Natural Language Interpretations for Heterogeneous Database
Access

Hodong Lee and Jong C. Park
Computer Science Division and AlTrc
Korea Advanced Institute of Science and Technology
373-1 Gusung-dong, Yusong-gu, Daejon 305-701, South KOREA
{hdlee,park}@nlp.kaist.ac.kr

Abstract

In order to query into diverse types of databases
and to integrate the resulting information, dispersed
throughout the network in a specific domain, we
must address complex problems due primarily to
heterogeneity of the involved databases. In this pa-
per, we propose to model access to heterogeneous
databases, by interpreting natural language queries
into queries in formal languages such as SQL, OQL,
and CPL by accounting for various language-specific
constructions including join relations, path expres-
sions, and object bindings with domain resources
and a common lexicon, in a combinatory categorial
grammar framework. !

1 Introduction

Natural language database interfaces (NLDBs) are
designed to free the user of the burden of famil-
iarizing himself/herself with expressions of a formal
query language in consulting the database of inter-
est. They also free the user of the need to know
the specifics of the database, as the choice of for-
mal query languages is often tightly coupled with
the way in which the databases are organized (An-
droutsopoulos et al., 1995; Lee and Park, 2001b).

While information access to heterogeneous data
sources is an interesting issue in NLP fields such as
open-domain question and answering, information
retrieval and information extraction, there are com-
plex problems due primarily to heterogeneity (Wong,
2000). That is, the databases are usually dispersed
throughout the network in a specific domain as rela-
tional, object-oriented, object relational, temporal,
or other flat file databases.

In order to provide access to heterogeneous
databases, we propose to interpret natural language
queries into queries in formal languages such as SQL,
OQL, and CPL with a common natural language lex-
icon where SQL works for relational and object rela-
tional databases, OQL for object-oriented databases
(Cattell, 1996), and CPL for structured-data file sys-

I This work was supported by the Korea Science and En-
gineering Foundation (KOSEF) through AITrc.

tems (Paton et al., 1999; Wong, 2000). An example
query and its target interpretations are shown below:

1) (a) 314 A7) g HeE A7
(hoy-sayk cen-hwa-ki-lul man-du-nun hoy-sa-
myeng-un?)?
What are the names of companies which produce
gray-colored telephone sets?
(b) SELECT company.name
FROM product, category, company
WHERE product.catid=category.catid
and product.cid=company.cid
and product.color=‘gray’
and category.catname=‘phone’
(c) SELECT com.name
FROM p in product, cat in p.catid,
com in p.cid
WHERE p.color=‘gray’ and
cat.catname=‘phone’
(d) { z.#name | \x <- product,
\y <- x.#category, \z <- x.#company,
x.#color="gray", y.#catname="phone"}

For the natural language query la, examples 1b,
lc, and 1d correspond to SQL, OQL, and CPL
queries, respectively. In this example, query la is
interpreted as ‘a set of names of companies which
produce the telephone sets in gray color’ and repre-
sented in the first order notation with implicit quan-
tifiers as shown below.

(2) nameof(X,Y) A company(X) A productof(X,Z) A
phone(Z) A colorof(Z, gray)

While this meaning seems to be specific enough, it
is nevertheless difficult to represent such meanings
in database languages without any loss of seman-
tics due to their differences in expressive power and
inherent semantic limitation of a particular query
language. In this paper, we propose to address this
problem by utilizing the common lexical resource in
interpreting natural language queries into queries in
formal languages that show differences in the syn-
tax, semantics and language paradigm. Due to these
differences, the correct interpretation often requires

2The Yale transcription of a Korean query is shown in
parentheses.

a different modeling of the syntactic and semantic
mapping for the parsed information into the cor-
responding database languages. For example, re-
lations such as ‘company(X) A productof(X,Z) N
phone(Z)’ in 2 is modeled as the join relations for
SQL’s select syntax (in 1b), path expressions for
OQL (in 1c) and object bindings for CPL’s set no-
tation (in 1d). We will discuss more complex inter-
pretations later.

