
Lenient Default Unification for Robust Processing
within Unification Based Grammar Formalisms

Takashi NINOMIYA, †‡ Yusuke MIYAO, † and Jun’ichi TSUJII †‡

† Department of Computer Science, University of Tokyo
‡ CREST, Japan Science and Technology Corporation

e-mail:{ninomi, yusuke, tsujii}@is.s.u-tokyo.ac.jp

Abstract
This paper describes new default unification, lenient
default unification. It works efficiently, and gives
more informative results because it maximizes the
amount of information in the result, while other de-
fault unification maximizes it in the default. We also
describe robust processing within the framework of
HPSG. We extract grammar rules from the results of
robust parsing using lenient default unification. The
results of a series of experiments show that parsing
with the extracted rules works robustly, and the cov-
erage of a manually-developed HPSG grammar for
Penn Treebank was greatly increased with a little
overgeneration.

1 Introduction
Parsing has often been considered to be crucial
for natural language processing, thus, efficient and
wide coverage parsing has been extensively pur-
sued in natural language literature. This study aims
at robust processing within the Head-driven Phrase
Structure Grammar (HPSG) to extend the cover-
age of manually-developed HPSG grammars. The
meaning of ‘robust processing’ is not limited to ro-
bust processing for ill-formed sentences found in
a spoken language, but includes robust processing
for sentences which are well-formed but beyond the
grammar writer’s expectation.

Studies of robust parsing within unification-based
grammars have been explored by many researchers
(Douglas and Dale, 1992; Imaichi and Matsumoto,
1995). They classified the errors found in analyzing
ill-formed sentences into several categories to make
them tractable, e.g., constraint violation, missing or
extra elements, etc. In this paper, we focus on re-
covery from the constraint violation errors, which is
a violation of feature values. All errors in agreement
fall into this category. Since many of the grammat-
ical components in HPSG are written as constraints
represented by feature structures, many of the er-
rors are expected to be recovered by the recovery of
constraint violation errors.

This paper proposes two new types of default
unification and describes their application to robust
processing. Default unification was originally stud-

ied to develop a system of lexical semantics to deal
with the default inheritance in a lexicon, but it is
also desirable for the recovery of such constraint vi-
olation errors due to the following merits: i) default
unification is always well-defined, and ii) a feature
structure is relaxed such that the amount of infor-
mation is maximized. From the viewpoint of robust
processing, an amount of lost information can be re-
garded as a cost (i.e., penalty) of robust processing.
In other words, default unification tries to minimize
the cost. Given a strict feature structureF and a
default feature structureG, default unification is de-
fined as unification that satisfies the following (writ-
ten asF

<t G): 1) It is always defined. 2) All strict
information is preserved. That is,F v (F <tG). 3) It
reduces to standard unification in the case ofF and
G being consistent. That is,(F <t G) = (F tG) if
F tG is defined. With these definitions, Douglas’
relaxation technique can be regarded as a sort of de-
fault unification. They classify constraints into nec-
essary constraints and optional constraints, which
can be regarded as strict information and default in-
formation in the definition of default unification.

Carpenter (1993) gave concise and comprehen-
sive definitions of default unification. However, the
problem in Carpenter’s default unification is that it
tries to maximize the amount of information in a de-
fault feature structure, not the result of default uni-
fication. Consider the case where a grammar rule
is the default feature structure and the daughters are
the strict feature structure. The head feature prin-
ciple can be described as the structure-sharing be-
tween the values of the head feature in a mother
and in a head daughter. The set of constraints that
represent the head feature principle consists of only
one element. When we lose just one element in the
head feature principle, a large amount of informa-
tion in the daughter’s substructure is not propagated
to its mother. As Copestake (1993) mentioned, an-
other problem in Carpenter’s default unification is
that the time complexity for finding the optimal an-
swer of default unification is exponential because
we have to verify the unifiability of the power set of
constraints in a default feature structure.

