Rigid Lambek grammars are not learnable from strings

Annie Foret and Yannick Le Nir
IRISA Rennes, FRANCE

e-mail: foret@irisa.fr and ylenir@irisa.fr

Abstract

This paper is concerned with learning catego-
rial grammars in Gold’s model (Gold, 1967).
Recently, learning algorithms in this model
have been proposed for some particular class-
es of classical categorial grammars (Kanazawa,
1998).

We show that in contrast to classical categori-
al grammars, rigid and k-valued Lambek gram-
mars are not learnable from strings. This re-
sult holds for variants of Lambek calculus ; our
proof consists in the construction of limit points
in each class. Such a result aims at clarifying
the possible directions for future learning algo-
rithms.

1 Introduction

Categorial grammars have been studied in the
field of natural language processing, classical (or
basic) categorial grammars were introduced in
(Bar-Hillel, 1953) ; here we focus on Lambek
categorial grammars (Lambek, 1958) to which
linear logic introduced by Girard (Girard, 1995)
is closely connected. These grammars are lex-
icalized grammars that assign types (or cate-
gories) to the lexicon; they are called k-valued,
when each symbol in the lexicon is assigned to
at most k types; they are also called rigid when
1-valued. Such k-valued grammars are of par-
ticular interest in recent works on learnability
(Kanazawa, 1998) (Nicolas, 1999). The issue of
extending Kanazawa'’s work to other categorial
grammars has been raised and has become an
active area of research. In this context, it is im-
portant to acquire a good understanding of the
properties of the class of grammars in question.

In this paper we consider the following pro-
blem, is the class of rigid Lambek grammars
learnable from strings. Learning (in the sense
of Gold (Gold, 1967)) in our context is a sym-

bolic issue that may be described as follows. Let
G be a class of grammars, that we wish to learn
from examples. The issue is to define an algo-
rithm, that when applied to a finite set of sen-
tences, yields a grammar in the class that gener-
ates the examples; the algorithm is also required
to converge. Formally, let £(G) denote the lan-
guage associated with grammar G, and let V be
a given alphabet, a learning algorithm is a func-
tion ¢ from finite sets of words in V* to G, such
that for G € G with £(G) = (e;)ien there exists
a grammar G’ € G and there exists ng € N such
that : VYn > ng ¢({e1,...,en}) = G' € G with
L(G") = L(G).

One good reason to use categorial grammars
in a learning perspective is that they are fully
lexicalized : the rules are already known, only
types assigned to words have to be derived from
examples.

The paper is organized as follows. Section 2
addresses background definition and known re-
sults. We then proceed from one version of
Lambek calculus to the other. Section 3 gives
the initial construction and proof for Lambek
calculus allowing empty sequences. Section 4
adresses the construction for Lambek calcu-
lus without empty sequence including products.
Section 5 concludes.

2 Background

2.1 Categorial grammars

In this section, we introduce basic definitions
concerning categorial grammars. The interested
reader may also consult (Casadio, 1988; Retoré,
2000; Buszkowski, 1997; Moortgat, 1997) for an
introduction or for further details.

Let 3 be a fixed alphabet.

Types. Types are constructed from Pr (set of
primitive types) and three binary connectives

/, \ and e for products. Tp denotes the
set of types. Pr contains a distinguished type,
written S, also called the principal type.

Categorial grammar. A categorial grammar
over ¥ is a finite relation G between 3 and T'p.
If < ¢, A >€ G, we say that G assigns A to c,
and we write G : c— A.

We give a formulation of Lambek calculus,
written L, including products consisting in in-
troduction rules on the left and on the right of
a sequent. For Lambek calculus without prod-
ucts, one simply drops the rules for e.

Lambek Derivation t ;. The relation by, is
the smallest relation - between Tp™ and Tp,
such that for all T',T” € Tp*, A, A’ € Tp* and
forall A, BeTp:

AF A
ATHFB I'A+B
oy iy
FI-A\B FI-B/A
THA A,B,A’I—C\ THA A,B,A’I—C/
l l
A,L,A\B,A'FC A,B/ATL,AFC
A,A,B,A’I—C ''rA T'+B
o/ — er
A,(AQB),AII—C F,FII-(AOB)

When we replace Tp' by Tp* inI' € Tp™ in the
definition above, we get another version of Lam-
bek calculus, without the non-empty left hand-
side requirement, which we refer to as Ly with
derivation relation tp,.

