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Abstract

A maximum entropy-based word sense disambigua-
tion system is presented, consisting of individual
word experts that are trained on both labeled and
partially labeled corpora. The classification prob-
abilities from the individual word experts are inte-
grated using a new search algorithm, which balances
time complexity and accuracy. The model is evalu-
ated using established procedures on the English-all-
words task from the SENSEVAL-2 workshop, a large
test set consisting of words from all word groups to
be disambiguated. Lastly, an ongoing project that
integrates POS tagging, parsing, and sense disam-
biguation in one system is presented. Once in place,
it will be boot-strapped with existing partially la-
beled corpora, to process and then train from them.
The goal is to show that with each successive iter-
ation, the accuracy of all three processes, POS tag-
ging, parsing, and WSD, will improve as the system
learns from more accurate, self-generated training
data.

1 Introduction

One of the fundamental problems of natural lan-
guage processing is resolving ambiguities, present
in stemming, part-of-speech (POS) tagging, word
sense disambiguation (WSD), anaphora resolution,
etc. Word sense disambiguation, the task of de-
termining the correct sense of a polysemous word,
remains an open problem in natural language pro-
cessing (NLP).

Early NLP systems limited their domains and re-
quired manual knowledge engineering. More recent
works take advantage of machine readable dictio-
naries such as WordNet (Miller, 1990). Statistical
techniques, such as supervised learning from tagged
corpora (Yarowsky, 1992), and unsupervised learn-
ing (Resnik, 1997), have been investigated, as well
as hybrid models that incorporate both statistical
and symbolic knowledge (Agirre and Rigau, 1996).

Supervised models have shown promising results,
but the lack of sense tagged corpora often requires
the need for ad-hoc smoothing techniques. And
for unsupervised models, they sometimes can re-

sult in ill-defined senses. Many models have not
been evaluated with large vocabularies or full sets
of senses. Hybrid models, using various heuristics,
have demonstrated good accuracy but are difficult
to compare due to variations in the evaluation pro-
cedures.

Following the results presented at the SENSEVAL-
2 workshop, where the WSD system trained on the
SemCor corpora (Miller et al., 1993) performed well
on the English-all-words task, we evaluated the effi-
cacy of maximum entropy (ME) models on the same
task. Maximum entropy modeling has been used
on various areas of NLP with great success, such as
speech recognition (Rosenfeld, 1994), POS tagging
(Ratnaparkhi, 1996), and translation (Berger et al.,
1996). In applying maximum entropy to WSD, one
ME model is built per word, i.e., word experts, and
is trained on data from multiple, publicly available
sources, including both labeled and partially labeled
corpora. Furthermore, the issue of contextual fea-
tures is explored, where the traditional word-window
based context is augmented with structurally re-
lated words. We show that while keeping the word-
window small (4 surrounding words), ME models
perform quite well, and the accuracy is further im-
proved by adding words from the rest of the sentence
that are determined to be structurally related. Addi-
tionally, we introduce an accurate search algorithm
that finds the sense assignments that are maximized
across the whole sentence efficiently, by taking ad-
vantage of keeping the context small.

Lastly, we present an ongoing project that this
WSD model is part of, which is an integrated re-
current NLP system that encompasses POS tagging,
parsing, and WSD. In this recurrent model, informa-
tion from downstream processes is fed back to earlier
processes, such as structural information and word
senses are presented to the POS tagger as additional
context. The hypothesis is that as more information
is fed back recurrently in successive passes, this inte-
gral way of processing natural language will improve
the accuracy of the processes on their own. Once
this integrated system is in place, it then becomes a
boot-strapping model, where unlabeled or partially



labeled corpora can be tagged, parsed, and sense
disambiguated automatically. The goal is to demon-
strate that, without any human intervention, WSD
accuracy will improve with each iteration of training
on the automatically generated corpora, and then to
reprocess them to generate more accurate corpora.