Here, we proposeideal lenient default unifica-

tion, which tries to maximize the amount of infor-
mation of a result, not the amount of default infor-
mation. Thus, the problem of losing a large amount
of information in structure-sharing never arises. We
also proposelenient default unificationwhose algo-
rithm is much more efficient than the ideal one. Its
time complexity is linear to the size of the strict fea-
ture structure and the default feature structure. In-
stead, the amount of information of a result derived
by lenient default unification is equal to or less than
that of the ideal one.

We apply lenient default unification to robust pro-
cessing. Given an HPSG grammar, our approach
takes two steps; i) extraction of grammar rules from
the results of robust parsing using lenient default
unification for applying the HPSG grammar rules
(offline parsing), and ii) runtime parsing using the
HPSG grammar with the extracted rules. The ex-
tracted rules work robustly since they reflect the ef-
fects of recovery rules applied during offline robust
parsing and the conditions in which they are ap-
plied.

Sections 3 and 4 describe our default unification.
Our robust parsing is explained in Section 5. Sec-
tion 6 shows a series of experiments of robust pars-
ing with default unification.

2 Background
Default unification has been investigated by many
researchers (Bouma, 1990; Russell et al., 1991;
Copestake, 1993; Carpenter, 1993; Lascarides and
Copestake, 1999) in the context of developing lexi-
cal semantics. Here, we first explain the definition
given by Carpenter (1993) because his definition is
both concise and comprehensive.

2.1 Carpenter’s Default Unification
Carpenter proposed two types of default unification,
credulous default unificationand skeptical default
unification.
(Credulous Default Unification)

F
<tc G =

{
F tG′

∣∣∣ G′ vG is maximal such that
F tG′ is defined

}

(Skeptical Default Unification)
F

<ts G = ⊔(F
<tc G)

F is called astrict feature structure, whose in-
formation must not be lost, andG is called ade-
fault feature structure, whose information might be
lost but as little as possible so thatF andG can be
unified. A credulous default unification operation
is greedy in that it tries to maximize the amount of
information it retains from the default feature struc-
ture. This definition returns a set of feature struc-
tures rather than a unique feature structure.

Skeptical default unification simply generalizes
the set of feature structures which results from cred-
ulous default unification. The definition of skeptical

default unification leads to a unique result. The de-
fault information which can be found in every result
of credulous default unification remains. Following
is an example of skeptical default unification.

[F: a] <ts

[
F: 1b
G: 1
H: c

]
= u

{ [
F: a
G: b
H: c

]
,

[
F: 1a
G: 1
H: c

]}
=

[
F: a
G:⊥
H: c

]

2.2 Forced Unification
Forced unification is another way to unify incon-
sistent feature structures. Forced unification always
succeeds by supposing the existence of the top type
(the most specific type) in a type hierarchy. Unifi-
cation of any pair of types is defined in the type hi-
erarchy, and therefore unification of any pair of fea-
ture structures is defined. One example is described
by Imaichi and Matsumoto (1995) (they call it cost-
based unification). Their unification always suc-
ceeds by supposing the top type, and it also keeps
the information about inconsistent types. Forced
unification can be regarded as one of the toughest
robust processing because it always succeeds and
never loses the information embedded in feature
structures. The drawback of forced unification is
the postprocessing of parsing, i.e., feature structures
with top types are not tractable. We writeFt f G for
the forced unification ofF andG.

3 Ideal Lenient Default Unification
In this section, we explain our default unification,
ideal lenient default unification. Ideal lenient de-
fault unification tries to maximize the amount of
information of the result, subsuming the result of
forced unification. In other words, ideal lenient de-
fault unification tries to generate a result as similar
as possible to the result of forced unification such
that the result is defined in the type hierarchy with-
out the top type. Formally, we have:

Definition 3.1 Ideal Lenient Default Unification

F
<ti G = ⊔

{
F tG′

∣∣∣∣∣
G′ v f (Ft f G) is maximal
such thatF tG′ is defined
without the top type

}

wherev f is a subsumption relation where the top
type is defined.

From the definition of skeptical default unifica-
tion, ideal lenient default unification is equivalent
to F

<ts (Ft f G) assuming that skeptical default uni-
fication does not add the default information that in-
cludes the top type to the strict information.

Consider the following feature structures.