Note. We recall that the cut rule is satisfied
by Frandtr, . Notealso that I' -z C' implies
I'Fr, C

Language. Let G be a categorial grammar
over ¥. G generates a string c1...c, € X1 iff
there are types A1,..., A, € Tpsuch that: G :
C; — Az (1 <3< n) and Al,...,Anl—L S .
The language of G, written L (G) is the set
of strings generated by G. We define similarly
L1,(G) replacing - with .

Notation. In some sections, we may write sim-
ply I instead of Fp or iy, . We may simply
write £(G) accordingly.

Rigid and k-valued grammars. Categori-
al grammars that assign at most k& types to
each symbol in the alphabet are called k-valued
grammars; 1-valued grammars are also called
rigid grammars.

Example 1 Let ¥ = {John,Mary,likes}
and let Pr = {S,N} for sentences and
nouns respectively. Let Gi = {John
N, Mary — N, likes — N\ (S/N)}. We
get (John likes Mary) € Lr(G1) since
(Na N\(S/N)a N |_LS)'

G1 is a rigid (or 1-valued) grammar.

2.2 Some useful models

For ease of proof, in next section we use mod-
els of L (or Ly) that we now recall : powerset
residuated semi-groups (or monoids), a special
case of residuated semi-groups (see (Buszkows-
ki, 1997) for details).

Powerset residuated semi-groups and
monoids. Let (M,.) be a semi-group (. is asso-
ciative). Let P(M) denote the powerset of M.
A powerset residuated semi-group over (M,.) is
the structure (P(M),o,=, <, C) such that for
X, YCM:

XoY={zy:zeX,yeYY}

X=>Y={yeM:VzeX)zy€eY}

Y<X={yeM:(Vze X)yz €Y}

If (M, o) is a monoid (. is associative, I is a
unit that is: Vo € M : I.z = z.I = z), then the
above structure is a powerset residuated monoid
(it has {I} as unit).

Interpretation. Given a powerset residu-
ated semi-group (P(M),o0,=,<,C), an inter-
pretation is a map from primitive types p to el-
ements [[p]] in P(M) that is extended to types
and sequences in the natural way :

[[C1\ Co]] = [[Ch]] = [[C]]

[[C1] Co]] = [[C]] < [[Ca]]

[[C1 e Co]] = [[C1]] o [[Ch]]

([C1,Co, ..., Crl] = [[Ch]]o[[C2]]. ... o[[Ch]]

The following known property states that
such structures are models for L : ifI'F; C
then [T]] C [[C]]

If (M,.) is a monoid with an identity I, we
add [[A]] = {I} for the empty sequence A and
get a similar property for Ly : if I' -z, C then
([T € [[C]

2.3 Learning and limit points

We now recall some useful definitions and
known properties on learning.

Limit points. A class CL of languages has a
limit point iff there exists an infinite sequence
< Ly >pen of languages in CL and a language
LeCLsuchthat: Lo C Ly...C...C L, C ...
and L = J,cn Ln (L is a limit point of CL).

Limit points imply unlearnability. The fol-
lowing property is important for our purpose. If
the languages of the grammars in a class G have
a limit point then the class G is unlearnable. 1

3 Rigid limit points for I
3.1 Construction overview

Definition. We define the following grammars
where p and ¢ are primitive types :
Gamy={a— p/p; b= q/q c—= Dun}
where D1 gy = S
and Dy = (Dapn1y/ (/) /(@] q)
Guy={a—= p/p;b—=p/pic— S/ (

Language. We get (see proof) L(G) =
c(b*a®)" and L(G 1 4y) = c(b*a*)* = c{a, b}*.

Notation. Let 7/, (and 7, ,)) denote the
type assignment by G,y (by G . Ttespec-
tively) on {a,b,c} extended on {a,b,c}* to se-
quences of types in the natural way; we write
T= T(1,, on {a,b}* (independant of n > 0).

Key points. We use two main key ideas :
tautologies of the Lambek calculus allowing
empty sequences that ensure one way of type-
derivability (D) F D1n—1)) ; an alternation
of two such tautologies that are unrelated (non-
interderivable : 7(a),7(b) I/ 7(a) or 7(a),7(b) I/
7(b) although we have 7(a),7(a) F 7(a)), this
alternation prevents derivabilities in the other
direction (D1 n_1y I/ D(1,y). We thus provide
a strictly infinite chain of types. Note that n
denotes a bound of these alternations.

!This implies that the class has infinite elasticity. A
class CL of languages has infinite elasticity iff I<
e; >icN sentences 3 < L; >ien languages in CL

Vie N : e & L; and {e1,...,en} C
L,y (see (Kanazawa, 1998) for this notion and a use
of it).

p/p)}

3.2 Corollaries

For the class of rigid Lyp-grammars.