2 Problem Formulation

WSD is treated in this system as a classification
task, where the k‘" sense of a word (W;) is classified
as the correct sense tag (M; = k), given the word
W; and usually some surrounding context. In the
SENSEVAL-2 English-all-words task, most ambigu-
ous content words (nouns, verbs, adjectives, and ad-
verbs) are classified with a sense tag from the Word-
Net 1.7 lexical database (Miller, 1990). We will refer
to this task using the following notation:

M = My (S) = arg maxp P(M|S), (1)

where S is the input sentence and M represents the
semantic tags assigned to each word. While a con-
text larger than the sentence S can be used, we will
refer to the context as S. In this formulation, each
word W; in the sentence is treated as a random vari-
able M; taking on the values {1..N;}, where N; is
the number of senses for the word W;. Therefore, we
wish to find instantiations of M such that P(M|S)
is maximized.

To make the computation of Mpes(S)
more tractable, it can be decomposed into
Mpest(S) = arg maz(IL; P(M;|S)), where it is
assumed that each word can be disambiguated
independently. = However, this assumption does
not always hold, since disambiguating one word
often affects the sense assignment of another word
within the same sentence. Alternatively, the process
can be modeled as a Hidden Markov model, e.g.,
Miest(S) = arg max(I; P(W;|M;) P(M;|M;_1)).
While the Markov model requires fewer param-
eters, it is unable to capture the long-distance
dependencies that occur in natural languages.
Although the first decomposition better captures
these dependencies, computing P(M;|S) using the
full sentential context is rarely used, since the
number of parameters required grows exponen-
tially with each added context. Therefore, one
can further simplify this model by narrowing the
context to 2n number of surrounding words, i.e.,
P(MAS) ~ P(M”Wz;n, ...Wz',l, Wz', Wi+1, Wz+n)
However, narrowing the context also discards long-
distance relationships, making it closer to a Markov
model. The difficulty is in choosing the context that
would maximize the accuracy while allowing for
reliable parameter estimation from training data.

In our model, we aim to strike this balance by
choosing the context words based not only on posi-
tional, but also structural information. The hypoth-

esis is that an ambiguous word is probabilistically
dependent on its structurally related words and is
independent of the rest of the sentence. Therefore,
long-distance dependencies can still be captured,
while the context is kept small. Therefore, our model
is a combination of the decompositions described
above, by selectively making independence assump-
tions on a per-word basis to best model P(M;|S),
while computing Mp,s:(S) in one query to allow for
interactions between the word senses M;.

3 Maximum Entropy Modeling

In this system, ME models are used to compute
P(M;|S), the classification probability. The intu-
ition behind the maximum entropy principle can be
stated as: Given a set of training data, model what is
known and assume no further knowledge about the
unknown by assigning them equal probability. That
is, given N training samples S = (c,0)1..(c,0)n,
where ¢ is the context and o is the outcome, con-
struct a model p*(S) that estimates the empirical
distribution p(S) while maximizing the its entropy.
It has been shown that p*(S) is unique and must be
in the following form (Ratnaparkhi, 1998):

k
p*(S) =7 H aff‘c"’),o < ay < o0,
j=1

where f;(c,0) is one of the k binary-valued feature
functions, a;’s are the parameters adjusted to model
the observed statistics, and 7 is a normalizing factor.

The feature functions f; are indicator functions
representing meaningful statistics from the training
data a modeler wishes to include, and they can be
diverse. For example, a useful feature function for
disambiguating the word “great” can be the follow-
ing, by observing that if “storm” follows “great”,
then the outcome should be the second sense:

1 if o=#2 and
next word(c)="storm”
0 otherwise

fstorm(ca O) =

The statistics of a feature function is captured by
ensuring the model adheres to the following equality:

Ep(f;) = E(f;)-
where Ep(f;) = >2(.,, P(c;0)fi(c,0), which is the
expectation of feature function f;, and Ej(f;) =
2 (.00 P(c,0)fj(c,0) is the empirical expectation
of f;. Using the same example above, one
first determines the empirical distribution from
the training data via maximum likelihood esti-
mation, i.e., p(next word(c)="storm”, o=#2) =
count(next word(c)="storm”, o=#2)/N, where N
is the total number of training events. The em-
pirical expectation is then simply Ej(fstorm) =