F =




F:

[
F:a
G:b
H:c

]

G:

[
F:a
G:a
H:c

]


,G =

[
F:1
G:1

]

In the case of Carpenter’s default unification, the
results of skeptical and credulous default unification
become as follows:F

<ts G= F,F
<tc G= {F}. This

is becauseG is generalized to the bottom feature
structure, and hence the result is equivalent to the
strict feature structure.

With ideal lenient default unification, the result
becomes as follows.

F
<ti G =




F:

[
F:1a
G:b
H: 2c

]

G:

[
F:1
G:a
H: 2

]



v f


F:1

[
F:a
G:>
H:c

]

G:1




Note that the result of ideal lenient default unifica-
tion subsumes the result of forced unification.

As we can see in the example, ideal lenient de-
fault unification tries to keep as much information
of the structure-sharing as possible (ideal lenient
default unification succeeds in preserving the struc-
ture-sharing tagged as1 and2 though skeptical and
credulous default unification fail to capture it).

4 Lenient Default Unification
The optimal answer for ideal lenient default unifica-
tion can be found by calculatingF

<ts (Ft f G). As
Copestake (1993) mentioned, the time complexity
of skeptical default unification is exponential, and
therefore the time complexity of ideal lenient de-
fault unification is also exponential.

As other researchers pursued efficient default uni-
fication (Bouma, 1990; Russell et al., 1991; Copes-
take, 1993), we also propose another definition of
default unification, which we calllenient default
unification. An algorithm derived for it finds its an-
swer efficiently.

Given a strict feature structureF and a default
feature structureG, letH be the result of forced uni-
fication, i.e.,H = Ft f G. We definetopnode(H)
as a function that returns the fail points (the nodes
that are assigned the top type inH), f pnode(H)
as a function that returns the fail path nodes (the
nodes from which a fail point can be reached), and
f pchild(H) as a a function that returns all the nodes
that are not fail path nodes but the immediate chil-
dren of fail path nodes.

Consider the following feature structures.

F =




F:F:

[
F:F:a
G:G:b
H:H:c

]

G:

[
G:

[
F:F:a
G:G:a
H:H:c

]

H:H:a

]


,G =

[
F:F:1⊥
G:G:1

]

Figure 1 showsF , G andH in the graph notation.
This figure also shows the nodes that correspond to
topnode(H), f pnode(H) and f pchild(H).

���

���

���

���

���

�

���

���

�

�

���

F =

���

���
G =

�	�

��

�

�

���

H =

�

�

��

���

�

�

���

��

���

���

���

��

���

	�

���

���

���

���

�	�

���

���

�)(Htopnode∈
)(Hfpnode∈

���

���

�

���

���

�

)(Hfpchild∈

���

���

���

generalize(H) =

���

���

���

���

���

���

�

���

�

�������

���

���

Figure 1:F , G andH in the graph notation

F tH fails because some of the path value inH
conflict with F , or some of the path equivalence in
H cause inconsistencies. The basic ideas are that
i) the inconsistency caused by path value specifica-
tions can be removed by generalizing the types as-
signed to the fail points inH, and that ii) the incon-
sistency caused by path equivalence specifications
can be removed by unfolding the structure-sharing
of fail path nodes inH.

Let H be 〈QH , q̄H ,θH ,δH〉, whereQ is a set of a
feature structure’s nodes,̄q is the root node,θ(q) is
a total node typing function, andδ (π,q) is a partial
function that returns a node reached by following
pathπ from q. We first give several definitions to
define a generalized feature structure.

Definition 4.1
toppath(H) = {π|∃q∈ topnode(H).(q = δH(π, q̄H))}
f ail path(H) = {π|∃q∈ f pnode(H).(q = δH(π, q̄H))}
ss(H) = {π|∃q∈ f pchild(H).(q = δH(π, q̄H))}
I(H) =

⊔
({F |∃π ∈ toppath(H).(F = PV(π,⊥))})

I ′(H) =
⊔({

F

∣∣∣∣
∃π ∈ f ail path(H).
(F = PV(π,θH(δH(π, q̄H))))

})

