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Abstract 

Broad-coverage lexical resources such as 
WordNet are extremely useful. However, 
they often include many rare senses while 
missing domain-specific senses. We present 
a clustering algorithm called CBC (Cluster-
ing By Committee) that automatically 
discovers concepts from text. It initially 
discovers a set of tight clusters called 
committees that are well scattered in the 
similarity space. The centroid of the 
members of a committee is used as the 
feature vector of the cluster. We proceed by 
assigning elements to their most similar 
cluster. Evaluating cluster quality has 
always been a difficult task. We present a 
new evaluation methodology that is based 
on the editing distance between output 
clusters and classes extracted from WordNet 
(the answer key). Our experiments show that 
CBC outperforms several well-known 
clustering algorithms in cluster quality. 

1 Introduction 
Broad-coverage lexical resources such as 
WordNet are extremely useful in applications 
such as Word Sense Disambiguation (Leacock, 
Chodorow, Miller 1998) and Question-
Answering (Pasca and Harabagiu 2001). 
However, they often include many rare senses 
while missing domain-specific senses. For 
example, in WordNet, the words dog, computer 
and company all have a sense that is a hyponym 
of person. Such rare senses make it difficult for 
a coreference resolution system to use WordNet 
to enforce the constraint that personal pronouns 
(e.g. he or she) must refer to a person. On the 
other hand, WordNet misses the user-interface-
object sense of the word dialog (as often used in 
software manuals). One way to deal with these 
problems is to use a clustering algorithm to 

automatically induce semantic classes (Lin and 
Pantel 2001). 

Many clustering algorithms represent a cluster 
by the centroid of all of its members (e.g., K-
means) (McQueen 1967) or by a representative 
element (e.g., K-medoids) (Kaufmann and 
Rousseeuw 1987). When averaging over all 
elements in a cluster, the centroid of a cluster 
may be unduly influenced by elements that only 
marginally belong to the cluster or by elements 
that also belong to other clusters. For example, 
when clustering words, we can use the contexts 
of the words as features and group together the 
words that tend to appear in similar contexts. For 
instance, U.S. state names can be clustered this 
way because they tend to appear in the following 
contexts: 
(List A) ___ appellate court campaign in ___ 

 ___ capital governor of ___ 
 ___ driver's license illegal in ___ 
 ___ outlaws sth. primary in ___ 
 ___'s sales tax senator for ___ 

If we create a centroid of all the state names, the 
centroid will also contain features such as: 
(List B) ___'s airport archbishop of ___ 

 ___'s business district fly to ___ 
 ___'s mayor mayor of ___ 
 ___'s subway outskirts of ___ 

because some of the state names (like New York 
and Washington) are also names of cities. 

Using a single representative from a cluster 
may be problematic too because each individual 
element has its own idiosyncrasies that may not 
be shared by other members of the cluster. 

In this paper, we propose a clustering algo-
rithm, CBC (Clustering By Committee), in 
which the centroid of a cluster is constructed by 
averaging the feature vectors of a subset of the 
cluster members. The subset is viewed as a 
committee that determines which other elements 
belong to the cluster. By carefully choosing 
committee members, the features of the centroid 
tend to be the more typical features of the target 



 

 

class. For example, our system chose the 
following committee members to compute the 
centroid of the state cluster: Illinois, Michigan, 
Minnesota, Iowa, Wisconsin, Indiana, Nebraska 
and Vermont. As a result, the centroid contains 
only features like those in List A. 

Evaluating clustering results is a very difficult 
task. We introduce a new evaluation methodol-
ogy that is based on the editing distance between 
output clusters and classes extracted from 
WordNet (the answer key). 

2 Previous Work 
Clustering algorithms are generally categorized 
as hierarchical and partitional. In hierarchical 
agglomerative algorithms, clusters are 
constructed by iteratively merging the most 
similar clusters. These algorithms differ in how 
they compute cluster similarity. In single-link 
clustering, the similarity between two clusters is 
the similarity between their most similar 
members while complete-link clustering uses the 
similarity between their least similar members. 
Average-link clustering computes this similarity 
as the average similarity between all pairs of 
elements across clusters. The complexity of 
these algorithms is O(n2logn), where n is the 
number of elements to be clustered (Jain, Murty, 
Flynn 1999).  

