1...ei...eI .
Among all possible target language sentences,
we will choose the sentence with the highest
probability:

êI
1 = argmax

eI
1

{
Pr(eI

1|fJ
1 )

}

= argmax
eI
1

{
Pr(eI

1) · Pr(fJ
1 |eI
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}

This decomposition into two knowledge
sources allows for an independent modeling of
target language model Pr(eI

1) and translation
model Pr(fJ

1 |eI
1). Into the translation model,

the word alignment A is introduced as a hid-
den variable:

Pr(fJ
1 |eI

1) =
∑

A

Pr(fJ
1 , A|eI

1)

Usually, we use restricted alignments in the
sense that each source word is aligned to at
most one target word, i.e. A = aJ

1 . A de-
tailed description of the popular translation
models IBM-1 to IBM-5 (Brown et al., 1993),
as well as the Hidden-Markov alignment model
(HMM) (Vogel et al., 1996) can be found in
(Och and Ney, 2003). All these models include
parameters p(f |e) for the single-word based
lexicon. They differ in the alignment model.

A Viterbi alignment Â of a specific model is
an alignment for which the following equation
holds:

Â = argmax
A

{
Pr(fJ

1 , A|eI
1)

}

We measure the quality of an alignment model
using the quality of the Viterbi alignment com-
pared to a manually produced reference align-
ment.

In Section 3, we will apply the lexicon sym-
metrization methods to the models described
previously. Therefore, we will now sketch the

standard training procedure for the lexicon
model. The EM algorithm is used to train
the free lexicon parameters p(f |e).

In the E-step, the lexical counts for each
sentence pair (fJ

1 , eI
1) are calculated and then

summed over all sentence pairs in the training
corpus:

N(f, e) =
∑

(fJ
1 ,eI

1)

∑

aJ
1

p(aJ
1 |fJ

1 , eI
1)

∑

i,j

δ(f, fj)δ(e, ei)

In the M-step the lexicon probabilities are:

p(f |e) =
N(f, e)∑

f̃

N(f̃ , e)

3 Symmetrized Lexicon Model

During the standard training procedure, the
lexicon parameters p(f |e) and p(e|f) were es-
timated independent of each other in strictly
separate trainings. In this section, we present
two symmetrization methods for the lexicon
model. As a starting point, we use the
joint lexicon probability p(f, e) and determine
the conditional probabilities for the source-
to-target direction p(f |e) and the target-to-
source direction p(e|f) as the corresponding
marginal distribution:

p(f |e) =
p(f, e)∑

f̃

p(f̃ , e)
(1)

p(e|f) =
p(f, e)∑

ẽ
p(f, ẽ)

(2)

The nonsymmetric auxiliary Q-functions for
reestimating the lexicon probabilities during
the EM algorithm can be represented as fol-
lows. Here, NST (f, e) and NTS(f, e) denote
the lexicon counts for the source-to-target
(ST ) direction and the target-to-source (TS)
direction, respectively.

QST ({p(f |e)}) =
∑

f,e

NST (f, e) · log
p(f, e)∑

f̃

p(f̃ , e)

QTS({p(e|f)}) =
∑

f,e

NTS(f, e) · log
p(f, e)∑

ẽ
p(f, ẽ)

3.1 Linear Interpolation
To estimate the joint probability using the EM
algorithm, we define the auxiliary Q-function



as a linear interpolation of the Q-functions for
the source-to-target and the target-to-source
direction:

Qα({p(f, e)}) = α ·QST ({p(f |e)})
+(1− α) ·QTS({p(e|f)})

= α ·
∑

f,e

NST (f, e) · log p(f, e)

+(1− α) ·
∑

f,e

NTS(f, e) · log p(f, e)

−α ·
∑

e

NST (e) · log
∑

f̃

p(f̃ , e)

−(1− α) ·
∑

f

NTS(f) · log
∑

ẽ

p(f, ẽ)