I ′′(H) = I(H)t I ′(H)
PV(π,σ) =

{
the least feature structures where
path value ofπ is σ

Let I(= 〈QI , q̄I ,θI ,δI 〉) be I ′′(H). The definition
of the generalized feature structure is given as fol-
lows:

Definition 4.2 (Generalization ofH)

generalize(H) = 〈QH ′ , q̄I ,θH ′ ,δH ′〉 where
QH ′ = QH ∪QI

θH ′(q) =
{

θH(q) if q∈QH
θI (q) if q∈QI

δH ′(f ,q) =
{

δH(f ,q) if q∈QH
δI (f ,q) if q∈QI

δH ′(π, q̄I) = δ (π, q̄H) for all π ∈ ss(H)

procedure generalize-sub(H,q)
create a new stateq′ ∈QH ;
θH (q′) = θH (q);
if q∈ topnode(H) then

θH (q′) := σ ;
(σ is an appropriate type

for all the arcs that reachqH

)

returnq′ ;
forall f ∈ { f |δH (f ,q) is defined} do

r = δ (f ,q);
if r ∈ f pnode(H) then

δ (f ,q′) = generalize-sub(H, r);
else

δ (f ,q′) = r;
end-if

end-forall
returnq′ ;

procedure generalize(H = 〈QH , q̄H ,θH ,δH 〉)
q = generalize-sub(H, q̄H);
return〈QH ,q,θH ,δH 〉;

Figure 2: An algorithm that makesH more general

Figure 1 also shows the result ofgeneralize(Ft f G).
Finally, lenient default unificationF

<t G is de-
fined as follows:

Definition 4.3 (Lenient Default Unification)

F
<t G = F tgeneralize(Ft f G)

ForF andG depicted in Figure 1,F
<tG becomes as

follows:

F
<t G =




F:F:

[
F:1a
G:G:b
H: 2c

]

G:


G:

[
F:1
G:G:a
H: 2

]

H:H:a







Both ideal and non-ideal lenient default unifica-
tion satisfy the following desiderata: 1) It is always
defined (and produces a unique result). 2) All strict
information is preserved. That is,F v (F <t G) v f

(Ft f G). 3)F
<tG is defined without the top type. 4)

It reduces to standard unification in the caseF and
G are consistent (unifiable). That is,F

<t G = F tG
if F tG is defined.

Algorithm
Our algorithm for lenient default unification pro-
ceeds in the following steps. 1) Calculate forced
unification ofF andG (let H be Ft f G). 2) Find
fail points and fail path nodesin H. 3) Generalize
H so thatF tH can be unified.

Figure 2 describes the algorithm that generalizes
the result of forced unification.1 The time complex-
ity of the algorithm for findingF

<t G is linear to
1In this paper, we assume acyclic feature structures. Our

algorithm never stops if a cyclic part in a feature structure is to
be generalized. Acyclicity is easily enforced by requiring that
no path has a proper extension that leads to the same node. We
also assume outputs of default unification are not necessarily
totally-well typed since constraints of appropriateness condi-
tions of types can propagate a node to its subnodes, and this
behavior makes the definitions of default unification complex.
Instead, totally-well typedness can be easily enforced by the
total type inference function.

the size of feature structuresF andG because the
time complexity of each algorithm (the algorithm
for finding fail points, finding fail path nodes, and
generalization) is linear to their size.

Comparison
The difference between ideal lenient default unifi-
cation and lenient default unification can be exem-
plified by the following example.

(skeptical default unification)[
F: a
G: a
H: b

]
<ts

[
F: 1
G: 1
H: 1

]
=

[
F: 2 a
G: 2
H: b

]

(ideal lenient default unification)[
F: a
G: a
H: b

]
<ti

[
F: 1
G: 1
H: 1

]
=

[
F: 2 a
G: 2
H: b

]

(lenient default unification)[
F: a
G: a
H: b

]
<t

[
F: 1
G: 1
H: 1

]
=

[
F: a
G: a
H: b

]

In the example above, the results of ideal lenient
default unification and skeptical default unification
are the same. In the case of lenient default unifi-
cation, all the information embedded in the default
is removed because all structure-sharings tagged as
1 are on the paths that lead to the fail points in the
result of forced unification. Lenient default unifica-
tion is much more suspicious in removing informa-
tion from the default than the ideal one. Lenient
default unification may remove structure-sharings
that are irrelevant to unification failure. Another de-
fect of lenient default unification is that the bottom
type is assigned to nodes that correspond to the fail
points in the result of forced unification. The type
assigned to their nodes should be more specific than
the bottom type as the bottom type has no feature,
i.e., all the arcs that go out from the fail point are
cut.