Chameleon is a hierarchical algorithm that 
employs dynamic modeling to improve 
clustering quality (Karypis, Han, Kumar 1999). 
When merging two clusters, one might consider 
the sum of the similarities between pairs of 
elements across the clusters (e.g. average-link 
clustering). A drawback of this approach is that 
the existence of a single pair of very similar 
elements might unduly cause the merger of two 
clusters. An alternative considers the number of 
pairs of elements whose similarity exceeds a 
certain threshold (Guha, Rastogi, Kyuseok 
1998). However, this may cause undesirable 
mergers when there are a large number of pairs 
whose similarities barely exceed the threshold. 
Chameleon clustering combines the two 
approaches. 

K-means clustering is often used on large data 
sets since its complexity is linear in n, the 
number of elements to be clustered. K-means is 
a family of partitional clustering algorithms that 
iteratively assigns each element to one of K 
clusters according to the centroid closest to it 
and recomputes the centroid of each cluster as 
the average of the cluster�s elements. K-means 

has complexity O(K×T×n) and is efficient for 
many clustering tasks. Because the initial 
centroids are randomly selected, the resulting 
clusters vary in quality. Some sets of initial 
centroids lead to poor convergence rates or poor 
cluster quality. 

Bisecting K-means (Steinbach, Karypis, 
Kumar 2000), a variation of K-means, begins 
with a set containing one large cluster consisting 
of every element and iteratively picks the largest 
cluster in the set, splits it into two clusters and 
replaces it by the split clusters. Splitting a cluster 
consists of applying the basic K-means 
algorithm α times with K=2 and keeping the 
split that has the highest average element-
centroid similarity. 

Hybrid clustering algorithms combine 
hierarchical and partitional algorithms in an 
attempt to have the high quality of hierarchical 
algorithms with the efficiency of partitional 
algorithms. Buckshot (Cutting, Karger, 
Pedersen, Tukey 1992) addresses the problem of 
randomly selecting initial centroids in K-means 
by combining it with average-link clustering. 
Buckshot first applies average-link to a random 
sample of n  elements to generate K clusters. It 
then uses the centroids of the clusters as the 
initial K centroids of K-means clustering. The 
sample size counterbalances the quadratic 
running time of average-link to make Buckshot 
efficient: O(K×T×n + nlogn). The parameters K 
and T are usually considered to be small 
numbers.  

3 Word Similarity 
Following (Lin 1998), we represent each word 
by a feature vector. Each feature corresponds to 
a context in which the word occurs. For 
example, �threaten with __� is a context. If the 
word handgun occurred in this context, the 
context is a feature of handgun. The value of the 
feature is the pointwise mutual information 
(Manning and Schütze 1999 p.178) between the 
feature and the word. Let c be a context and 
Fc(w) be the frequency count of a word w 
occurring in context c. The pointwise mutual 
information between c and w is defined as: 
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counts of all words and their contexts. A well-
known problem with mutual information is that 
it is biased towards infrequent words/features. 
We therefore multiplied miw,c with a discounting 
factor: 

( )
( )

( ) ( )

( ) ( ) 1
1

+

















×
+

∑ ∑

∑ ∑

i j
ci

i j
ci

c

c

jF,wFmin

jF,wFmin

wF
wF  

We compute the similarity between two words 
wi and wj using the cosine coefficient (Salton and 
McGill 1983) of their mutual information 
vectors: 
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4 CBC Algorithm 
CBC consists of three phases. In Phase I, we 
compute each element�s top-k similar elements. 
In our experiments, we used k = 20. In Phase II, 
we construct a collection of tight clusters, where 
the elements of each cluster form a committee. 
The algorithm tries to form as many committees 
as possible on the condition that each newly 
formed committee is not very similar to any 
existing committee. If the condition is violated, 
the committee is simply discarded. In the final 
phase of the algorithm, each element is assigned 
to its most similar cluster. 

4.1. Phase I: Find top-similar elements 
Computing the complete similarity matrix 
between pairs of elements is obviously 
quadratic. However, one can dramatically reduce 
the running time by taking advantage of the fact 
that the feature vector is sparse. By indexing the 
features, one can retrieve the set of elements that 
have a given feature. To compute the top similar 
words of a word w, we first sort w’s features 
according to their mutual information with w. 
We only compute pairwise similarities between 
w and the words that share a high mutual 
information feature with w. 