- This yields a strictly increasing chain of lan-
guage of rigid grammars.

- This shows that the class of rigid grammars
has infinite elasticity (cf (Kanazawa, 1998)
for details).

- This class also has a limit point as follows
c{a,b}* which entails that this class is not
learnable from strings.

Other restricted subclasses

- The same results hold if we restrict to a
bounded order, where the order o(A) is :
o(p) = 0 when p is a primitive type
o(C1 \ C2) = maz(o(C1) + 1,0(Cs))
o(Cz [C1) = 0o(C1\ C) ;

- this also holds for unidirectional grammars
(we do not use \).

3.3 Details of proofs

Our proof is based both on a syntactic reasoning
on derivations, and on models.

Proposition 1 (Language description)

L(G1,ny) = c(b*a®)" and L(G(1,4)) = c{a,b}".

proof of c(b*a*)" C L(G)

For n = 0 this is an axiom 7 gy(c) = S+ S.
Suppose n > 0 and w' = c.w € L(G(15-1)),
- we first show that c.b.a.w € L(G (1))

D<1,n71>;T(W) S p/pkp/p
Dipn1y/(®/p),(/p),T(w)FS q/qFq/q

(Dian—ny /(@/P)/(a/ @)(a/ q),(p/p)T(w)F S
N—— N—\—

=7(b) =7(a)

)) from D(l,n) |—

(more generally

/1

:D<1’n>=7'(1,,n>(c)

- we easily get cw € L(Gpp
D(l,n—l) in LQ) for n >0 ;
C1/(C2/ C2) F Cy in Ly);
- we also get c.a.w € L(G(1,ny)
fr(?m D(Ln),p / phk D(l,n—lg
(since (D1 p D}an) / (p/p)
and D(ln 1) / (p p) p/pFD(ln 1))
- we then get c.b.w € L(G1) since

Dy, a/ a= (Dapn-1y /ép/p /(a/a),a/q

|_D1n 1)/(P/P ln 1)3
- ﬁnally, this is extended to repetitions of each

letter a or b separately since 7(a),7(a) F 7(a)

and 7(b),7(b) F 7(b) (if we replace each occur-
rence of a with a repetition of a or each occur-
rence of b with a repetition of b we still get an
element of the language of Gy).

proof of L(G(1,)) C c(b*a*)" (main part)
We consider the standard linguistic interpreta-
tion (Buszkowski, 1997) : the powerset residu-
ated monoid (P(V*),0,=>,<,C) over the free
monoid (V*,.) where . is the concatenation op-
eration and V* is the set of strings over the al-
phabet V = {a,b,c}.

Let us fix n (arbitrary), we define an interpre-
tation as follows : [[S]] = ¢(b*a™)", [[p]] = a¥,
[[g]] = b*. Let us suppose 7(; 5 (w) = S. By
models, we have [[T<1,n) (w)]] C [[S]])- We first re-
mark that [[p / p]] = a* and [[q / ¢]] = b* (since
[lp/pl]l = {z € V*:Vz € [pll,zz € [[p]]} =
{z € V*:Vz € a* 2.2 € a*}).

We now show by induction on 4 that :

Vi(0 <i<n) : [[Dygl] = c(b*a*)"
- case i = 0 < n holds since [[D1p]] = [[S] =
-case (0 <i<n):
[[(D,i—1y / (p/ p))I]
={zeV*:vze(p/pll,zz € [[Du; v}
—ind. {2z €V* :Vz € a*, 2.z € c(b*a*) (=)}
= [[Dqi-nll (= c(b*a*) (1))
[Dapll =[Pty / o/ p) /[(a/ d)]]
={zeV*:vyellg/],

2y € [[Dyi-y / (p/ p)]I}
={z € V*:Vy € b, zy € c(b*a*) "1}
={z € V*:Vy € b*, 2y € c(b*a*)" D .b*.a*}
(from above)
= ¢(b*a*)(™=) (as desired)

We have thus shown that [[D(,]] = e
Therefore if [[1(1) (w)]] C [[S]] this also mean-
s that w = cuw' with w' € {a,b}* ; we
get c.[[7n(W)]] C c(b*a*)" = [[S]], that is
[[7(1,ny (w")]] € (b*a*)™ that corresponds to w' €
(b%a™)"™ as well (since [[7(1,,y(a)]] = [[p / p]] = @
and [[7(1n)(0)]] = [lg / g]] = b*)-

proof of c{a,b}* C L(G(y)
- We have ¢ € L(G(1,4) since S/ (p / p) Fr, S.
- We now get ca € L(G(1)), since :

p/ptp/p SES

S/®/psp/pES
The other cases are straightforward since
p/pp/pEp/p

proof of L(G(y) C c{a, b}
We consider the powerset residuated monoid
(P(V*),0,=,<,C) as above but with the fol-
lowing (similar) interpretation :