Though lenient default unification seems to have
many defects, lenient default unification has the ad-
vantage of efficiency. As we are thinking to use de-
fault unification for practical robust processing, the
efficiency is of great importance. Furthermore, the
result of lenient default unification can be more in-
formative than that of skeptical default unification in
many cases of practical applications. For example,
suppose that the grammar ruleR and the daughters
DTRare given as follows.

R=




MOTHER:HEAD: 1

DTRS:

[
H: 2 [HEAD: 1head]
NH:SPR: 2

]



DTR=
[
DTRS:

[
H:HEAD:CASE:obj
NH:SPR:HEAD:CASE:nom

]]

Suppose also that the typehead hasPHON:, CASE:,
INV: andTENSE:as its features, and the typesignhas
HEAD: andVAL: . The result of skeptical default uni-
fication DTR

<ts R becomesDTR. This is because

all structure-sharings embedded inR are relevant to
unification failure. However, the result of lenient
default unification is more informative.

DTR
<ti R= DTR

<t R=


MOTHER:HEAD:




head
PHON: 3
CASE:⊥
INV: 4
TENSE: 5




DTRS:




H:




sign

HEAD:




head
PHON: 3
CASE:obj
INV: 4
TENSE: 5




VAL: 6




NH:SPR:




sign

HEAD:




head
PHON: 3
CASE:nom
INV: 4
TENSE: 5




VAL: 6










The information of structure-sharing is preserved
as much as possible. In the example above,
the structure-sharing tagged as2 in the original
grammar ruleR is decomposed into the structure-
sharings3, 4, 5, 6. That is, the structure-sharing
tagged as2 is preserved exceptHEAD:CASE:.

5 Offline Robust Parsing and Grammar
Extraction

This section describes a new approach to robust
parsing using default unification. Given an HPSG
grammar, our approach takes two steps; i) extraction
of grammar rules from the result ofoffline robust
parsing using default unification for applying the
HPSG grammar rules, and ii)runtime parsingusing
the HPSG grammar with the extracted rules. Offline
parsing is a training phase to extract grammar rules,
and runtime parsing is a phase where we apply the
extracted rules to practice. The extracted rules work
robustly over corpora other than the training corpus
because the extracted rules reflect the effects of de-
fault unification that are applied during offline pars-
ing. Given an annotated corpus, our algorithm ex-
tracts grammar rules that make the coverage of the
HPSG grammar wider.

In the offline parsing, constituents are generated
by default unification of daughters and grammar
rules of the HPSG grammar2, where a head daugh-
ter and a grammar rule are strict feature structures
and a non-head daughter is a default feature struc-
ture. With this construction, the information in a
grammar rule and a head daughter is strictly pre-
served and the information in a non-head daughter
is partially lost (but, as little as possible). The ideas

2In HPSG, both constituents and grammar rules are repre-
sented by feature structures.

behind this construction are that (i) we had better
construct a mother node without the information of
the non-head daughter rather than construct noth-
ing (i.e., we had better construct a mother node by
unifying only a head-daughter and a grammar rule),
(ii) we had better construct a mother node with the
maximal information of a non-head daughter rather
than have no information of the non-head daughter
added. Parse trees can be derived even if a parse tree
cannot be derived by normal unification.

Offline robust parsing is based on A* algorithm,
but we generate only parse trees which meet the fol-
lowing conditions, 1) a generated parse tree must
be consistent with an existing bracketed corpus, and
2) the parsing cost of a generated parse tree must
be minimum. This means that i) we can limit a
search space, and that ii) the parsing result is valid in
the sense that it is consistent with the existing cor-
pus. The cost of a parse tree can be calculated by
adding the cost of lenient default unification, which
is the amount of information that is lost by lenient
default unification. We regard it as the difference
between the number of path values and structure-
sharing in the results of a lenient default unification
and a forced unification.