In the present proposal, we make use of a combi-
natory categorial grammar (CCQG) framework for the
interpretation of natural language query expressions
such as subject ellipsis, noun phrases, numerical ex-
pressions, coordination, and subordination into the
corresponding SQL queries (Lee and Park, 2001b).
This framework is portable and extensible to other
database languages and logical forms using the fea-
tures of CCG that is well known to provide a means
of deriving all the levels of information for natu-
ral language, i.e., syntax, semantics and discourse,
at the same time (Steedman, 2000; Lee and Park,
2001a). These features are enough to provide a
simple, straitforward and modular translation with
transparent CCG derivation (Lee and Park, 2001a).

First, we discuss problems in handling queries to
heterogeneous databases. Among these problems,
we focus in particular on interpretations of natu-
ral language queries into queries in formal languages
such as SQL, OQL, and CPL in a CCG framework.
In this process, we explain our method for repre-
senting natural language query in each database lan-
guage, using features such as join relations, path ex-
pressions, object bindings and other formal language
constructions, with a linguistic concern for the cor-
rect translation.

The rest of the paper is organized as follows.
Some recent natural language database interfaces
(NLDBs) will be discussed in Section 2. We discuss
problems for heterogeneous databases in Section 3.
Section 4 describes interpretations to formal query
languages, i.e., SQL, OQL, and CPL. Section 5 de-
scribes our implemented system and results of our
experiment. In Section 6, we discuss implications to
our work.

2 Related Work

In this section, we show a brief introduction to CCG
and NLDBs for various database languages.

2.1 Combinatory Categorial Grammar

Combinatory Categorial Grammars (CCGs) are
combinatory extensions to the categorial grammars
(Steedman, 2000). CCGs are among the lexicalized
grammars, such as linear indexed grammars and tree
adjoining grammars, and are known to provide a
wide linguistic coverage and a way of processing sen-
tences incrementally.

[Rule [Rule Name (Symbol) |
X/Y Y — X Forward Application (>)
Y X\Y - X Backward Application (<)
X conj X —=X Coordination (< ¢" >)
X/Y Y/Z — X/Z | Forward Composition (> B)
Y\Z X\Y — X\Z | Backward Composition (< B)
X/Y Y\Z — X\Z | Forward Crossed Comp. (> B:)
X — T/(T\X) Forward Type Raising (> T)
X — T\(T/X) Backward Type Raising (< T)

Table 1: CCG Rules for Korean

| System | DB | Grammar | Target Language |
KID OODB DCG OQL
TAMIC-P RDB CFG SQL
NLTDB TDB HPSG TSQL2
QWERTY TDB TLG SQL/Temporal
NChiql RDB DG SQL
N/S RDB CCG SQL

Table 2: Approaches to NLDB

Table 1 shows the CCG reduction rules proposed
for Korean (Park and Cho, 2000). Reduction rules
for English are similarly defined (Steedman, 2000).

3) 3N AN e A=ty 3 A7
np/np np (np/np)\np np
np >
np/np

>

np

Example 3 shows the CCG derivation for the
example query la with syntactic categories alone.
Modifiers such as ‘FF=3’ that work in a way
similar to relative clauses in English but form a
noun phrase instead, are assigned the category
(np/np)\np, which receives a phrase of category np
on its left (the third np; the directionality is indi-
cated by the backslash \, that is, to the left) and
then receives another np on its right (the second np;
the directionality is indicated by the slash /, that is,
to the right), to give rise to the phrase of category
np.2 Such computation is done by simple function
applications.

2.2 Heterogeneous Database Interfaces

There have been much effort on developing such
NLDBs since the 1960’s (Androutsopoulos et al.,
1995). Some of the recent proposals are summarized
in Table 2. In this section, we review them briefly.