Pp(next word(c)="storm”, o=#2) since fstorm is 0
for all other (o,¢) combinations. Using this expec-
tation, the model must adjust the parameter as¢orm
such that its expectation of fssorm matches the em-
pirical one, while simultaneously matching the rest
of the feature functions with their expectations.
Therefore, the model estimates p*(S) by adjusting
the k model parameters a;,1 < j < k, subject to
the constraints imposed by the k feature functions.
This can be accomplished by using the Generalized
Iterative Scaling (GIS) algorithm (Darroch and Rat-
cliff, 1972). Per iteration, GIS adjusts each a; based
on its value from the previous iteration and is guar-
antee to converge. For more detailed discussion of
ME modeling and GIS, see Rosenfeld (1994), Rat-
naparkhi (1998), and Berger et al. (1996).

4 Contextual Features

The feature functions used in this model consist of
not only the surrounding words, but also morpho-
logical and structural attributes of the word win-
dow and structurally related words. By incorporat-
ing these additional features, our hypothesis is that
they will help to improve WSD accuracy by provid-
ing useful statistics.

Determining the values of these attributes is done
in two steps: 1) locating eight contextual words, and
for each word 2) quantifying ten of its attributes.
The first four context words are simply the four word
window around the current word, and the latter four
are the structurally related words that are not nec-
essarily nearby due to long distance dependencies.

To determine the structurally related words and
the structural attributes efficiently and consis-
tently, a new structural representation is introduced.
This new representation, called Core and Modifiers
(CAM), is a simplification of the parse tree, meant
to improve the identification and extraction of struc-
turally related words and features.

4.1 CAM Representation

A CAM is composed of a core and its modifiers. The
core consists of three “slots”, which are filled by slot
fillers (SFs). The modifiers of the three slot fillers
(MSs) are numbered according to which slot they
modify, and are referred to as slots 4 through 6. In
the simplest case, the three slots are filled by the
subject, verb, and object, and any of their modifiers
would fill the corresponding MS slots. Shown in Fig-
ure 1, on the left is the notation for CAMs and on
the right an example.

Note that a slot can be filled by words as well
as another CAM for embedded structures, such as
the prepositional phrase “with meat-balls”. One can
see that CAM is a simplified representation of sen-
tential structures, designed to capture the main con-
stituents in the cores and limit the modifiers to three

Type | Values/Range
Morphological features:
1) Word form
2) POS 0-45 (Penn)
3) Simplified POS pune, adj, adv, ce, prep, noun, verb, rel,
mise
1) POS class noun, verb, adjective, adverb, other
5) Suffix none, -, -ed, -ing, -er, -est, ete.
Structural features:
6) Word slot # 1-6
7) CAM slot # 1-6
8) CAM fill status 0x0 - 0x2F
Semantic features:
9) Semantic class 0-44 (lexnames file)
10)  Synset ID ‘ noun 0-74487, verb 0-12753, adj 0-18522,

adv 0-3631

Table 1: The different features used in the model
and their range of values.

slots. We then use these slot fillers to determine the
structurally related words for any word in the sen-
tence. Additionally, the structural attributes of slot
number, the slot number of the CAM the word be-
longs to, and CAM’s fill status (a bit vector of which
of the six slots are filled) are determined using this
representation and provided as features. For exam-
ple, for the word “meat-balls” from the previous ex-
ample, its slot number is 3, the CAM slot number
is 6 since the CAM is modifying “pasta”, and the
CAM fill status is 000110b since only slot 2 and 3
are filled. The simplicity and rigidity of the CAM
representation allows the quantification of this struc-
tural information using a minimal, well defined set of
values. This helps to avoid the sparse-data problem,
important in probabilistic systems like ours.