[[S]] = c{a, b}, [[p]] = @, ([[g]] = b).
Let us suppose 71 ,y(w) I S.
By models, we have [[7(; ,,(w)]] C [[S]]-
We have : [[p/ p]] = a*
We here get : [[S/ (p/ p)l] = c{a,b}" (={z €
V*:Vzel[p/pllzze[S]]}={z€V*:Vze
a*,z.xz € c.{a,b}*})

Therefore if [[71 .y (w)]] C [[S]] = ¢{a,b}",
this also means that w = cw’ with w' € {a,b}*
as desired B

4 Rigid limit points for L

Key points: We have D, Fr, Dy 5—1) but
D1 ny Y1 D(1,n—1)- We then transform the type
of ¢ from 7) and construct a limit point for
L (with products).

Construction for L
We define the following types and assign-
ments 7(3), where A = p /p, B = q/ q and
p, q are primitive types :
a—>A; b—oB;
where D(2’0> =S
and D(2,n) = (((D(2,n—1) /A) * A) /B) e B if
n >0
Let G (o5 denote the grammar defined by 75)
with alphabet {a, b, c}.
Let Gy, denote the grammar, with type as-
signment 75,y defined by :
Gon={a— A;b—> A;c— (§/ A)e A}
We get (see proof) L(G(2ny) = c(b*a*)" and
‘C(G(2,*)) = c{a, b}".

c — D(2,n)

Proposition 2 (Language description)

L(Gon) = c(b*a*)" and L(G(34)) = c{a,b}”.

proof of c(b*a*)" C L(G(3.n))

For n =0, 750(c) = S+ S.

Suppose n > 0 and w' = c.w € L(G(21))
- we first show that c.b.a.w € L(G(a,))

D(Z,nfl)vT(Q,n) ('U)) FS A,A A

(D(Z,n—l) /A) . A:AyT(Z,n) (w) S B,B,- B

(Dony [A9 A) [BY@ By B, A 7o (w)F S
=r(b) =r(a)

=D(2,n)=7(2,n)(¢)

- we easily get cw € L(Gpp) since

D(Z") (o D(Q,n—l) in L for n > 0.

- we also get caw € L(Gpay) from

(smce D3y (1/ A)e

and (D (2,n—1) A A F Do 1))

- we then get c.b.w € E(G@,n)S since

Disay B = (Dpzsy) A) 8 A) | B) o B, B
D p1y [A)e At Dan-1y;

- finally, this is extended to repetitions of each

letter a or b separately since 7(a),7(a) F 7(a)

and 7(b),7(b) F 7(b)

proof of L(G(2n)) C c(b*a®)"

We first show that Dy, tr, Degny by
induction on n :
- case n = 0 is obvious since Dy gy = Dig 0y = 5

-case n > 0 : we recall that A = p/p,
B = q / q are tautologies of Lg;

by induction : D(l,n—l) l_L@ D(2,n—1)

we then get in Ly :
D1 n—1y = Dipn_1y AFA
D1y / AyAE D1y

Dap-1y/ArDign-1y/A BFB

(Daan-1y/A)/ B,BFDpn_1y/A A

(D(l,n—l) /A) / B,B (D(2,n—l) /A) e A

(Diu1y / A)/ BF (Dom_1y/ A)eA) /B +B

(D1,n—1y / A)/ BF((D(2,n—1) / A)e A)/ B)e B
We may now end the proof : suppose that
T (w) Fr S, we get 7 ,y(w) Fr, S from
previous property, therefore w € c¢(b*a*)" from
proposition 1 as desired.

proof of c{a,b}* C E(G@)

- We have c € L(Gy,,)) since (S / A)e Al S.
- We also get ca € L(G(3)), and similarly for
ca* or c{a,b}* since A,A F; A (where A =
p/p).

proof of L(G(3,)) C c¢{a,b}*
This part follows from the construction for
Ly since 7 ,(c) Fr, Tp.(c) as follows :

S/Abr, (S/A) Fr, A

S/ A '_Lm (8/A)eA
hence T(l,*)() |_L@ (2,*>() and 7'(2,*) (’U)) |_L S
implies 7(; ,y(w) Fr, S®

5 Conclusion and remarks

5.1 Non-learnability for subclasses.

From the constructions in previous sections we
get the following proposition as a corollary :

Proposition 3 (non-learnability) The class
of languages of rigid (or k-valued for an arbi-
trary k) Lambek grammars admits a limit point ;
the class of rigid (or k-valued for an arbitrary k)
Lambek grammars is not learnable from strings.