The unigram counts N(e) and N(f) are deter-
mined, for each of the two translation direc-
tions, by taking a sum of N(f, e) over f and
over e, respectively. We define the combined
lexicon count Nα(f, e):

Nα(f, e) := α ·NST (f, e) + (1− α) ·NTS(f, e)

Now, we derive the symmetrized Q-function
over p(f, e) for a certain word pair (f, e).
Then, we set this derivative to zero to deter-
mine the reestimation formula for p(f, e) and
obtain the following equation:

Nα(f, e)
p(f, e)

= α · NST (e)∑
f̃

p(f̃ , e)
+ (1− α) · NTS(f)∑

ẽ
p(f, ẽ)

We do not know a closed form solution for this
equation. As an approximation, we use the
following term:

p̂(f, e) =
Nα(f, e)∑

f̃ ,ẽ

Nα(f̃ , ẽ)

This estimate is an exact solution, if the uni-
gram counts for f and e are independent of the
translation direction, i. e. NST (f) = NTS(f)
and NST (e) = NTS(e). We make this approx-
imation and thus we interpolate the lexicon
counts linear after each iteration of the EM
algorithm. Then, we normalize these counts
(according to Equations 1 and 2) to determine
the lexicon probabilities for each of the two
translation directions.

3.2 Loglinear Interpolation
We will show in Section 5 that the linear in-
terpolation results in significant improvements
over the nonsymmetric system. Motivated by
these experiments, we investigated also the
loglinear interpolation of the lexicon counts of
the two translation directions. The combined
lexicon count Nα(f, e) is now defined as:

Nα(f, e) = NST (f, e)α ·NTS(f, e)1−α

The normalization is done in the same way as
for the linear interpolation. The linear inter-
polation resembles more a union of the two lex-
ica whereas the loglinear interpolation is more
similar to an intersection of both lexica. Thus
for the linear interpolation, a word pair (f, e)
obtains a large combined count, if the count in
at least one direction is large. For the loglin-
ear interpolation, the combined count is large
only if both lexicon counts are large.

In the experiments, we will use the interpo-
lation weight α = 0.5 for both the linear and
the loglinear interpolation, i. e. both transla-
tion directions are weighted equally.

3.3 Evidence Trimming
Initially, the lexicon contains all word pairs
that cooccur in the bilingual training corpus.
The majority of these word pairs are not trans-
lations of each other. Therefore, we would
like to remove those lexicon entries. Evidence
trimming is one way to do this. The evidence
of a word pair (f, e) is the estimated count
N(f, e). Now, we discard a word pair if its ev-
idence is below a certain threshold τ .1 In the
case of the symmetric lexicon, we can further
refine this method. For estimating the lex-
icon in the source-to-target direction p̂(f |e),
the idea is to keep all entries from this di-
rection and to boost the entries that have a
high evidence in the target-to-source direction
NTS(f, e). We obtain the following formula:

N̄ST (f, e) =





αNST (f, e) + (1− α)NTS(f, e)
if NST (f, e) > τ

0 else

The count N̄ST (f, e) is now used to estimate
the source-to-target lexicon p̂(f |e). With this
method, we do not keep entries in the source-
to-target lexicon p̂(f |e) if their evidence is low,
even if their evidence in the target-to-source

1Actually, there is always implicit evidence trim-
ming caused by the limited machine precision.



direction NTS(f, e) is high. For the target-to-
source direction, we apply this method in a
similar way.

4 Lexicon Smoothing

The lexicon model described so far is based on
full-form words. For highly inflected languages
such as German this might cause problems,
because many full-form words occur only a few
times in the training corpus. Compared to En-
glish, the token/type ratio for German is usu-
ally much lower (e.g. Verbmobil: English 99.4,
German 56.3). The information that multiple
full-form words share the same base form is
not used in the lexicon model. To take this in-
formation into account, we smooth the lexicon
model with a backing-off lexicon that is based
on word base forms. The smoothing method
we apply is absolute discounting with interpo-
lation:

p(f |e) =
max {N(f, e)− d, 0}

N(e)
+ α(e) · β(f, ē)

This method is well known from language
modeling (Ney et al., 1997). Here, ē de-
notes the generalization, i.e. the base form,
of the word e. The nonnegative value d is
the discounting parameter, α(e) is a normal-
ization constant and β(f, ē) is the normalized
backing-off distribution.