Once a sentence is converted to the CAM repre-
sentation from its parse tree, determining the struc-
tural information becomes a simple and consistent
lookup. The structurally related words are defined
to be the main constituents of the core, i.e., SF1
through 3, and if it is a modifier, its target, such as
“pasta” as the target for “Italian” from the previous
example. Therefore, for each word in a sentence,
up to four words are determined to be structurally
related.

Once the contextual words are established, ten
features are determined for each word, and their
range of values are shown in Table 1. The features
are grouped into three classes: morphological, struc-
tural, and semantic. Morphological features consists
of the word forms, three mutually exclusive versions
of POS tags, and the suffix. Three versions of the
POS tags, starting with the UPenn tag set and sim-
plified twice, provide three levels of granularity. The
trade off is between specificity and ease of parame-
terization. The structural features are determined
from the CAM structure described earlier. Lastly,
the semantic features are the semantic classes, or the
coarse-grain senses, and the unique synset identifier
from WordNet.

4.2 Training Data

To extract as much training statistics from currently
available corpora, this system draws upon four sets



Empty CAM

John ate the Italian pasta with meat-balls.

SF1 .. [ SF1
[ MS1 ‘. ] SF2

SF2 ‘.0 SF3
[ MS2 ‘.’ ]

SF3 .
[ MS3 ‘.’ ]

‘John’

‘ate’

‘pasta’

[ MS3 ‘the’ |

[ MS3 ‘Italian’ ]
SF1 ¢

l MS3 [ SF2  ‘with’ ‘| ]
SF3  ‘meat-balls’

Figure 1: The CAM representation on the left and an example on the right.

of training data: 1) overlapping SemCor and Tree-
bank sections, 2) non-parsed SemCor sections, 3)
SemCor verb sections, and 4) the WordNet gloss.
The training data is separated into these four parts
because each provides varying amount of contextual
information. Specifically, the first set represents the
most complete training data, providing both seman-
tic and structural context. Since the latter three
sets are not parsed, only the context from the word-
window is available, with varying amounts of labeled
semantic information. Namely, all content words
(noun, verb, adjective, and adverb) in set two are
semantically labeled, whereas in set three and four
only the verbs and the words within the synonym
set being defined, respectively, are labeled.

While the training sources are somewhat hetero-
geneous, the flexibility of ME models allows features
to be combined and trained upon easily. Recall that
the feature functions for ME modeling are simply in-
dicators of context values associated with their out-
comes. Therefore, if a context is unavailable, such
as structural information from non-parsed corpora,
it is simply not added as a feature. The most read-
ily available context is still the surrounding words
and their POS tags, and as shown in the results sec-
tion, they provide the most pertinent statistics so
far. However, one of the primary motivating factors
of the boot-strapping system is that as the training
sets are fully processed, i.e., POS tagged, parsed,
and sense disambiguated, the accuracy of the sys-
tem will improve.

5 Search Algorithm

With the individual word experts constructed, the
process of tagging a sentence consists of presenting
the classifier with relevant contextual information,
computing the probability P(M;|C;), where C; is
the context, and determining the instantiations of
M; that would maximize P(M|S) across the whole
sentence S. This search space is potentially expo-
nential, in the worst case being O(MY), where N
is the sentence length, and M is the number senses
per word, which can be greater than 50.

However, since the individual probability

P(M;|C;) is dependent on the surrounding 2n
words, referred to as dependent words (DW), and
is thus independent from the rest of the sentence,
the time complexity is reduced to O(N x M?n+1),
But if M remains large, the complexity is still
unmanageable. Furthermore, in our model, the
context is expanded to the four structurally related
words, increasing the complexity to O(N x M?®).

Therefore, a step is taken to improve efficiency by
a multi-pass algorithm such that M is reduced be-
tween each pass. That is, DW is kept small initially
and all of the senses are evaluated. Between each
pass, the context is expanded by adding the struc-
turally related words, and senses with low probabil-
ities are discarded, thus reducing M.