The KID (Chae and Lee, 1998) system transforms
parse trees into OQL queries using syntactic pat-
terns that are manually constructed from a sample
query corpus. This system generates frame struc-
tures containing the object path for the computation
of a path expression.

The NLTDB (Androutsopoulos et al., 1998) and
QWERTY (Nelken and Francez, 2000) systems focus

3np is a shorthand for “noun phrase”.

on queries with temporal expressions, with a special-
ized semantic representation language that can han-
dle temporality. Example queries are shown below.

(4) Did any flight circle while runway 2 was open?
Which companies serviced BA737 in 19907
During which years did Mary work in marketing?

The NChigl (Meng et al., 2001) system and the
system proposed by (Lee and Park, 2001b) trans-
late natural language queries into SQL statements
based on extracted domain knowledge information
such as database entities, attributes and relation-
ships. (Meng et al., 2001) provides the query trans-
lating method with well-defined database semantics.
And (Lee and Park, 2001b) provides a tool that can
construct the lexicon automatically from database
and domain information.

The TAMIC-P (Klein et al., 1998) system inter-
prets noun phrase queries according to possibly dif-
ferent perspectives in the social insurance databases.
Example queries are shown below.

(5) Ersatzzeiten wegen Kindererziehung
Exemption times because of child raising

The system generates SQL statements for access
to heterogeneous databases with domain knowledge
which encodes a unified view of the domain data
and the hierarchy of concepts which can be deduced
from the databases and their relations (Matiasek et
al., 1999).

While the system can analyze noun phrases with
various adverbial phrases, it is not reported to be
able to analyze more complex noun phrase queries
such as those with subordinate or coordinate con-
structions, that are often observed in the queries
and handled by our system. In addition, our sys-
tem provides a more broad-scale access to heteroge-
neous databases by generating SQL, OQL, and CPL
queries, among others.

3 Access to Heterogeneous
Databases

There are several considerations that must be re-
solved in handling queries to databases (or data
sources) which are “high in volume, highly hetero-
geneous and complex, constantly evolving, and geo-
graphically dispersed” (Wong, 2000).

Diverse types of databases: There are dif-
ferent types of high-level query languages, such as
SQL, OQL, SQL/Temporal, and CPL. There are
also databases (or data repositories) which only pro-
vide low-level primitives for database access.

Different database information: For the gen-
eration of formal queries into a specific database,
the NLDB system must have information about
database specifics, such as location, database name
and type, supporting query language, table (or class)

and column (or attribute) names, their types, and
their structure. Thus the system requires methods
for integrating and managing the different informa-
tion, related to the multiple databases, in a manner
similar to that in the class hierarchy and Wordnet
(Matiasek et al., 1999).

Data in various languages: Since databases
may be geographically dispersed, the data can
also be written in diverse languages, which neces-
sitates multilingual query translation (Thompson
and Mooney, 1999; Matiasek et al., 1999; Lee and
Park, 2001a). In interpreting multilingual queries
to databases with domain information, the lexi-
cal selection must be dealt with word sense disam-
biguation (Palmer et al., 1999). (Lee and Park,
2001a) proposes a method for interpreting multilin-
gual queries by augmenting the translation dictio-
nary with database terminologies.

Large size of lexicon: In interpreting natural
language queries to multiple databases, the system
must handle large domain-specific lexical items ac-
cording to the database objects. For example, in
bioinformatics domain, there are more than a hun-
dred million journal abstracts including so many
protein names and author names. This problem
gives rise to the need for approximation methods
to deal with the large volume of domain-specific en-
tities. While the system can reduce the size of the
lexicon with this approximation, the lexicon could
be much larger if we need to deal with multiple
databases as well.

4 Interpretations to Database Query
Languages

In this section, we show interpretations and their
processing into query languages such as SQL, OQL,
and CPL with the same lexical entries. These lan-
guages can be directly translated from the parsed
result of CCG derivation which contains all the in-
formation required to generate queries in each formal
language. Our interpretation method is also exten-
sible to generate SQL/Temporal and its logical form
queries with temporality with slightly modified lex-
ical entries (Lee and Park, 2001a).

