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Abstract
In order to respond correctly to a free form factual ques-
tion given a large collection of texts, one needs to un-
derstand the question to a level that allows determining
some of the constraints the question imposes on a pos-
sible answer. These constraints may include a semantic
classification of the sought after answer and may even
suggest using different strategies when looking for and
verifying a candidate answer.

This paper presents a machine learning approach to
question classification. We learn a hierarchical classi-
fier that is guided by a layered semantic hierarchy of an-
swer types, and eventually classifies questions into fine-
grained classes. We show accurate results on a large col-
lection of free-form questions used in TREC 10.

1 Introduction
Open-domain question answering (Lehnert, 1986;
Harabagiu et al., 2001; Light et al., 2001) and story
comprehension (Hirschman et al., 1999) have be-
come important directions in natural language pro-
cessing. Question answering is a retrieval task more
challenging than common search engine tasks be-
cause its purpose is to find an accurate and concise
answer to a question rather than a relevant docu-
ment. The difficulty is more acute in tasks such as
story comprehension in which the target text is less
likely to overlap with the text in the questions. For
this reason, advanced natural language techniques
rather than simple key term extraction are needed.
One of the important stages in this process is analyz-
ing the question to a degree that allows determining
the “type” of the sought after answer. In the TREC
competition (Voorhees, 2000), participants are re-
quested to build a system which, given a set of En-
glish questions, can automatically extract answers
(a short phrase) of no more than 50 bytes from a
5-gigabyte document library. Participants have re-
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alized that locating an answer accurately hinges on
first filtering out a wide range of candidates (Hovy
et al., 2001; Ittycheriah et al., 2001) based on some
categorization of answer types.

This work develops a machine learning approach
to question classification (QC) (Harabagiu et al.,
2001; Hermjakob, 2001). Our goal is to categorize
questions into different semantic classes that impose
constraints on potential answers, so that they can
be utilized in later stages of the question answering
process. For example, when considering the ques-
tion Q: What Canadian city has the largest popula-
tion?, the hope is to classify this question as having
answer type city, implying that only candidate an-
swers that are cities need consideration.

Based on the SNoW learning architecture, we de-
velop a hierarchical classifier that is guided by a lay-
ered semantic hierarchy of answer types and is able
to classify questions into fine-grained classes. We
suggest that it is useful to consider this classifica-
tion task as a multi-label classification and find that
it is possible to achieve good classification results
(over 90%) despite the fact that the number of dif-
ferent labels used is fairly large, 50. We observe that
local features are not sufficient to support this accu-
racy, and that inducing semantic features is crucial
for good performance.

The paper is organized as follows: Sec. 2 presents
the question classification problem; Sec. 3 discusses
the learning issues involved in QC and presents our
learning approach; Sec. 4 describes our experimen-
tal study.

2 Question Classification
We define Question Classification(QC) here to be
the task that, given a question, maps it to one of
k classes, which provide a semantic constraint on
the sought-after answer1. The intension is that this

1We do not address questions like “Do you have a light?”,
which calls for an action, but rather only factual Wh-questions.



classification, potentially with other constraints on
the answer, will be used by a downstream process
which selects a correct answer from among several
candidates.

A question classification module in a question an-
swering system has two main requirements. First, it
provides constraints on the answer types that allow
further processing to precisely locate and verify the
answer. Second, it provides information that down-
stream processes may use in determining answer se-
lection strategies that may be answer type specific,
rather than uniform. For example, given the ques-
tion “Who was the first woman killed in the Vietnam
War?” we do not want to test every noun phrase
in a document to see whether it provides an answer.
At the very least, we would like to know that the
target of this question is a person, thereby reducing
the space of possible answers significantly. The fol-
lowing examples, taken from the TREC 10 question
collection, exhibit several aspects of this point.
Q: What is a prism?Identifying that the target of this
question is a definition, strategies that are specific for
definitions(e.g., using predefined templates) may be use-
ful. Similarly, in:
Q: Why is the sun yellow?Identifying that this question
asks for a reason, may lead to using a specific strategy
for reasons.