Grammar extraction is very concise. When we
find a motherM in the result of offline parsing that
cannot be derived by using unification but can be
derived by default unification, we regardM → L,R
as a new rule, whereL and R are the daughters
of the mother. The rules extracted in such a way
can reconstruct the mothers as does default uni-
fication, and they reflect the condition of trigger-
ing default unification, i.e., the extracted rules are
not frequently triggered because they can be ap-
plied to feature structures that are exactly equiva-
lent to their daughter’s part. By collecting a number
of such rules,3 a grammar becomes wide-coverage
with some overgeneration. They can be regarded
as exceptions in a grammar, which are difficult to
be captured only by propagating information from
daughters to a mother.

This approach can be regarded as a kind
of explanation-based learning (Samuelsson and
Rayner, 1991). The explanation-based learning
method is recently attracting researcher’s attention
(Xia, 1999; Chiang, 2000) because their parsers are
comparative to the state-of-the-art parsers in terms
of precision and recall. In the context of unification-
based grammars, Neumann (1994) has developed a
parser running with an HPSG grammar learned by
explanation-based learning. It should be also noted
that Kiyono and Tsujii (1993) exemplified the gram-
mar extraction approach using offline parsing in the

3Although the size of the grammar becomes very large, the
extracted rules can be found by a hash algorithm very effi-
ciently. This tractability helps to use this approach in practical
applications.

Training Test Set Test Set
Corpus A B

of sentences 5,903 1,480 100
Avg. length 23.59 23.93 6.63
of sentences

Table 1: Corpus size and average length of sen-
tences

�

� �

� ��

� � �

� ��

� � �

� ��

� � �

� � ���� � ���� � ���� � ���� � ����� � � ���� � � ����

	
 � �
 � � � � � � � � � � � 	 � � � 	 � � � � � � � �

��
�
��
�
�
��
�
�
�	

�
�
�
��

��
�
�
�
�
�

Figure 4: The average number of edges when
TestSetBwas parsed

context of explanation-based learning.
Finally, we need to remove some values in the ex-

tracted rules because they contain too specific infor-
mation. For instance, a value ofPHONOLOGY:repre-
sents a list of phoneme strings of a phrasal structure.
Without removing them, extracted rules cannot be
triggered until when completely the same strings ap-
pear in a text.4

6 Performance Evaluation
We measured the performance of our robust pars-
ing algorithm by measuring coverage and degree
of overgeneration for the Wall Street Journal in the
Penn Treebank (Marcus et al., 1993). The training
corpus consists of 5,903 sentences selected from the
Wall Street Journal (Wall Street Journal 00 – 02),
and we prepared two sets of test corpora,TestSetA
andTestSetB. TestSetAconsists of 1,480 sentences
(Wall Street Journal 03) and is used for measur-
ing coverage.5 TestSetBconsists of 100 sentences
and is used for measuring the degree of overgenera-
tion. The sentences ofTestSetBare the shortest 100
sentences inTestSetA. Table 1 shows the average
sentence length of each corpus. Here, ‘coverage’
means the ratio of ‘the number of sentences that are
covered by a grammar’ to ‘the number of all sen-
tences’. Here, we say ‘a sentence is covered’ when
a sentence can be analyzed by a parser and the result
includes trees that are consistent with brackets and
POS tags annotated in the Penn Treebank.

Grammar rules were extracted by offline pars-
ing with the XHPSG grammar (Tateisi et al., 1998),

4In the experiment, we removed the values that correspond
to the phoneme strings of phrasal structures, some of syntactic
constraints, and semantics of phrasal structures

5There is no overlap between the training and test corpus.