4.1 Representation of Lexical Entries

In CCGs, all the levels of information for natural
language, such as syntax, semantics, and discourse,
are integrated into the categorial lexicon as lexical
entries. The following shows example lexical entries
of a CCG for Korean.

(6) lex(®3t712, np:[-,category,category.catname="phone]).
lex(' 3|At=0l, np:[company.name,company,_]).
lex(&oteivy, s:[A,B,C]\np:[A,B,C]).

The lexical entry consists of a lexical item and
its CCG category. The CCG category is a pair of

34 A58

.
eEs

3Ag 27

np : [A, product& B, product.color np : [-, category, category.
catname = ‘phone’]

= ‘gray'&C]/np : [Aa B, C]

np : [A, D&B, E&C]/ np : [company.name
np:[A,B,C]\np: [, D, E] , company, -]

np : [,product&category,

product.color = ‘gray’&category.catname = ‘phone’]

np : [A, product&category& B, product.color = ‘gT(]zy'&category.catname = ‘phone’ &C|/

np:[A,B,C

>
np : [company.name, product&category&company, product.color = ‘gray’&category.catname = ‘phone’ &.]

Figure 1: A CCG Derivation of Example 1a

the syntactic and semantic information that are in-
terwoven in the following way. Elementary CCG
(syntactic) categories include np and s (and vp for
abbreviatory purposes), and CCG categories are re-
cursively defined as either X/Y or X\Y, where X
and Y are also CCG categories, including elementary
categories. Each elementary CCG (syntactic) cate-
gory X is augmented with an appropriate semantic
information Z so that the resulting form X : Z is a
CCG category (Steedman, 1996).

In our proposal, the semantic information is
encoded as a suitable fragment of SQL, OQL,
and CPL, with slots modeling query results, ta-
bles/collections against which query runs (collec-
tions indicate complex objects such as sets, bags
and lists of structured data), and query conditions*,
bracketed by ‘" and ‘. For example, in SQL state-
ment 1b, in the first entry in 6, ‘A 37] &’ is assigned
the syntactic category ‘np’ and the semantic infor-
mation which encodes the fact that the database
attribute ‘category.catname’ has the value ‘phone’
in the table for ‘category’. ‘category’ is described
in the FROM clause of SQL and ‘category=phone’
in the WHERE clause. In the second entry in 6,
‘company.name’ is encoded in the SELECT clause.
In the last entry in 6, the intransitive verb ‘g n}<l
7F (el-ma-in-ka) is taken to have ambiguous mean-
ings, including ‘what is the price of’, ‘what is the
amount of’, ‘how much is’, and the like. During the
parsing process, this kind of lexical ambiguity can
be resolved by accounting for the semantics such
as the SELECT clause information and condition
attributes in the WHERE clause. We encode syn-
onyms in order to refer to the representative entry
(Lee and Park, 2001b). For example, TV has syn-
onyms in Korean such as ‘& @] 8] A’ ‘| v]’, ‘gln)’,
‘Bl B.o]’, ‘television’, and so on. The lexical entry for
“T'V’ is described as in example 7a, and its synonym
‘elg) B] A’ as in example 7b. This ‘&l & v A’ refers
to the representative entry ‘TV’ via the tag ‘alias’
and the syntactic categories of “TV’ are assigned to
‘el m

(7) (a) lex(TV, np:[,category,category.catname="TV’]).

4We call each slot as SELECT, FROM and WHERE slot
for convenience. And all such information is commonly re-
quired in SQL, OQL, and CPL.

(b) lex(=au|H, alias:*TV’).