The above examples indicate that, given that dif-
ferent answer types may be searched using different
strategies, a good classification module may help
the question answering task. Moreover, determin-
ing the specific semantic type of the answer could
also be beneficial in locating the answer and veri-
fying it. For example, in the next two questions,
knowing that the targets are a city or country will
be more useful than just knowing that they are loca-
tions.
Q: What Canadian city has the largest population?
Q: Which country gave New York the Statue of Liberty?

However, confined by the huge amount of man-
ual work needed for constructing a classifier for a
complicated taxonomy of questions, most question
answering systems can only perform a coarse clas-
sification for no more than 20 classes. As a result,
existing approaches, as in (Singhal et al., 2000),
have adopted a small set of simple answer entity
types, which consisted of the classes: Person, Loca-
tion, Organization, Date, Quantity, Duration, Lin-
ear Measure. The rules used in the classification
were of the following forms:
– If a query starts with Whoor Whom: type Person.

– If a query starts with Where: type Location.
– If a query contains Which or What, the head noun
phrase determines the class, as for What X questions.

While the rules used have large coverage and rea-
sonable accuracy, they are not sufficient to support
fine-grained classification. One difficulty in sup-
porting fine-grained classification is the need to ex-
tract from the questions finer features that require
syntactic and semantic analysis of questions, and
possibly, many of them. The approach we adopted
is a multi-level learning approach: some of our fea-
tures rely on finer analysis of the questions that are
outcomes of learned classifiers; the QC module then
applies learning with these as input features.

2.1 Classification Standard

Earlier works have suggested various standards of
classifying questions. Wendy Lehnert’s conceptual
taxonomy (Lehnert, 1986), for example, proposes
about 13 conceptual classes including causal an-
tecedent, goal orientation, enablement, causal con-
sequent, verification, disjunctive, and so on. How-
ever, in the context of factual questions that are
of interest to us here, conceptual categories do not
seem to be helpful; instead, our goal is to se-
manticallyclassify questions, as in earlier work on
TREC (Singhal et al., 2000; Hovy et al., 2001;
Harabagiu et al., 2001; Ittycheriah et al., 2001).
The key difference, though, is that we attempt to
do that with a significantly finer taxonomy of an-
swer types; the hope is that with the semantic an-
swer types as input, one can easily locate answer
candidates, given a reasonably accurate named en-
tity recognizer for documents.

2.2 Question Hierarchy

We define a two-layered taxonomy, which repre-
sents a natural semantic classification for typical
answers in the TREC task. The hierarchy con-
tains 6 coarse classes (ABBREVIATION, ENTITY,
DESCRIPTION, HUMAN, LOCATION and NU-
MERIC VALUE) and 50 fine classes, Table 1 shows
the distribution of these classes in the 500 ques-
tions of TREC 10. Each coarse class contains a
non-overlapping set of fine classes. The motiva-
tion behind adding a level of coarse classes is that of
compatibility with previous work’s definitions, and
comprehensibility. We also hoped that a hierarchi-
cal classifier would have a performance advantage
over a multi-class classifier; this point, however is
not fully supported by our experiments.



Class # Class #
ABBREV. 9 description 7

abb 1 manner 2
exp 8 reason 6

ENTITY 94 HUMAN 65
animal 16 group 6
body 2 individual 55
color 10 title 1

creative 0 description 3
currency 6 LOCATION 81
dis.med. 2 city 18

event 2 country 3
food 4 mountain 3

instrument 1 other 50
lang 2 state 7
letter 0 NUMERIC 113
other 12 code 0
plant 5 count 9

product 4 date 47
religion 0 distance 16

sport 1 money 3
substance 15 order 0
symbol 0 other 12

technique 1 period 8
term 7 percent 3

vehicle 4 speed 6
word 0 temp 5

DESCRIPTION 138 size 0
definition 123 weight 4

Table 1: The distribution of 500 TREC 10 questions
over the question hierarchy. Coarse classes (in bold) are
followed by their fine class refinements.