The formula for α(e) is:

α(e) =
1

N(e)


 ∑

f :N(f,e)>d

d +
∑

f :N(f,e)≤d

N(f, e)




=
1

N(e)

∑

f

min{d,N(f, e)}

This formula is a generalization of the one
typically used in publications on language
modeling. This generalization is necessary,
because the lexicon counts may be fractional
whereas in language modeling typically inte-
ger counts are used. Additionally, we want
to allow for discounting values d greater than
one. The backing-off distribution β(f, ē) is es-
timated using relative frequencies:

β(f, ē) =
N(f, ē)∑

f̃

N(f̃ , ē)

Here, N(f, ē) denotes the count of the event
that the source language word f and the target

language base form ē occur together. These
counts are computed by summing the lexicon
counts N(f, e) over all full-form words e which
share the same base form ē.

5 Results

5.1 Evaluation Criteria
We use the same evaluation criterion as de-
scribed in (Och and Ney, 2000). The gen-
erated word alignment is compared to a ref-
erence alignment which is produced by hu-
man experts. The annotation scheme explic-
itly takes the ambiguity of the word alignment
into account. There are two different kinds
of alignments: sure alignments (S) which are
used for alignments that are unambiguous and
possible alignments (P ) which are used for
alignments that might or might not exist. The
P relation is used especially to align words
within idiomatic expressions, free translations,
and missing function words. It is guaranteed
that the sure alignments are a subset of the
possible alignments (S ⊆ P ). The obtained
reference alignment may contain many-to-one
and one-to-many relationships.

The quality of an alignment A is computed
as appropriately redefined precision and recall
measures. Additionally, we use the alignment
error rate (AER), which is derived from the
well-known F-measure.

recall =
|A ∩ S|
|S| , precision =

|A ∩ P |
|A|

AER(S, P ;A) = 1− |A ∩ S|+ |A ∩ P |
|A|+ |S|

With these definitions a recall error can only
occur if a S(ure) alignment is not found and a
precision error can only occur if a found align-
ment is not even P (ossible).

5.2 Experimental Setup
We evaluated the presented lexicon sym-
metrization methods on the Verbmobil and
the Canadian Hansards task. The German–
English Verbmobil task (Wahlster, 2000) is a
speech translation task in the domain of ap-
pointment scheduling, travel planning and ho-
tel reservation. The French–English Canadian
Hansards task consists of the debates in the
Canadian Parliament.

The corpus statistics are shown in Table 1
and Table 2. The number of running words
and the vocabularies are based on full-form
words including punctuation marks. As in



Table 1: Verbmobil: Corpus statistics.
German English

Train Sentences 34K
Words 329 625 343 076
Vocabulary 5 936 3 505
Singletons 2 600 1 305

Test Sentences 354
Words 3 233 3 109

Table 2: Canadian Hansards: Corpus statistics.
French English

Train Sentences 128K
Words 2.12M 1.93M
Vocabulary 37 542 29 414
Singletons 12 986 9 572

Test Sentences 500
Words 8 749 7 946

(Och and Ney, 2003), the first 100 sentences
of the test corpus are used as a development
corpus to optimize model parameters that are
not trained via the EM algorithm, e.g. the
discounting parameter for lexicon smoothing.
The remaining part of the test corpus is used
to evaluate the models.

We use the same training schemes (model
sequences) as presented in (Och and Ney,
2003). As we use the same training and test-
ing conditions as (Och and Ney, 2003), we will
refer to the results presented in that article as
the baseline results. In (Och and Ney, 2003),
the alignment quality of statistical models is
compared to alternative approaches, e.g. us-
ing the Dice coefficient or the competitive
linking algorithm. The statistical approach
showed the best performance and therefore we
report only the results for the statistical sys-
tems.