Phenomena (A) (B) (C) (D) (%)
lack of lexical entry 118 32 86 72.9
inconsistency between XHPSG and Penn Tree-
bank

44 13 31 70.5

punctuation, quotation, parenthesis 36 15 21 58.3
coordination 21 8 13 61.9
apposition 16 6 10 62.5
compound noun/adjective/adverb 14 3 11 78.6
Adv modifying PP 12 2 10 83.3
relative clause 12 5 7 58.3
topicalization 11 0 11 100.0
noun modifier 10 2 8 80.0
omission 8 2 6 75.0
parenthetical expression 7 3 4 57.1
verb saying 7 1 6 85.7
expression of frequency, NP + a + N 7 0 7 100.0
present participle construction 6 3 3 50.0
idiom 5 2 3 60.0
violation of agreement 3 0 3 100.0
adverbial noun 3 0 3 100.0
present progressive, be + Adv + present pro-
gressive

3 1 2 66.7

sentence modification from the beginning of a
sentence

2 0 2 100.0

be + complement sentence 2 0 2 100.0
nominalization of adjective 1 0 1 100.0
double numerals (NP + roughly + double + NP) 1 1 0 0.0
total 349 99 250 71.6

(A) ... frequency of phenomena that the XHPSG grammar fails to analyze
(B) ... frequency of phenomena that the XHPSG grammar with the extracted rules fails to
analyze
(C) = (A)− (B) ... frequency of phenomena that cannot be analyzed by the XHPSG grammar
but can be analyzed by the XHPSG grammar with the extracted rules

(D) = (C)/(A) ... the ratio of phenomena that are recovered

Table 2: Analysis of phenomena that are recovered

which is a translation into HPSG of the manually-
developed XTAG English grammar (The XTAG Re-
search Group , 1995). The growth of the number
of extracted rules is shown in the left of Figure 3.
The average cost per sentence in offline parsing was
8.11. This means the total number of nodes and
structure-sharing that are removed was less than 9
for each sentence. The coverage for the training cor-
pus by offline parsing was 95.4%.

The coverage was measured by using the XHPSG
grammar with the extracted rules. The coverage for
TestSetAandTestSetBis illustrated in the middle
and right of Figure 3, respectively. As seen in the
figure, the coverage for the Wall Street Journal grew
from 24.7% to 65.3% forTestSetAand from 64% to
88% forTestSetB.

We measured the degree of overgeneration by
measuring the number of edges, using a parser
based on A* algorithm. Figure 4 shows the aver-
age number of edges whenTestSetBwas parsed.
From this figure and Figure 3, we can observe that
the coverage grew from 64% to 88% by generating
just 87.99 more edges (the number of edges grew
from 240.68 to 328.67 in average).

From the experiments, we can say that our ap-
proach is effective in extending coverage with a lit-
tle overgeneration.

We have analyzed the phenomena that cannot
be analyzed by the original XHPSG grammar but
can be analyzed by the extracted rules in the first
200 sentences in Wall Street Journal 03 of the test
set. Among the 200 sentences, the original XH-
PSG grammar can cover 38 sentences (19% of the
sentences) and the XHPSG grammar with the ex-
tracted rules can analyze 131 sentences (65.5% of
the sentences). Table 2 shows the number of each

�

� ����

� ����

� ����

� ����

� �����

� � ����

� � ����

� � ��� � ��� � ��� � ��� � ��� � ��� 	 ���

 � �
 � � � � � �
 � �
 � � �
 � � � � �

�
�
�
��
�
�
�
�
	
�

��
�
�
�
	

�
�
�
�
�	
�
��
�

��

� ��

� ��

� ��

� ��

� ��

� ��

	 ��

� � ���� � ���� � ����
 ���� � ����� � � ���� � � ����

� �
 � � � � �
 � � � � �
 � � � � � �
 � � � � �
 �

�
�
�
�
�
�
�
�

��

� ��

� ��

� ��

� ��

� ��

� ��

	 ��

 ��

� ��

� ���

� � ���� � ���� � ����
 ���� � ����� � � ���� � � ����

�
 �

�
�
�
�
�
�
�
�

Figure 3: The number of extracted rules (left), coverage forTestSetA(middle) andTestSetB(right)

phenomenon that the original grammar fails to an-
alyze ((A) in the table), and also shows the num-
ber of each phenomenon that the XHPSG gram-
mar with the extracted rules still fails to analyze
((B) in the table). As seen in the table, more than
70% of phenomena that the original grammar can-
not analyze were analyzed by our method. Note that
most of the phenomena that cannot be analyzed with
the extracted rules were lack of lexical entry, in-
consistency between the grammar and the treebank,
and complicated phenomena that are currently open
problems in the field of linguistics.