Let S = w;...wn be the input sentence, and M; be
the senses being evaluated for the word 4, the follow-
ing search algorithm produces arg maxP(M|S), the
instantiations of M that maximize the probability
across the sentence:

1. Vi initialize M; < all senses for word w;

2. for each pass p,
(a) for each word w;, 1 <7< N,

e let DW; = Dependent Words(wi,p), de-
termine the dependent words based on the
current pass

e let S = Mpw,, the set containing all per-
mutations of the senses M for dependent
words DW;.

e for each s € S,

PDT;[s] <+ P(Mj|s,C;), classify given
the current context and save the proba-
bility to the s** entry of the probability
distribution table (PDT) for word 3.

(b) M, < MAP(PDT), generate the best instan-
tiations of M for pass p based on the PDTs.

(¢) M; <« eliminate(sort(M;),6,), reduce the
number sense for word i based on cutoff 6,
for pass p.

The algorithm can be summarized in three steps:
1) classifying each word based on the current con-
text, 2) performing the MAP query and eliminate



unlikely candidates, and 3) expanding the context
to include long distance dependencies. We will re-
fer to our search algorithm as the CME (Classify,
MAP and eliminate, Expand) algorithm. Although
this search algorithm is non-systematic, i.e., it can-
not guarantee the probability is optimal, we show
in the results section that with accurate classifiers,
the correct senses are ranked highly and are rarely
pruned. By balancing time complexity with accu-
racy via pruning, this search algorithm is very effi-
cient while maintaining high accuracy.

5.1 The MAP Query

At the heart of CME is the MAP query, which deter-
mines M = arg mazP(M|S) based on the PDTs at
each word, and it guarantees that M is maximized
across the whole sentence. This is achieved by treat-
ing the sentence as one probabilistic network, with
words as the nodes in the network, and the edges
representing the probabilistic dependence between
words. For example, if the context for each word is
the four words window, each node in network would
have links to the surrounding four words, as shown
in part A of Figure 2. As the context expands, more
edges are added between structurally related words,
such as the edge between “ate” and “pasta” in part
B of Figure 2, signifying the long-distance relation-
ship.

Therefore, the structure of the probability net-
work is determined by the dependent words. Its
PDTs are then quantified by the individual word
experts during the classification step of CME. Once
the network is built, the MAP query determines the
instantiations for each node, or the word senses in
this model, such that the overall probability is max-
imized. The query is implemented using the Join-
tree algorithm (Darwiche, 1995), which can be de-
scribed in three steps: 1) determining the variable n
to instantiate, 2) multiplying all PDTs that contain
variable n, 3) and eliminating the variable n while
recording the value of n with the maximum proba-
bility. This procedure is repeated N times for each
word within the sentence, and as the last variable
is eliminated, the instantiations across the sentence
are produced.

6 Results & Discussion

The test data and the scoring procedure from the
SENSEVAL-2 workshop is used in our evaluation, con-
taining 239 sentences, ~ 6200 words, of which 2473
are to be disambiguated in the English-all-words
task. Since the parse trees for this task are provided
in Treebank format, they are first converted into the
CAM representation. The structurally related words
and the contextual features are then extracted for
each word, and along with context from the word-
window, fed to the ME word experts to generate

’
O T
B)
A’

oG iy o i oS

Figure 2: The probability networks used by the
MAP query, which are build automatically to reflect
the inter-dependencies between words.

| | WW | WW+Struc [ A |
Noun 74.0% 75.1% +1.1%
Verb 48.2% 51.6% +3.4%
Adjective 70.0% 69.4% -0.6%
Adverb 80.9% 81.7% +0.8%
Unknown 0% 0% 0%
Overall 65.63% 66.84% +1.21%

Table 2: Comparison between the accuracy of the
ME model on the SENSEVAL-2 English-all-words
task using only the word-window (WW) versus
word-window plus structural context. All words are
attempted and thus precision equals recall.

the classification probabilities. They are then inte-
grated by the CME search algorithm to determine
the best overall instantiations across the sentence.
Two passes are used for this evaluation, the first
with the four words window and the second with the
structurally related word added with a threshold 6
of 10. The results are shown in Table 2.