4.2. Phase II: Find committees 
The second phase of the clustering algorithm 
recursively finds tight clusters scattered in the 
similarity space. In each recursive step, the 

algorithm finds a set of tight clusters, called 
committees, and identifies residue elements that 
are not covered by any committee. We say a 
committee covers an element if the element�s 
similarity to the centroid of the committee 
exceeds some high similarity threshold. The 
algorithm then recursively attempts to find more 
committees among the residue elements. The 
output of the algorithm is the union of all 
committees found in each recursive step. The 
details of Phase II are presented in Figure 1. 

In Step 1, the score reflects a preference for 
bigger and tighter clusters. Step 2 gives 
preference to higher quality clusters in Step 3, 
where a cluster is only kept if its similarity to all 
previously kept clusters is below a fixed 
threshold. In our experiments, we set θ1 = 0.35. 

Input: A list of elements E to be clustered, a 
similarity database S from Phase I, thresh-
olds θ1 and θ2. 

Step 1: For each element e ∈ E 
  Cluster the top similar elements of e from S 

using average-link clustering. 
  For each cluster discovered c compute the 

following score: |c| × avgsim(c), where 
|c| is the number of elements in c and 
avgsim(c) is the average pairwise simi-
larity between elements in c. 

  Store the highest-scoring cluster in a list L. 
Step 2: Sort the clusters in L in descending order of 

their scores. 

Step 3: Let C be a list of committees, initially 
empty. 

  For each cluster c ∈ L in sorted order 
  Compute the centroid of c by averaging the 

frequency vectors of its elements and 
computing the mutual information vector 
of the centroid in the same way as we did 
for individual elements.  

  If c�s similarity to the centroid of each 
committee previously added to C is be-
low a threshold θ1, add c to C. 

Step 4: If C is empty, we are done and return C. 

Step 5: For each element e ∈ E 
  If e�s similarity to every committee in C is 

below threshold θ2, add e to a list of resi-
dues R.   

Step 6: If R is empty, we are done and return C. 
  Otherwise, return the union of C and the 

output of a recursive call to Phase II us-
ing the same input except replacing E 
with R. 

Output: A list of committees. 

Figure 1. Phase II of CBC. 



 

 

Step 4 terminates the recursion if no committee 
is found in the previous step. The residue 
elements are identified in Step 5 and if no 
residues are found, the algorithm terminates; 
otherwise, we recursively apply the algorithm to 
the residue elements. 

Each committee that is discovered in this 
phase defines one of the final output clusters of 
the algorithm. 

4.3. Phase III: Assign elements to clusters 
In Phase III, every element is assigned to the 
cluster containing the committee to which it is 
most similar. This phase resembles K-means in 
that every element is assigned to its closest 
centroid. Unlike K-means, the number of 
clusters is not fixed and the centroids do not 
change (i.e. when an element is added to a 
cluster, it is not added to the committee of the 
cluster). 

5 Evaluation Methodology 
Many cluster evaluation schemes have been 
proposed. They generally fall under two 
categories: 

• comparing cluster outputs with manually 
generated answer keys (hereon referred to 
as classes); or 

• embedding the clusters in an application 
and using its evaluation measure. 

An example of the first approach considers the 
average entropy of the clusters, which measures 
the purity of the clusters (Steinbach, Karypis, 
and Kumar 2000). However, maximum purity is 
trivially achieved when each element forms its 
own cluster. An example of the second approach 
evaluates the clusters by using them to smooth 
probability distributions (Lee and Pereira 1999). 

Like the entropy scheme, we assume that there 
is an answer key that defines how the elements 
are supposed to be clustered. Let C be a set of 
clusters and A be the answer key. We define the 
editing distance, dist(C, A), as the number of 
operations required to make C consistent with A. 
We say that C is consistent with A if there is a 
one to one mapping between clusters in C and 
the classes in A such that for each cluster c in C, 
all elements of c belong to the same class in A. 
We allow two editing operations: 

• merge two clusters; and 
• move an element from one cluster to 

another. 

Let B be the baseline clustering where each 
element is its own cluster. We define the quality 
of a set of clusters C as follows: 

( )
( )ABdist

ACdist
,
,1−  

Suppose the goal is to construct a clustering 
consistent with the answer key. This measure 
can be interpreted as the percentage of 
operations saved by starting from C versus 
starting from the baseline.  