2.3 The Ambiguity Problem
One difficulty in the question classification task is
that there is no completely clear boundary between
classes. Therefore, the classification of a specific
question can be quite ambiguous. Consider

1. What is bipolar disorder?

2. What do bats eat?

3. What is the PH scale?

Question 1 could belong to definition or dis-
ease medicine; Question 2 could belong to food,
plant or animal; And Question 3 could be a nu-
meric value or a definition. It is hard to catego-
rize those questions into one single class and it is
likely that mistakes will be introduced in the down-
stream process if we do so. To avoid this problem,
we allow our classifiers to assign multiple class la-
bels for a single question. This method is better than
only allowing one label because we can apply all the
classes in the later precessing steps without any loss.

3 Learning a Question Classifier
Using machine learning methods for question clas-
sification is advantageous over manual methods for
several reasons. The construction of a manual clas-
sifier for questions is a tedious task that requires
the analysis of a large number of questions. More-
over, mapping questions into fine classes requires
the use of lexical items (specific words) and there-
fore an explicit representation of the mapping may

be very large. On the other hand, in our learning
approach one can define only a small number of
“types” of features, which are then expanded in a
data-driven way to a potentially large number of fea-
tures (Cumby and Roth, 2000), relying on the abil-
ity of the learning process to handle it. It is hard to
imagine writing explicitly a classifier that depends
on thousands or more features. Finally, a learned
classifier is more flexible to reconstruct than a man-
ual one because it can be trained on a new taxonomy
in a very short time.

One way to exhibit the difficulty in manually con-
structing a classifier is to consider reformulations of
a question:
What tourist attractions are there in Reims?
What are the names of the tourist attractions in Reims?
What do most tourists visit in Reims?
What attracts tourists to Reims?
What is worth seeing in Reims?

All these reformulations target the same answer
type Location. However, different words and syn-
tactic structures make it difficult for a manual clas-
sifier based on a small set of rules to generalize well
and map all these to the same answer type. Good
learning methods with appropriate features, on the
other hand, may not suffer from the fact that the
number of potential features (derived from words
and syntactic structures) is so large and would gen-
eralize and classify these cases correctly.

3.1 A Hierarchical Classifier
Question classification is a multi-class classifica-
tion. A question can be mapped to one of 50 pos-
sible classes (We call the set of all possible class
labels for a given question a confusion set(Golding
and Roth, 1999)). Our learned classifier is based
on the SNoW learning architecture (Carlson et al.,
1999; Roth, 1998)2 where, in order to allow the
classifier to output more than one class label, we
map the classifier’s output activation into a condi-
tional probability of the class labels and threshold
it.

The question classifier makes use of a sequence
of two simple classifiers (Even-Zohar and Roth,
2001), each utilizing the Winnow algorithm within
SNoW. The first classifies questions into coarse
classes (Coarse Classifier) and the second into fine
classes (Fine Classifier). A feature extractor auto-
matically extracts the same features for each clas-
sifier. The second classifier depends on the first in

2Freely available at http://L2R.cs.uiuc.edu/�cogcomp/cc-
software.html
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Figure 1: The hierarchical classifier

that its candidate labels are generated by expanding
the set of retained coarse classes from the first into
a set of fine classes; this set is then treated as the
confusion set for the second classifier.

Figure 1 shows the basic structure of the hierar-
chical classifier. During either the training or the
testing stage, a question is processed along one path
top-down to get classified.

The initial confusion set of any question is C0 =
fc1; c2; : : : ; cng, the set of all the coarse classes.
The coarse classifier determines a set of preferred
labels, C1 = Coarse Classifier(C0), C1 � C0

so that jC1j � 5. Then each coarse class label
in C1 is expanded to a fixed set of fine classes
determined by the class hierarchy. That is, sup-
pose the coarse class ci is mapped into the set
ci = ffi1; fi2; : : : ; fimg of fine classes, then C2 =S
ci2C1

ci. The fine classifier determines a set of
preferred labels, C3 = Fine Classifier(C2) so
that C3 � C2 and jC3j � 5. C1 and C3 are the ul-
timate outputs from the whole classifier which are
used in our evaluation.