By comparing the results with and without struc-
turally related words, one can see that the addi-
tional contextual words reduced the WSD error rate
by 3.5%. While the improvement is modest, it is
encouraging since only one of the four training set
contains statistics on the structurally related words.
Once the same statistics from the rest of the train-
ing corpora is determined, the accuracy should be
further improved. Furthermore, verbs, which have
always been the most challenging group for WSD
systems, benefitted the most from the added con-
text. The gain is intuitive since slot filler 1 and 3
provide the verbs with the most relevant two words
within the sentence. However, adjectives suffered
from the added context, surprising since the target
filler is designed to capture the word being modified.
The reason for the degradation is being investigated.

To further verify that the improvement is from
the addition of structurally related words, the same
ME model is trained on each of the four training
sets separately and evaluated against the same data.
This evaluation also indicates the extent of each
set’s contribution toward the overall system. The



[ Set | WW [ WW+Struc | Size |

1 63.0% 64.2% 92,534
2 | 64.0% 64.1% 100,095
3 | 64.1% 64.1% 41,497
4 | 52.4% 52.4% 44,375

Table 3: Overall accuracy results of the ME sys-
tem trained on the four training sets individually.
The size is the number of semantically labeled words
within each set.

results are shown in Table 3. The first three sets,
all part of SemCor, contributed almost equally. As
expected, only the first set improved the accuracy
when structural context is added, since it is the
only one with structural information. The third set,
where only verbs are labeled, did quite well despite
its smaller size, indicating that once structural in-
formation is ascertained, it should provide valuable
training statistics. Training only on the example
sentences from the WordNet gloss, however, did not
perform as well, mainly due to the fact that the ex-
amples are absent for many of the WordNet senses.
Nevertheless, even with a small four words window,
the ME model is able to perform well. And with the
addition of structurally related words, the accuracy
is improved further, validating our hypothesis that
structurally related words provide important disam-
biguation context.

One might observe that the improvements gained
with structurally related words are simply because
more information is provided to the word experts.
To test if this is the case, the definition for each
sense from WordNet is added during training, pro-
viding further context. If the accuracy improves,
the ME model simply benefits from the addition of
more words, and if not, the context is specific and
selective. The result of this test is shown in Table 4.
The amount of degradation in adding the definition
to the ME model is somewhat surprising, since the
added words are relevant to the senses and are not
random. However, the fact that adverbs improved
gives prudence to this approach, but more work is
needed to better integrate WordNet definition into
this system. Nevertheless, this test shows that the
ME model is selective about its context and does in-
deed benefit from the addition of structurally related
words.

Lastly, since the CME search algorithm is non-
systematic, the effect of the elimination step is
demonstrated by varying the thresholds and test-
ing their accuracy, shown in Table 5. The empirical
upper-bound is determined by setting the threshold
to infinite, allowing the MAP query to compute the
optimal instantiations. Even with the most restric-
tive threshold of 2, the penalty incurred on the accu-

| [ w/oDefn | w/Defn [ A ]

Noun 75.1% 71.4% -3.7%
Verb 51.6% 49.6% -2.0%
Adj 69.4% 69.0% -0.4%
Adv 81.7% 82.4% +0.7%
Overall 66.8% 64.8% -2.0%

Table 4: Comparison of accuracy between two ME
model trained with and without definitions from
WordNet.

[ 6 ] Accuracy | A ]

00 66.84% -

10 66.84% 0.0%
5 66.80% -0.04%
2 66.76% -0.08%

Table 5: The effect of the thresholds # on the CME
algorithm’s accuracy. The empirical upper-bound is
determined by setting the threshold to infinity.

racy is negligible, while the time complexity saving
can be significant. Regardless, the observed run-
time of CME is short, taking < 5 minutes with no
threshold on an Athlon 1.4GHz PC to process the
test data set, most of which is spent on reading the
ME models from disk.