4.2 Interpretation into SQL Expressions

Example 1b is translated with the sample database
schema, which is a relational data model, consisting
of product, company, and category table. In ad-
dition to product information such as price, name,
color, product ID and size, product table has cat-
egory ID (i.e. catid) and company ID (i.e. cid)
which uniquely identify category and company of
corresponding products. Company table and cat-
egory table have, respectively, maker and class in-
formation of the product. Figure 1 shows a CCG
derivation of query 1la.

In the translation to SQL statement from the
resulting semantics in Figure 1, implicit join rela-
tions such as ‘product.catid = category.catid’ and
‘product.cid = company.cid’ have to be extracted
by checking FROM slot and added to the resulting
SQL statement. These implicit join relations are
extracted from relational database schema and en-
coded into domain knowledge as shown below.

(8) join(product, category, ‘product.catid=category.catid').
join(product, company, ‘product.cid=company.cid’).

In this manner, the system can parse more com-
plicated query sentences as in 9 with coordination
and subordination into the result semantics of CCG
derivation in 10.

(9) 29 el v A2 vlo] AN Y G E 7H7F 3 o)
A A 1A e drhg Huar
(29-in-chi theyl-ley-pi-cyen-kwa pa-i-o-sing-sing-nayng-
cang-ko-lul kak-kak han-day-ssik sa-myen ka-kyek-un el-
ma-na doy-na-yo?)
If (I) buy a 29-inch television set and Bio-Singsing re-
frigerator, what is the price for each of them?

(10) [product.price,product,cond[*,product&category, product.
size=29&category.catname="TV’]] and [product.price,
product,cond[*,product&category,product.name="‘Bio-
Singsing’&category.catname="refrigerator’]]

Sentences with coordination may usually be syn-
tactically and semantically ambiguous, and thus
have multiple candidate readings (Park and Cho,
2000). (Lee and Park, 2001b) provides the inter-
pretations, including the account for the ambiguity,
for the queries with coordination. In addition, we

can simply optimize the resulting statement. For
example, in interpreting queries with coordination,
if FROM and WHERE slots of translated seman-
tics have the same attributes and conditions, the re-
sult can be a single statement whose SELECT clause
contains the unified attributes from both SELECT
slots of the resulting semantics.

In semantics 10, the coordinate relation ‘and’ is
modeled as SQL function ‘UNION’ with intuitive
meaning. While the nested relation ‘cond’ repre-
sents additional conditions from the meaning for
subordinate item ‘%’, containing meanings like ‘if’
in English, of word ‘A}®’ in 9. This relation is im-
plemented as flattened up nested conditions except
when there are correlated conditions between self
referenced tables. Due to this relation, 10 can be
translated into SQL statement 11 without any nest-

ing.

(11) (SELECT product.price FROM product, category
WHERE product.catid=category.catid and
product.size=29 and category.catname="'TV")
UNION
(SELECT product.pricec FROM product, category
WHERE product.catid=category.catid and
product.name="'Bio-Singsing’
and category.catname="refrigerator’)

Nested relation ‘among’ from word markers, such
as ‘%’ (cwung) , ‘Fol’ (cwung-ey) and ‘7}2dl’ (ka-
wun-dey), which has meanings like ‘among’ in En-
glish, can be mapped to the set of results in nested
query, similar to SQL function ‘IN’. But ‘IN’ opera-
tor is not easily utilized due to the restrictions of ob-
ject types. ‘among’ would be mapped to ‘EXISTS’
instead of ‘IN’, which is, however, not the correct
mapping. In this case, since the expressive power of
SQL is not enough, i.e. with no support for recur-
sive structures in SQL92, it is difficult to translate
such natural language queries into SQL statements
correctly.

4.3 Interpretation into OQL Expressions

OQL is an SQL-like but its superset language for
object-oriented database. This language provides
object-oriented features, i.e., path expression, com-
plex object, polymorphism, operation invocation,
and so on.