Most of the lack of lexical entries failures were
caused by the lack of ‘apostrophe s.’ This means
that just by adding lexical entries for ‘apostrophe
s’, we can cover almost half of this type of er-
ror. Among the words listed in the table, the XH-
PSG grammar has no lexical entry for ‘itself’ and
‘as (Adv)’. As our method is only concerned with
grammar rules, our method cannot recover words
that have no lexical entry. This means that if a sen-
tence includes the word ‘itself’, the sentence cannot
be recovered by our method.

7 Conclusion
We proposed two new types of default unifica-
tion, ideal and non-ideal lenient default unification.
Ideal lenient default unification is desirable in that
it maximizes the amount of information in the re-
sult, while other existing types of default unification
maximize the amount of information in the default.
Although non-ideal lenient default unification gives
a less informative result than the ideal one, it works
efficiently and retains the desiderata the ideal one
satisfies.

We also proposed a new approach to extend the
coverage of a grammar. We extracted grammar rules
from the results of robust parsing using lenient de-
fault unification. A series of experiments showed
that the extracted rules work robustly, and the cov-
erage of the XHPSG grammar for Penn Treebank
greatly increased with a little overgeneration.

References
G. Bouma. 1990. Defaults in unification grammar. In

Proc. of ACL-1990, pages 165–172.

B. Carpenter, 1993.Inheritance, Defaults, and the Lexi-
con, chapter Skeptical and credulous default unifica-
tion with applications to templates and inheritance,
pages 13–37. Cambridge University Press, Cam-
bridge.

D. Chiang. 2000. Statistical parsing with an
automatically-extracted tree adjoining grammar.
In Proc. of ACL-2000, pages 456–463.

A. Copestake. 1993.The representation of lexical se-
mantic information. Ph.D. thesis, University of Sus-
sex.

S. Douglas and R. Dale. 1992. Towards robust PATR. In
Proc. of COLING-1992, pages 468–474.

O. Imaichi and Y. Matsumoto. 1995. Integration of syn-
tactic, semantic and contextual information in pro-
cessing grammatically ill-formed inputs. InProc. of
IJCAI-1995, pages 1435–1440.

M. Kiyono and J. Tsujii. 1993. Linguistic knowledge
acquisition from parsing failures. InProc. of EACL-
1993, pages 222–231.

A. Lascarides and A. Copestake. 1999. Default repre-
sentation in constraint-based frameworks.Computa-
tional Linguistics, 25(1):55–105.

M. Marcus, B. Santorini, and M. A. Marcinkiewicz.
1993. Building a large annotated corpus of En-
glish: the Penn Treebank.Computational Linguistics,
19(2):313–330.

G. Neumann. 1994. Application of explanation-based
learning for efficient processing of constraint-based
grammars. InProc. of the 10th IEEE Conference on
Artificial Intelligence for Applications, pages 208–
215.

The XTAG Research Group. 1995. A Lexicalized Tree
Adjoining Grammar for English. Technical Report
95-03, IRCS, University of Pennsylvania.

G. Russell, J. Carroll, and S. Warwick-Armstrong. 1991.
Multiple default inheritance in a unification-based lex-
icon. InProc. of ACL-1991, pages 215–221.

C. Samuelsson and M. Rayner. 1991. Quantitative eval-
uation of explanation-based learning as an optimiza-
tion tool for a large-scale natural language system. In
Proc. of IJCAI-1991, pages 609–615.

Y. Tateisi, K. Torisawa, Y. Miyao, and J. Tsujii. 1998.
Translating the XTAG English grammar to HPSG. In
Proc. of TAG+4, pages 172–175.

F. Xia. 1999. Extracting tree adjoining grammars from
bracketed corpora. InProc. of NLPRS-1999, pages
398–403.

	Table of Content
	Topics
	Authors