6.1 Comparison with Other Models

When compared to other models submitted to the
SENSEVAL-2 workshop, shown in Table 6, the accu-
racy of this ME model is close to the best model sub-
mitted by SMU. We believe that the current model
is hampered by the small word-window, since a con-
textual window of 100 or more have been proposed.
Additionally, since much of the training data lacks
structural information, the current model is unable
to take full advantage of the contextual features.
This should be remedied by processing the training
corpora using our boot-strapping system, discussed
in the next section.

7 Conclusion and Future Work

We presented a maximum entropy-based word sense
disambiguation system that is automatically built

[ Model | Fine-grained | Coarse-grained |
ME 66.8% 66.8%
SMU 69.0% 69.0%
Antwerp 63.6% 64.5%
Sinequa-LIA 61.8% 62.6%

Table 6: Comparison to the top three models sub-
mitted to the SENSEVAL-2 workshop on the English-
all-words task. For all models precision equals recall.



and trained on publicly available corpora. By draw-
ing upon multiple sources for the training data,
we show that maximum entropy models performed
quite well, close to one of the best WSD systems,
even with a small window size of four. Furthermore,
we demonstrate the improvements made by adding
the structurally related words, indicating that once
structural information for the training corpora is de-
termined, WSD accuracy should improve further.
Another improvement can be to expand the word
window beyond four words, but this might require
careful investigation since the ME model is selective,
as demonstrated in the definition experiment.

Two other common techniques used to further im-
prove WSD accuracy are the one-sense-per-discourse
hypothesis (Yarowsky, 1993) and semantic distance
or density. Unfortunately, upon initial investigation,
both techniques degraded the system’s performance
(results not shown). More analysis is need to deter-
mine the cause, since they have been shown to work
well in other systems.

7.1 Integrated NLP System

As mentioned previously, this WSD model is part
of a NLP system where POS tagging, parsing, and
WSD are modeled not as discrete steps but as an
integrated system where information generated from
downstream processes are recurrently fed back to up-
stream processes in successive passes. The hypoth-
esis is that this integrated approach will produce a
globally consistent and coherent interpretation of an
input sentence by eliminating between each pass un-
likely candidates and promoting ones that are con-
sistent across POS tagging, structural relations, and
word sense distinction. Once the overall system is in
place, it will be used to process the partially labeled
training corpora, namely set two through four used
in this evaluation. Once all of the corpora are auto-
matically labeled, they will then be used to retrain
each of the three processes. As indicated by the
experiments described here, WSD accuracy should
improve with parsed training data, which will then
be used to further improve POS tagging and pars-
ing accuracy. And with more reliable POS tags and
structural information, WSD accuracy should im-
prove further. This process can continue until accu-
racy no longer improves, having reached a globally
consistent interpretation of each sentence. The goal
is to demonstrate that all processes, POS tagging,
parsing, and WSD, improve their accuracy using this
boot-strapping procedure.

A more ambitious goal is to use the system to
process the definitions within WordNet and auto-
matically generate a representation of the meaning
for each sense. While the topic of knowledge rep-
resentation is beyond the scope of this paper, its
utility in WSD is to be able to extract from the def-
inition the deciding feature used to distinguish two

close senses. For example, the distinction between
two of the senses for the word “vicar” seems to be
the church the clergyman is associated with. Such
distinction is probably too subtle to derive from the
corpora or the synonym lists, and is only described
in the definitions. However, if known, such knowl-
edge can be added to the word expert for “vicar”
easily, by adding a feature function indicating if sur-
rounding context refers to the type of church. How
to automatically acquire this knowledge and rep-
resent them by adding “knowledge-based” feature
functions to the ME models remains an open ques-
tion, but we believe the boot-strapping system de-
scribed here is a step towards that goal.
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