OQL example 1c is translated with the schema
mentioned in the previous sample database for SQL
except that product class (which is known as table
in SQL) has the object reference for category (catid)
and company (cid) attribute. And each category and
company class do not contain category ID and com-
pany ID attribute. In this schema, OQL statement
1c is translated from the resulting semantics in Fig-
ure 1 by finding path expression for the object and
substituting the path to a renamed label. Since the
path expression encodes an implicit join relation in

SQL, OQL statement makes use of the path expres-
sion instead of join relation.

We locate this path from the domain knowledge
which can be extracted from reference relations of
the schema described in the object definition lan-
guage. The extracted domain knowledge can be de-
scribed as shown below.

(12) entry(product).
path(category, 'product.catid’).
path(company, 'product.cid’).

This resource encodes the query graph, which stands
for object reference structure for the database and
can be automatically generated by traversing the
graph from entry class. In the resource 12, entry(A)
predicate represents the entry point and the class A
has the path expression as the same name of class.
path(A, B) represents the fact that class A has the
path expression B. We explain the translation steps
as follows:

1. Sorting FROM slot of resulting semantics in the order
of classes described in 12. This order is written in a list.

2. With the resource 12, we replace each class in the sorted
FROM slot to path expression and define alias for the
path expression with binding operator ‘in’ as shown in
FROM clause of example 1c. Path expression of the
class described in path predicate in 12 is replaced with
pre-defined alias generated during this step.

3. We replace classes in SELECT and WHERE slots to
aliases. So we obtain the resulting OQL statement 1c.

This path expression is used for representing com-
plex object. For example, if we assume that category
class is embedded in product class as a set with-
out object reference (i.e. catid), we can obtain the
category information with the same path expression
shown above.

With the path expression, the example 10 can be
translated to the corresponding statement in a form
similar to OQL statement 1c¢ with the ‘UNION’ func-
tion. And since binding operator ‘in’ is used with
complex objects in OQL, if relation ‘cond’ in seman-
tics 10 is replaced into ‘among’, the result can be
correctly translated into OQL statement 13.

(13) (SELECT p.price FROM p in product WHERE a in
(SELECT pp FROM pp in product, cat in product.catid
WHERE pp.size=29 and cat.catname='TV’) and a=p)
UNION
(SELECT p1.price FROM p1 in product WHERE al in
(SELECT * FROM ppl in product, catl in product.catid
WHERE pl.name='Bio-Singsing’

and catl.catname="refrigerator’) and al=ppl)

4.4 Interpretation into CPL Expressions

CPL is a high-level query language providing access
to relational databases and databases composed of
structured data files. This is possible for the CPL’s
ability to represent complex objects. This feature

makes it possible for the system to query more gen-
eral databases. Representation of complex objects
in CPL is similar to path expression of OQL. But
CPL uses notations ‘<-’, ‘<--’, and ‘<---’, respec-
tively, for binding set, bag and list objects. Thus we
need to know the types of objects to translate into
CPL queries correctly.

Example 1d is translated with the schema mod-
eled as product table containing category and com-
pany field as a set of records instead of category
ID (catid) and company ID (cid) attributes in SQL
schema. For the interpretation into 1d, the domain
resource is described as in 14.

(14) cpl_entry(product).
cpl_field(category, 'product.category’, set).
cpl_field(company, 'product.company’, set).

This resource is extracted from the CPL data
model, describing database name and all the com-
plex objects such as set, bag and list in the database.
cpl_entry(A) represents database name and entry
point of the whole database regarded as a set of
records. cpl_field(A, B,C) represents field name A
with type C and path B from entry point. CPL
syntax uses set notation such as {S|C}; Set S corre-
sponds to SELECT part in SQL; Condition C corre-
sponds to FROM and WHERE parts. From the re-
sulting semantics in Figure 1, CPL statement can be
translated by following similar steps for OQL state-
ment except the set notation and using binding sym-
bol, i.e. ‘<=7, ‘<--7, and ‘<---".

Resulting semantics 10 can be translated into the
corresponding CPL statement shown below.