We aim to construct a clustering consistent 
with A as opposed to a clustering identical to A 
because some senses in A may not exist in the 
corpus used to generate C. In our experiments, 
we extract answer classes from WordNet. The 
word dog belongs to both the Person and Animal 
classes. However, in the newspaper corpus, the 
Person sense of dog is at best extremely rare. 
There is no reason to expect a clustering 
algorithm to discover this sense of dog. The 
baseline distance dist(B, A) is exactly the 
number of elements to be clustered. 

We made the assumption that each element 
belongs to exactly one cluster. The transforma-
tion procedure is as follows: 

1. Suppose there are m classes in the answer 
key. We start with a list of m empty sets, 
each of which is labeled with a class in the 
answer key. 

2. For each cluster, merge it with the set 
whose class has the largest number of 
elements in the cluster (a tie is broken 
arbitrarily). 

3. If an element is in a set whose class is not 
the same as one of the element�s classes, 
move the element to a set where it be-
longs. 

dist(C, A) is the number of operations performed 
using the above transformation rules on C. 

a
b
e

c
d
e

a
c
d

b e

b

a
c
d
e

a
b

c
d
e

A) B)

C) D) E)

Figure 2. An example of applying the transformation rules 
to three clusters. A) The classes in the answer key; B) the 
clusters to be transformed; C) the sets used to reconstruct 
the classes (Rule 1); D) the sets after three merge 
operations (Step 2); E) the sets after one move operation 
(Step 3). 



 

 

Figure 2 shows an example. In D) the cluster 
containing e could have been merged with either 
set (we arbitrarily chose the second). The total 
number of operations is 4. 

6 Experimental Results 
We generated clusters from a news corpus using 
CBC and compared them with classes extracted 
from WordNet (Miller 1990). 

6.1. Test Data 
To extract classes from WordNet, we first 
estimate the probability of a random word 
belonging to a subhierarchy (a synset and its 
hyponyms). We use the frequency counts of 
synsets in the SemCor corpus (Landes, Leacock, 
Tengi 1998) to estimate the probability of a 
subhierarchy. Since SemCor is a fairly small 
corpus, the frequency counts of the synsets in 
the lower part of the WordNet hierarchy are very 
sparse. We smooth the probabilities by assuming 
that all siblings are equally likely given the 
parent. A class is then defined as the maximal 
subhierarchy with probability less than a 
threshold (we used e-2). 

We used Minipar 1  (Lin 1994), a broad-
coverage English parser, to parse about 1GB 
(144M words) of newspaper text from the TREC 
collection (1988 AP Newswire, 1989-90 LA 
Times, and 1991 San Jose Mercury) at a speed 
of about 500 words/second on a PIII-750 with 
512MB memory. We collected the frequency 
counts of the grammatical relationships 
(contexts) output by Minipar and used them to 
compute the pointwise mutual information 
values from Section 3. The test set is constructed 
by intersecting the words in WordNet with the 
nouns in the corpus whose total mutual 
information with all of its contexts exceeds a 
threshold m. Since WordNet has a low coverage 
of proper names, we removed all capitalized 
nouns. We constructed two test sets: S13403 
consisting of 13403 words (m = 250) and S3566 
consisting of 3566 words (m = 3500). We then 
removed from the answer classes the words that 
did not occur in the test sets. Table 1 summa-
rizes the test sets. The sizes of the WordNet 
classes vary a lot. For S13403 there are 99 classes 
that contain three words or less and the largest 
class contains 3246 words. For S3566, 78 classes 
have three or less words and the largest class 
contains 1181 words. 

                                                 
1Available at www.cs.ualberta.ca/~lindek/minipar.htm. 

6.2. Cluster Evaluation 
We clustered the test sets using CBC and the 
clustering algorithms of Section 2 and applied 
the evaluation methodology from the previous 
section. Table 2 shows the results. The columns 
are our editing distance based evaluation 
measure. Test set S3566 has a higher score for all 
algorithms because it has a higher number of 
average features per word than S13403. 

For the K-means and Buckshot algorithms, we 
set the number of clusters to 250 and the 
maximum number of iterations to 8. We used a 
sample size of 2000 for Buckshot. For the 
Bisecting K-means algorithm, we applied the 
basic K-means algorithm twice (α = 2 in Section 
2) with a maximum of 8 iterations per split. Our 
implementation of Chameleon was unable to 
complete clustering S13403 in reasonable time due 
to its time complexity.  