Note. Our result has shown that in con-
trast to classical categorial grammars, rigid and
k-valued Lambek grammars are not learnable
from strings. This result holds for variants of
Lambek calculus : (i) rigid Lambek grammars
for Ly (allowing empty sequence) using only /
(unidirectional) ; (ii) rigid Lambek grammars
for L (with the non-empty left requirement) us-
ing (/ ,e) . Our proof consists in the construc-
tion of limit points in each class : for (i) and
(ii) we have c{a,b}* as limit point that are in-
deed rigid lambek grammars as already shown.
In the first construction, we may also consider
grammars of a bounded order.

5.2 Further remarks.

A stricly infinite chain of types. In each
construction, the types D, = Dy, for c are
such that : ... - D, - D, 1 + ... - Dg. This
is the key point for the inclusion of languages.
Moreover D,, 1 t/ D,,, which is reflected by the
strictness of inclusion of languages. Our con-
struction has thus exhibited a stricly infinite
chain of types with respect to deduction for each
version of Lambek calculus.

Future work. We are also interested in oth-
er variants of categorial grammars, such as the
non-associative version of Lambek calculus or
Multi-modal categorial grammars for which the
construction of rigid limit points could be ex-
tended.

We also plan to consider not only the string
languages but some structure languages in a
grammatical inference perspective. In (Bona-
to and Retoré, 2001), it has been shown that
rigid Lambek grammars are learnable in the lim-
it from stuctured sentences. Such structures,
that are studied in (Tiede, 1999), are complete

proof tree structures in normal forms. In our
result, we show that, without any structure,
some classes of Lambek grammars are not learn-
able in the limit from positive examples. It will
now be very interesting to find an intermedi-
ate structure, that is more linguistically realis-
tic than complete proof tree structures but that
preserves the learnability in the limit of Lambek
grammars.

References

Y. Bar-Hillel. 1953. A quasi arithmetical no-
tation for syntactic description. Language,
29:47-58.

Roberto Bonato and Christian Retoré. 2001.
Learning rigid lambek grammars and mini-
malist grammars from structured sentences.
Third workshop on Learning Language in
Logic, Strasbourg.

W. Buszkowski. 1997. Mathematical linguistics
and proof theory. In van Benthem and ter
Meulen (van Benthem and ter Meulen, 1997),
chapter 12, pages 683-736.

Claudia Casadio. 1988. Semantic categories
and the development of categorial grammars.
In R. Oehrle, E. Bach, and D. Wheeler, edi-
tors, Categorial Grammars and Natural Lan-
guage Structures, pages 95-124. Reidel, Dor-
drecht.

Jean-Yves Girard. 1995. Linear logic: its syn-
tax and semantics. In Jean-Yves Girard,
Yves Lafont, and Laurent Regnier, editors,
Advances in Linear Logic, volume 222 of
London Mathematical Society Lecture Notes,
pages 1-42. Cambridge University Press.

E.M. Gold. 1967. Language identification in the
limit. Information and control, 10:447-474.

Makoto Kanazawa. 1998. Learnable classes of
categorial grammars. Studies in Logic, Lan-
guage and Information. FoLLI & CSLI. dis-
tributed by Cambridge University Press.

Joachim Lambek. 1958. The mathematics of
sentence structure. American mathematical
monthly, 65:154-169.

Michael Moortgat. 1997. Categorial type logic.
In van Benthem and ter Meulen (van Ben-
them and ter Meulen, 1997), chapter 2, pages
93-177.

Jacques Nicolas. 1999. Grammati-
cal inference as unification. Rap-
port de Recherche RR-3632, INRIA.

http://www.inria.fr/RRRT /publications-
eng.html.

Christian Retoré. 2000. Systémes déductifs
et traitement des langues:un panorama des
grammaires catégorielles. Technical Report
RR-3917 2000, INRTA, Rennes, France. A
revised version to appear in Traitement au-
tomatique du langage naturel, TSI.

Hans-Jorg Tiede. 1999. Deductive Systems and
Grammars: Proofs as Grammatical Struc-
tures. Ph.D. thesis, Illinois Wesleyan Univer-
sity.

J. van Benthem and A. ter Meulen, editors.
1997. Handbook of Logic and Language.
North-Holland Elsevier, Amsterdam.

	Table of Content
	Topics
	Authors