(15) let \a ==
{ x.#price | \x<-product, \y<-x.#category,
x.#size = 29, y.#catname = "TV"};
let \al ==
{ xil.#price | \xi<-product, \yi<-yl.#category,
x1.#name = "Bio-Singsing",
yl.#catname = "refrigerator"};
(union(a, al));

In 15, we are assuming that union(#1,#2) is a
pre-defined function like ‘UNION’. In CPL interpre-
tations, it is also possible to translate queries like 13
with a binding symbol.

5 Implementation

Figure 2 shows the implemented client/server system
architecture. The system is divided into three parts:
the query processing engine, the query generation
module, and the client (web/application) interaction
module.

The query processing engine is the core part for
interpreting natural language with a lexicon and
linguistic resources such as morphological analy-
sis, unknown words resolution and word class in-
ference for domain-related terminologies, for exam-
ple, product code in e-commerce domain and pro-

——

. DA
Client DG —
Web Browser Java Application

! !

Query Processing Engine
e

Web Application
Server Interaction «— B < Interaction
Module == Module
Query Generation Module
HSQL\ loaL| [cpL H
Network
End-DB RDBs ~ OODBs ORDBs _Stuctured

Data Sources :

Figure 2: System Architecture

tein name in bioinformatics domain. The query gen-
eration module directly translates the resulting se-
mantics from query processing engine into expres-
sions in target database languages such as SQL,
OQL, and CPL. The system generates the database
query with resources including syntactic information
of the database language and domain-specific knowl-
edge such as schema information and type/name of
databases. The client interaction module communi-
cates with a web-based or application-based clients
and delivers the results of the user’s query.

The server part of the system is implemented on
UNIX in SICStus Prolog, Java and C. With this
environment, we experiment the system with tar-
get database(s) composed of more than 30 thousand
data entries from the shopping-mall websites. We
have constructed the test corpus, with the help of
53 persons working on software-related issues, com-
posed of 297 valid queries that contain compound
nouns, some type of modifiers, various ellipses, nu-
merical expressions, subordination, and coordina-
tion (Lee and Park, 2001b).

The system marked 708.03 msec as the aver-
age translation time for the average query with 6.6
space-delimited lexical items on the SUN Enter-
prise 250 with 1 GB main memory. The system
was able to generate SQL expressions without any
missing conditions and relations from 256 queries
among 297 queries (i.e. precision 86.2%) with semi-
automatically constructed 900 thousand lexical en-
tries. Results from the remaining 41 queries are an-
alyzed to contain errors that are mainly due to un-
registered lexical entries in the domain, insufficient
semantic information of the involved lexical entries
and wrong categories described in the lexical enti-
ties. Lexical entries with insufficient semantics in-
clude special meanings in the domain such as the
comparison by the join database operator and fine-

grained semantics for the compound nouns.

We expect that these three types of errors can be
fully accounted for by expanding or modifying the
categorial lexicon. The problem of unregistered lex-
ical entries and wrong categories can also be dealt
with by adding and modifying the corresponding en-
tries to the lexicon, respectively. The problem of in-
sufficient semantics can also be addressed by encod-
ing the detailed semantics into the lexical entries,
but it appears that in such a case, the semantics
must be devised manually. Our system is expected
to generate over 90% of the correct expressions when
the lexicon is properly enhanced to contain no unreg-
istered lexical entries. The other type of errors is the
heuristic algorithm problem for product code iden-
tification during the stage of processing unknown
words. This problem can be partially resolved by
adding appropriate heuristic rules to the algorithm.

6 Discussion

In this work, we have described problems in inter-
preting the natural language queries to multiple het-
erogeneous databases and shown an implemented
system in a combinatory categorial grammar frame-
work (Lee and Park, 2001b). This system inter-
prets natural language queries to queries in SQL,
OQL, and CPL for a broad-scale access to the het-
erogeneous databases. The reason for choosing such
database languages is that SQL is the most popular
one and OQL is the ODMG standard language for
object-oriented database. CPL is used as the core
database query language for the Kleisli and TAMBIS
systems which are known as successful access mod-
els to multiple heterogeneous databases consisting
of mainly structured data sources in bioinformatics
domain (Paton et al., 1999; Wong, 2000).