Table 2 shows that K-means, Buckshot and 
Average-link have very similar performance. 
CBC outperforms all other algorithms on both 
data sets.  

6.3. Manual Inspection 
Let c be a cluster and wn(c) be the WordNet 
class that has the largest intersection with c. The 
precision of c is defined as: 

Table 1. A description of the test sets in our experiments.

DATA 
SET 

TOTAL 
WORDS 

m Average # 
of Features 

TOTAL 
CLASSES 

S13403 13403 250 740.8 202 

S3566 3566 3500 2218.3 150 

 

Table 1. A description of the test sets in our experiments.

DATA 
SET 

TOTAL 
WORDS 

M Avg. Features 
per Word 

TOTAL 
CLASSES 

S13403 13403 250 740.8 202 

S3566 3566 3500 2218.3 150 

 

Table 2. Cluster quality (%) of several clustering 
algorithms on the test sets. 

ALGORITHM S13403 S3566 

CBC 60.95 65.82 

K-means (K=250) 56.70 62.48 

Buckshot 56.26 63.15 

Bisecting K-means  43.44 61.10 

Chameleon n/a 60.82 

Average-link 56.26 62.62 

Complete-link 49.80 60.29 

Single-link 20.00 31.74 
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CBC discovered 943 clusters. We sorted them 
according to their precision. Table 3 shows five 
of the clusters evenly distributed according to 
their precision ranking along with their Top-15 
features with highest mutual-information. The 
words in the clusters are listed in descending 
order of their similarity to the cluster centroid. 
For each cluster c, we also include wn(c). The 
underlined words are in wn(c). The first cluster 
is clearly a cluster of firearms and the second 
one is of pests. In WordNet, the word pest is 
curiously only under the person hierarchy. The 
words stopwatch and houseplant do not belong 
to the clusters but they have low similarity to 
their cluster centroid. The third cluster 
represents some kind of control. In WordNet, the 
legal power sense of jurisdiction is not a 
hyponym of social control as are supervision, 
oversight and governance. The fourth cluster is 
about mixtures. The words blend and mix as the 
event of mixing are present in WordNet but not 
as the result of mixing. The last cluster is about 
consumers. Here is the consumer class in 
WordNet 1.5: 

addict, alcoholic, big spender, buyer, client, 
concert-goer, consumer, customer, cutter, diner, 
drinker, drug addict, drug user, drunk, eater, 
feeder, fungi, head, heroin addict, home buyer, 
junkie, junky, lush, nonsmoker, patron, policy-
holder, purchaser, reader, regular, shopper, 
smoker, spender, subscriber, sucker, taker, user, 
vegetarian, wearer 

In our cluster, only the word client belongs to 
WordNet�s consumer class. The cluster is ranked 
very low because WordNet failed to consider 
words like patient, tenant and renter as 
consumers.  

Table 3 shows that even the lowest ranking 
CBC clusters are fairly coherent. The features 
associated with each cluster can be used to 
classify previously unseen words into one or 
more existing clusters. 

Table 4 shows the clusters containing the word 
cell that are discovered by various clustering 
algorithms from S13403. The underlined words 
represent the words that belong to the cell class 
in WordNet. The CBC cluster corresponds 
almost exactly to WordNet�s cell class. K-means 
and Buckshot produced fairly coherent clusters. 
The cluster constructed by Bisecting K-means is 
obviously of inferior quality. This is consistent 
with the fact that Bisecting K-means has a much 
lower score on S13403 compared to CBC, K-
means and Buckshot. 

Table 3. Five of the 943 clusters discovered by CBC from S13403 along with their features with top-15 highest mutual 
information and the WordNet classes that have the largest intersection with each cluster. 