3.2 Feature Space

Each question is analyzed and represented as a list
of features to be treated as a training or test exam-
ple for learning. We use several types of features
and investigate below their contribution to the QC
accuracy.

The primitive feature types extracted for each
question include words, pos tags, chunks (non-
overlapping phrases) (Abney, 1991), named entities,
head chunks (e.g., the first noun chunk in a sen-
tence) and semantically related words (words that
often occur with a specific question class).

Over these primitive features (which we call
“sensors”) we use a set of operators to compose

more complex features, such as conjunctive (n-
grams) and relational features, as in (Cumby and
Roth, 2000; Roth and Yih, 2001). A simple script
that describes the “types” of features used, (e.g.,
conjunction of two consecutive words and their pos
tags) is written and the features themselves are ex-
tracted in a data driven way. Only “active” features
are listed in our representation so that despite the
large number of potential features, the size of each
example is small.

Among the 6 primitive feature types, pos tags,
chunks and head chunks are syntactic features while
named entities and semantically related words are
semantic features. Pos tags are extracted using
a SNoW-based pos tagger (Even-Zohar and Roth,
2001). Chunks are extracted using a previously
learned classifier (Punyakanok and Roth, 2001; Li
and Roth, 2001). The named entity classifier is
also learned and makes use of the same technol-
ogy developed for the chunker (Roth et al., 2002).
The ‘related word’ sensors were constructed semi-
automatically.

Most question classes have a semantically related
word list. Features will be extracted for this class if
a word in a question belongs to the list. For exam-
ple, when “away”, which belongs to a list of words
semantically related to the class distance, occurs in
the sentence, the sensor Rel(distance) will be ac-
tive. We note that the features from these sensors are
different from those achieved using named entity
since they support more general “semantic catego-
rization” and include nouns, verbs, adjectives rather
than just named entities.

For the sake of the experimental comparison, we
define six feature sets, each of which is an incre-
mental combination of the primitive feature types.
That is, Feature set 1 (denoted by Word) contains
word features; Feature set 2 (Pos) contains features
composed of words and pos tags and so on; The fi-
nal feature set, Feature set 6 (RelWord) contains all
the feature types and is the only one that contains
the related words lists. The classifiers will be exper-
imented with different feature sets to test the influ-
ence of different features. Overall, there are about
200; 000 features in the feature space of RelWord
due to the generation of complex features over sim-
ple feature types. For each question, up to a couple
of hundreds of them are active.

3.3 Decision Model
For both the coarse and fine classifiers, the same
decision model is used to choose class labels for



a question. Given a confusion set and a question,
SNoW outputs a density over the classes derived
from the activation of each class. After ranking the
classes in the decreasing order of density values, we
have the possible class labels C = fc1; c2; : : : ; cng,
with their densities P = fp1; p2; : : : ; png (where,Pn

1
pi = 1, 0 � pi � 1, 1 � i � n). As dis-

cussed earlier, for each question we output the first
k classes (1 � k � 5), c1; c2; : : : ck where k satis-
fies,

k = min(argmint(

tX

1

pi � T ); 5) (1)

T is a threshold value in [0,1]. If we treat pi as
the probability that a question belongs to Class i,
the decision model yields a reasonable probabilistic
interpretation. We use T = 0:95 in the experiments.

4 Experimental Study
We designed two experiments to test the accuracy of
our classifier on TREC questions. The first experi-
ment evaluates the contribution of different feature
types to the quality of the classification. Our hi-
erarchical classifier is trained and tested using one
of the six feature sets defined in Sect. 3.2 (we re-
peated the experiments on several different training
and test sets). In the second experiment, we evalu-
ate the advantage we get from the hierarchical clas-
sifier. We construct a multi-class classifier only for
fine classes. This flat classifier takes all fine classes
as its initial confusion set and classifies a question
into fine classes directly. Its parameters and deci-
sion model are the same as those of the hierarchical
one. By comparing this flat classifier with our hi-
erarchical classifier in classifying fine classes, we
hope to know whether the hierarchical classifier has
any advantage in performance, in addition to the ad-
vantages it might have in downstream processing
and comprehensibility.