5.3 Lexicon Symmetrization
In Table 3 and Table 4, we present the follow-
ing experiments performed for both the Verb-
mobil and the Canadian Hansards task:

• Base: the system taken from (Och and
Ney, 2003) that we use as baseline system.

• Lin.: symmetrized lexicon using a lin-
ear interpolation of the lexicon counts af-
ter each training iteration as described in
Section 3.1.

• Log.: symmetrized lexicon using a log-
linear interpolation of the lexicon counts
after each training iteration as described
in Section 3.2.

Table 3: Comparison of alignment perfor-
mance for the Verbmobil task (S→T: source-
to-target direction, T→S: target-to-source di-
rection; all numbers in percent).

S→T T→S
Pre. Rec. AER Pre. Rec. AER

Base 93.5 95.3 5.7 91.4 88.7 9.9
Lin. 96.0 95.4 4.3 93.7 89.6 8.2
Log. 93.6 95.6 5.5 94.5 89.4 7.9
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Figure 1: AER[%] of different alignment meth-
ods as a function of the training corpus size
for the Verbmobil task (source-to-target direc-
tion).

In Table 3, we compare both interpolation
variants for the Verbmobil task to (Och and
Ney, 2003). We observe notable improvements
in the alignment error rate using the linear in-
terpolation. For the translation direction from
German to English (S→T), an improvement of
about 25% relative is achieved from an align-
ment error rate of 5.7% for the baseline system
to 4.3% using the linear interpolation. Per-
forming the loglinear interpolation, we observe
a substantial reduction of the alignment error
rate as well. The two symmetrization methods
improve both precision and recall of the result-
ing Viterbi alignment in both translation di-
rections for the Verbmobil task. The improve-
ments with the linear interpolation is for both
translation directions statistically significant
at the 99% level. For the loglinear interpo-
lation, the target-to-source translation direc-
tion is statistically significant at the 99% level.
The statistical significance test were done us-
ing boostrap resampling.

We also performed experiments on sub-
corpora of different sizes. For the Verbmo-
bil task, the results are illustrated in Figure 1.



Table 4: Comparison of alignment perfor-
mance for the Canadian Hansards task (S→T:
source-to-target direction, T→S: target-to-
source direction; all numbers in percent).

S→T T→S
Pre. Rec. AER Pre. Rec. AER

Base 85.4 90.6 12.6 85.6 90.9 12.4
Lin. 89.3 91.4 9.9 89.0 92.0 9.8
Log. 91.0 92.0 8.6 91.2 92.1 8.4

We observe that both symmetrization variants
result in improvements for all corpus sizes.
With increasing training corpus size the per-
formance of the linear interpolation becomes
superior to the performance of the loglinear
interpolation.

In Table 4, we compare the symmetriza-
tion methods with the baseline system for the
Canadian Hansards task. Here, the loglin-
ear interpolation performs best. We achieve
a relative improvement over the baseline of
more than 30% for both translation directions.
For instance, the alignment error rate for the
translation direction from French to English
(S→T) improves from 12.6% for the baseline
system to 8.6% for the symmetrized system
with loglinear interpolation. Again, the two
symmetrization methods improve both preci-
sion and recall of the Viterbi alignment.

For the Canadian Hansards task, all the im-
provements of the alignment error rate are sta-
tistically significant at the 99% level.

5.4 Generalized Alignments
In (Och and Ney, 2003) generalized alignments
are used, thus the final Viterbi alignments of
both translation directions are combined us-
ing some heuristic. Experimentally, the best
heuristic for the Canadian Hansards task is
the intersection. For the Verbmobil task, the
refined method of (Och and Ney, 2003) is
used. The results are summarized in Table 5.
We see that both the linear and the loglinear
lexicon symmetrization methods yield an im-
provement with respect to the alignment error
rate. For the Verbmobil task, the improve-
ment with the loglinear interpolation is sta-
tistically significant at the 99% level. For the
Canadian Hansards task, both lexicon sym-
metrization methods result in statistically sig-
nificant improvements at the 95% level. Addi-
tionally, we observe that precision and recall
are more balanced for the symmetrized lexicon
variants, especially for the Canadian Hansards

Table 6: Effect of smoothing the lexicon prob-
abilities on the alignment performance for the
Verbmobil task (S→T: source-to-target direc-
tion, smooth English; T→S: target-to-source
direction, smooth German; all numbers in per-
cent).