RANK MEMBERS TOP-15 FEATURES wn(c) 

1 handgun, revolver, shotgun, pistol, rifle, 
machine gun, sawed-off shotgun, 
submachine gun, gun, automatic pistol, 
automatic rifle, firearm, carbine, 
ammunition, magnum, cartridge,  
automatic, stopwatch 

__ blast, barrel of __ , brandish __, fire __, point __, 
pull out __, __ discharge, __ fire, __ go off, arm with 
__, fire with __, kill with __, open fire with __, shoot 
with __, threaten with __ 

artifact / artifact 

236 whitefly, pest, aphid, fruit fly, termite, 
mosquito, cockroach, flea, beetle, killer 
bee, maggot, predator, mite, houseplant, 
cricket 

__ control, __ infestation, __ larvae, __ population, 
infestation of __, specie of __, swarm of __ , attract 
__, breed __, eat __, eradicate __, feed on __, get rid 
of __, repel __, ward off __ 

animal / animate being / 
beast / brute / creature / 
fauna 

471 supervision, discipline, oversight, 
control, governance, decision making, 
jurisdiction 

breakdown in __, lack of __ , loss of __, assume __, 
exercise __, exert __, maintain __, retain __, seize __, 
tighten __, bring under __, operate under __, place 
under __, put under __, remain under __ 

act / human action / 
human activity 

706 blend, mix, mixture, combination, 
juxtaposition, combine, amalgam, 
sprinkle, synthesis, hybrid, melange 

dip in __, marinate in __, pour in __, stir in __, use in 
__, add to __, pour __, stir __, curious __, eclectic __, 
ethnic __, odd __, potent __, unique __, unusual __ 

group / grouping 

941 employee, client, patient, applicant,  
tenant, individual, participant, renter, 
volunteer, recipient, caller, internee, 
enrollee, giver 

benefit for __, care for __, housing for __, benefit to 
__, service to __, filed by __, paid by __, use by __, 
provide for __, require for --, give to __, offer to __, 
provide to __, disgruntled __, indigent __ 

worker 

 



 

 

7 Conclusion 
We presented a clustering algorithm, CBC, for 
automatically discovering concepts from text. It 
can handle a large number of elements, a large 
number of output clusters, and a large sparse 
feature space. It discovers clusters using well-
scattered tight clusters called committees. In our 
experiments, we showed that CBC outperforms 
several well known hierarchical, partitional, and 
hybrid clustering algorithms in cluster quality. 
For example, in one experiment, CBC 
outperforms K-means by 4.25%. 

By comparing the CBC clusters with WordNet 
classes, we not only find errors in CBC, but also 
oversights in WordNet. 

Evaluating cluster quality has always been a 
difficult task. We presented a new evaluation 
methodology that is based on the editing 
distance between output clusters and classes 
extracted from WordNet (the answer key). 
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Table 4. The clusters representing the cell concept for several clustering algorithms using S13403. 

ALGORITHMS CLUSTERS THAT HAVE THE LARGEST INTERSECTION WITH THE WORDNET CELL CLASS. 

CBC white blood cell, red blood cell, brain cell, cell, blood cell, cancer cell, nerve cell, embryo, neuron 

K-means cadaver, meteorite, secretion, receptor, serum, handwriting, cancer cell, thyroid, body part, hemoglobin, red blood 
cell, nerve cell, urine, gene, chromosome, embryo, plasma, heart valve, saliva, ovary, white blood cell, intestine, 
lymph node, sperm, heart, colon, cell, blood, bowel, brain cell, central nervous system, spinal cord, blood cell, 
cornea, bladder, prostate, semen, brain, spleen, organ, nervous system, pancreas, tissue, marrow, liver, lung, 
marrow, kidney 

Buckshot cadaver, vagina, meteorite, human body, secretion, lining, handwriting, cancer cell, womb, vein, bloodstream, 
body part, eyesight, polyp, coronary artery, thyroid, membrane, red blood cell, plasma, gene, gland, embryo, 
saliva, nerve cell, chromosome, skin, white blood cell, ovary, sperm, uterus, blood, intestine, heart, spinal cord, 
cell, bowel, colon, blood vessel, lymph node, brain cell, central nervous system, blood cell, semen, cornea, 
prostate, organ, brain, bladder, spleen, nervous system, tissue, pancreas, marrow, liver, lung, bone marrow, kidney 

Bisecting K-means picket line, police academy, sphere of influence, bloodstream, trance, sandbox, downtown, mountain, camera, 
boutique, kitchen sink, kiln, embassy, cellblock, voting booth, drawer, cell, skylight, bookcase, cupboard, 
ballpark, roof, stadium, clubhouse, tub, bathtub, classroom, toilet, kitchen, bathroom, 

WordNet Class blood cell, brain cell, cancer cell, cell, cone, egg, nerve cell, neuron, red blood cell, rod, sperm, white blood cell 
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