4.1 Data

Data are collected from four sources: 4,500 English
questions published by USC (Hovy et al., 2001),
about 500 manually constructed questions for a few
rare classes, 894 TREC 8 and TREC 9 questions,
and also 500 questions from TREC 10 which serves
as our test set3.

These questions were manually labeled accord-
ing to our question hierarchy. Although we allow
multiple labels for one question in our classifiers,
in our labeling, for simplicity, we assigned exactly

3The annotated data and experimental results are available
from http://L2R.cs.uiuc.edu/�cogcomp/

one label to each question. Our annotators were re-
quested to choose the most suitable class accord-
ing to their own understanding. This methodology
might cause slight problems in training, when the
labels are ambiguous, since some questions are not
treated as positive examples for possible classes as
they should be. In training, we divide the 5,500
questions from the first three sources randomly into
5 training sets of 1,000, 2,000, 3,000, 4,000 and
5,500 questions. All 500 TREC 10 questions are
used as the test set.

4.2 Evaluation
In this paper, we count the number of correctly clas-
sified questions by two different precision standards
P1 and P�5. Suppose ki labels are output for the i-
th question (ki � 5) and are ranked in a decreasing
order according to their density values. We define

Iij = f
1; if the correct label of the ith
question is output in rank j;

0; otherwise:
(2)

Then, P1 =
Pm

i=1 Ii1=m and P�5 =Pm
i=1

Pki
j=1 Iij=m where m is the total number of

test examples. P1 corresponds to the usual defini-
tion of precision which allows only one label for
each question, while P�5 allows multiple labels.
P�5 reflects the accuracy of our classifier with re-
spect to later stages in a question answering sys-
tem. As the results below show, although question
classes are still ambiguous, few mistakes are intro-
duced by our classifier in this step.

4.3 Experimental Results

Performance of the hierarchical classifier

Table 2 shows the P�5 precision of the hierarchi-
cal classifier when trained on 5,500 examples and
tested on the 500 TREC 10 questions. The re-
sults are quite encouraging; question classification
is shown to be solved effectively using machine
learning techniques. It also shows the contribution
of the feature sets we defined. Overall, we get a
98.80% precision for coarse classes with all the fea-
tures and 95% for the fine classes.

P<=5 Word Pos Chunk NE Head RelWord
Coarse 92.00 96.60 97.00 97.00 97.80 98.80

Fine 86.00 86.60 87.60 88.60 89.40 95.00

Table 2: Classification results of the hierarchical clas-
sifier on 500 TREC 10 questions. Training is done on
5,500 questions. Columns show the performance for
difference feature sets and rows show the precision for
coarse and fine classes, resp. All the results are evalu-
ated using P�5.



Inspecting the data carefully, we can observe the
significant contribution of the features constructed
based on semantically related words sensors. It is
interesting to observe that this improvement is even
more significant for fine classes.

No. Train Test P1 P<=5

1 1000 500 83.80 95.60
2 2000 500 84.80 96.40
3 3000 500 91.00 98.00
4 4000 500 90.80 98.00
5 5500 500 91.00 98.80

Table 3: Classification accuracy for coarse classes on
different training sets using the feature set RelWord. Re-
sults are evaluated using P1 and P�5.

No. Train Test P1 P<=5

1 1000 500 71.00 83.80
2 2000 500 77.80 88.20
3 3000 500 79.80 90.60
4 4000 500 80.00 91.20
5 5500 500 84.20 95.00

Table 4: Classification accuracy for fine classes on dif-
ferent training sets using the feature set RelWord. Re-
sults are evaluated using P1 and P�5.