S→T T→S
Pre. Rec. AER Pre. Rec. AER

Base 93.5 95.3 5.7 91.4 88.7 9.9
smooth 94.8 94.8 5.2 93.4 88.2 9.1

task.

5.5 Lexicon Smoothing

In Table 6, we present the results for the lex-
icon smoothing as described in Section 4 on
the Verbmobil corpus2. As expected, a no-
table improvement in the AER is reached if
the lexicon smoothing is performed for Ger-
man (i.e. for the target-to-source direction),
because many full-form words with the same
base form are present in this language. These
improvements are statistically significant at
the 95% level.

6 Related Work

The popular IBM models for statistical ma-
chine translation are described in (Brown et
al., 1993). The HMM-based alignment model
was introduced in (Vogel et al., 1996). A
good overview of these models is given in
(Och and Ney, 2003). In that article Model
6 is introduced as the loglinear interpolation
of the other models. Additionally, state-of-
the-art results are presented for the Verbmo-
bil task and the Canadian Hansards task for
various configurations. Therefore, we chose
them as baseline. Compared to our work,
these publications kept the training of the
two translation directions strictly separate
whereas we integrate both directions into one
symmetrized training. Additional linguistic
knowledge sources such as dependency trees
or parse trees were used in (Cherry and Lin,
2003) and (Gildea, 2003). In (Cherry and
Lin, 2003) a probability model Pr(aJ

1 |fJ
1 , eI

1) is
used, which is symmetric per definition. Bilin-
gual bracketing methods were used to produce
a word alignment in (Wu, 1997). (Melamed,
2000) uses an alignment model that enforces
one-to-one alignments for nonempty words. In

2The base forms were determined using LingSoft
tools.



Table 5: Effect of different lexicon symmetrization methods on alignment performance for the
generalized alignments for the Verbmobil task and the Canadian Hansards task.

task: Verbmobil Canadian Hansards
Precision[%] Recall[%] AER[%] Precision[%] Recall[%] AER[%]

Base 93.3 96.0 5.5 96.6 86.0 8.2
Lin. 96.1 94.0 4.9 95.2 88.5 7.7
Loglin. 95.2 95.3 4.7 93.6 90.8 7.5

(Toutanova et al., 2002), extensions to the
HMM-based alignment model are presented.

7 Conclusions

We have addressed the task of automatically
generating word alignments for bilingual cor-
pora. This problem is of great importance for
many tasks in natural language processing, es-
pecially in the field of machine translation.

We have presented lexicon symmetrization
methods for statistical alignment models that
are trained using the EM algorithm, in par-
ticular the five IBM models, the HMM and
Model 6. We have evaluated these meth-
ods on the Verbmobil task and the Cana-
dian Hansards task and compared our results
to the state-of-the-art system of (Och and
Ney, 2003). We have shown that both the
linear and the loglinear interpolation of lexi-
con counts after each iteration of the EM al-
gorithm result in statistically significant im-
provements of the alignment quality. For the
Canadian Hansards task, the AER improved
by about 30% relative; for the Verbmobil task
the improvement was about 25% relative.

Additionally, we have described lexicon
smoothing using the word base forms. Es-
pecially for highly inflected languages such as
German, this smoothing resulted in statisti-
cally significant improvements.

In the future, we plan to optimize the inter-
polation weights to balance the two transla-
tion directions. We will also investigate the
possibility of generating directly an uncon-
strained alignment based on the symmetrized
lexicon probabilities.
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