Since CPL is not familiar to the general pub-
lic with a more mathematical style, these sys-
tems mainly provide form-based interfaces. While
there are limitations in the form-based interfaces for
highly complex data, natural language interfaces can
be combined with CPL in a mutually beneficial way.
Our system utilizes a query system like Kleisli, as
a kind of middleware, so that it can be applied to
many domains with heterogeneous data sources.

References

I. Androutsopoulos, G. D. Ritchie, and P. Thanisch.
1995. Natural Language Interfaces to Databases -
An Introduction. Natural Language Engineering,
1(1):29-81.

I. Androutsopoulos, G. D. Ritchie, and P. Thanisch.
1998. Time, Tense and Aspect in Natural Lan-
guage Database Interfaces. Natural Language En-
gineering, 4(3):229-276.

R. G. G. Cattell. 1996. The Object Database Stan-
dard: ODMG-93. Morgan Kaufmann.

J. Chae and S. Lee. 1998. Frame-based Decom-
position Method for Korean Natural Language
Query Processing. Computer Processing of Ori-
ental Languages, 11(4):353-379.

A. Klein, J. Matiasek, and H. Trost. 1998. The
treatment of noun phrase queries in a natural
language database access system. In COLING-
ACL’98 workshop on the computational treatment
of nominals, pages 39—45.

H. Lee and J. C. Park. 2001a. Automatic Augmen-
tation of Translation Dictionary with Database
Terminologies in Multilingual Query Interpreta-
tion. In ACL-EACL Workshop on Human Lan-
guage Technologies and Knowledge Management,
pages 113-120.

H. Lee and J. C. Park. 2001b. Translating Natural
Language Queries into Formal Language Queries
with Combinatory Categorial Grammar. In Inter-
national Conference on Computer Processing of
Oriental Languages, pages 41-46.

J. Matiasek, A. Klein, and H. Trost. 1999. TAMIC-
P: A System for NL Access to Social Insurance
Databases. In Applications of Natural Language
to Information Systems, pages 209-214.

X. Meng, S. Wang, and K. F. Wong. 2001. Overview
of A Chinese Natural Language Interface to
Databases: NChiql. Computer Processing of Ori-
ental Languages, 14(3):213-232.

R. Nelken and N. Francez. 2000. Querying Tem-
poral Databases Using Controlled Natural Lan-
guage. In COLING, pages 1076-1080.

M. Palmer, D. Egedi, C. Han, F. Xia, and
J. Rosenzweig. 1999. Constraining Lexical Se-
lection Across Languages Using Tree Adjoining
Grammars. In TAG+8 Workshop Proceedings,
CSLI volume.

J. C. Park and H. J. Cho. 2000. Informed Pars-
ing for Coordination with Combinatory Catego-
rial Grammar. In COLING, pages 593-599.

N. W. Paton, R. Stevens, P. G. Baker, C. A. Goble,
S. Bechhofer, and A. Brass. 1999. Query Process-
ing in the TAMBIS Bioinformatics Source Integra-
tion System. In 11th Int. Conf. on Scientific and
Statistical Databases (SSDBM), pages 138-147.

M. Steedman. 1996. Surface Structure and Inter-
pretation. Number 30 in Linguistic Inquiry Mono-
graphs. MIT Press.

M. Steedman. 2000. The Syntactic Process. MIT
Press.

C. A. Thompson and R. J. Mooney. 1999.
Automatic Construction of Semantic Lexicons
for Learning Natural Language Interfaces. In
AAAI/TAAI pages 487-493.

L. Wong. 2000. Kleisli, a Functional Query System.
Journal of Functional Programming, 10(1):19-56.

	Table of Content
	Topics
	Authors