Tables 3 and 4 show the P1 and P�5 accuracy
of the hierarchical classifier on training sets of dif-
ferent sizes and exhibit the learning curve for this
problem.

We note that the average numbers of labels out-
put by the coarse and fine classifiers are 1.54 and
2.05 resp., (using the feature set RelWord and 5,500
training examples), which shows the decision model
is accurate as well as efficient.

Comparison of the hierarchical and the flat
classifier
The flat classifier consists of one classifier which is
almost the same as the fine classifier in the hierar-
chical case, except that its initial confusion set is
the whole set of fine classes. Our original hope was
that the hierarchical classifier would have a better
performance, given that its fine classifier only needs
to deal with a smaller confusion set. However, it
turns out that there is a tradeoff between this factor
and the inaccuracy, albeit small, of the coarse level
prediction. As the results show, there is no perfor-
mance advantage for using a level of coarse classes,
and the semantically appealing coarse classes do not
contribute to better performance.

Figure 2 give some more intuition on the flat vs.
hierarchical issue. We define the tendency of Class
i to be confused with Class j as follows:

Dij = Errij � 2=(Ni +Nj); (3)
where (when using P1), Errij is the number of

questions in Class i that are misclassified as belong-

P1 Word Pos Chunk NE Head RelWord
h 77.60 78.20 77.40 78.80 78.80 84.20
f 52.40 77.20 77.00 78.40 76.80 84.00

P<=5 Word Pos Chunk NE Head RelWord
h 86.00 86.60 87.60 88.60 89.40 95.00
f 83.20 86.80 86.60 88.40 89.80 95.60

Table 5: Comparing accuracy of the hierarchical (h) and
flat (f) classifiers on 500 TREC 10 question; training is
done on 5,500 questions. Results are shown for different
feature sets using P1 and P�5.
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Figure 2: The gray–scale map of the matrix D[n,n]. The
color of the small box in position (i,j) denotes D ij . The
larger Dij is, the darker the color is. The dotted lines
separate the 6 coarse classes.

ing to Class j, and Ni; Nj are the numbers of ques-
tions in Class i and j resp.

Figure 2 is a gray-scale map of the matrix D[n,n].
D[n,n] is so sparse that most parts of the graph are
blank. We can see that there is no good cluster-
ing of fine classes mistakes within a coarse class,
which explains intuitively why the hierarchical clas-
sifier with an additional level coarse classes does not
work much better.

4.4 Discussion and Examples

We have shown that the overall accuracy of our clas-
sifier is satisfactory. Indeed, all the reformulation
questions that we exemplified in Sec. 3 have been
correctly classified. Nevertheless, it is constructive
to consider some cases in which the classifier fails.
Below are some examples misclassified by the hier-
archical classifier.
What French ruler was defeated at the battle of Water-
loo?
The correct label is individual, but the classifier,
failing to relate the word “ruler” to a person, since
it was not in any semantic list, outputs event.
What is the speed hummingbirds fly ?
The correct label is speed, but the classifier outputs



animal. Our feature sensors fail to determine that
the focus of the question is ‘speed’. This example
illustrates the necessity of identifying the question
focus by analyzing syntactic structures.
What do you call a professional map drawer ?
The classifier returns other entities instead of
equivalent term. In this case, both classes are ac-
ceptable. The ambiguity causes the classifier not to
output equivalent term as the first choice.

5 Conclusion
This paper presents a machine learning approach to
question classification. We developed a hierarchical
classifier that is guided by a layered semantic hier-
archy of answers types, and used it to classify ques-
tions into fine-grained classes. Our experimental re-
sults prove that the question classification problem
can be solved quite accurately using a learning ap-
proach, and exhibit the benefits of features based on
semantic analysis.

In future work we plan to investigate further the
application of deeper semantic analysis (including
better named entity and semantic categorization) to
feature extraction, automate the generation of the
semantic features and develop a better understand-
ing to some of the learning issues involved in the
difference between a flat and a hierarchical classi-
fier.
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