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Abstract ied to develop a system of lexical semantics to deal

This paper describes new default unification, Ienienf[,g:”th the default inheritance in a lexicon, but it is
default unification. It works efficiently, and gives 2IS0 desirable for the recovery of such constraint vi-
more informative results because it maximizes thé’/ation errors due to the following merits: i) default
amount of information in the result, while other de- Unification is always well-defined, and ii) a feature
PP A it ’ structure is relaxed such that the amount of infor-
fault unification maximizes it in the default. We also ation is maximized. Erom the viewpoint of robust
describe robust processing within the framework of ! . nt of lost inf PO
HPSG. We extract grammar rules from the results o "0C€SSINg. an amount of lost information can be re-
' : - : P garded as a cost (i.e., penalty) of robust processing.
robust parsing using lenient default unification. The th ds. default unification tries to minimi
results of a series of experiments show that parsind © ertwocr;_s, € aLf[ ; utnfl 'C? lon {lesu%mm(ljmlze
with the extracted rules works robustly, and the cov-11¢, €0St. oIVen a strict feature structureand a

efault feature structur®, default unification is de-
g?r?r? '?:eaetr)na%rllu\?vlg/s_dger\gtcl)g ?ﬁ;‘gﬁgﬂﬁ{ﬂgﬁ?é? ined as unification that satisfies the following (writ-

overgeneration. ten asF 0 G): 1) It is always defined. 2) All strict
_ information is preserved. That iB,C (F 0 G). 3) It
1 Introduction reduces to standard unification in the cas€ @nd

being consistent. That iF 0 G) = (F UG) if

UG is defined. With these definitions, Douglas’
elaxation technique can be regarded as a sort of de-
éault unification. They classify constraints into nec-

for natural language processing, thus, efficient an
wide coverage parsing has been extensively pu
sued in natural language literature. This study aim

Parsing has often been considered to be crucif

- A e ssary constraints and optional constraints, which
gttrrl?gld‘:’é pé?gﬁ?ﬁ:g? mg"snGt)h ?ﬁgﬁgﬁé'ﬁg 22(/%?_ an be regarded as strict information and default in-
age of manually-developed HPSG grammars Théormation in the definition of default unification.
meaning of ‘robust processing’ is not limited to ro- _ Carpenter (1993) gave concise and comprehen-
bust processing for ill-formed sentences found insive definitions of default unification. However, the
a spoken language, but includes robust processingfoblem in Carpenter’s default unification is that it
for sentences which are well-formed but beyond thdries to maximize the amount of information in a de-
grammar writer's expectation. fault feature structure, not the result of default uni-

Studies of robust parsing within unification-basedfication. Consider the case where a grammar rule
grammars have been explored by many researchel§the default feature structure and the daughters are
(Douglas and Dale, 1992; Imaichi and Matsumoto the strict feature structure. The head feature prin-
1995). They classified the errors found in analyzingCiPle can be described as the structure-sharing be-
ill-formed sentences into several categories to mak&veen the values of the head feature in a mother
them tractable, e.g., constraint violation, missing ordnd in a head daughter. The set of constraints that
extra elements, etc. In this paper, we focus on retepresent the head feature principle consists of only
covery from the constraint violation errors, which is 0ne element. When we lose just one element in the
aviolation of feature values. All errors in agreementhead feature principle, a large amount of informa-
fall into this category. Since many of the grammat-tion in the daughter’s substructure is not propagated
ical components in HPSG are written as constraint0 its mother. As Copestake (1993) mentioned, an-
represented by feature structures, many of the e@ther problem in Carpenter’s default unification is
rors are expected to be recovered by the recovery ghat the time complexity for finding the optimal an-
constraint violation errors. swer of default unification is exponential because
unification and describes their application to robusonstraints in a default feature structure.
processing. Default unification was originally stud- Here, we proposédeal lenient default unifica-



tion, which tries to maximize the amount of infor- default unification leads to a unigue result. The de-
mation of a result, not the amount of default infor- fault information which can be found in every result
mation. Thus, the problem of losing a large amouniof credulous default unification remains. Following
of information in structure-sharing never arises. Weis an example of skeptical default unification.
also propos¢enient default unificatiomvhose algo-
rithm is much more efficient than the ideal one. Its _ . |F:[1b :a] [F:[la F:a
time complexity is linear to the size of the strict fea- [F:@ Us Gl | =M b, Gl = &2
ture structure and the default feature structure. In- € ' € '
stead, the amount of information of a result derived
{':)g/altegg(ter?é (iJIdeé:LIJIé#:ification is equal to or less thans o Foreed Unification
We apply lenient default unification to robust pro- FOrced unification is another way to unify incon-
cessing. Given an HPSG grammar, our approacﬁ'Stem feature structures. Forced unification always
takes two steps; i) extraction of grammar rules fromsucceeds by supposing the existence of the top type
the results of robust parsing using lenient defaul{tN€ mo?t specific t%/pe) In a tye_e h|e_rar(r:\hy. Un'rf\'.‘
unification for applying the HPSG grammar rules C&tion of any pair of types is defined in the type hi-
(offline parsing), and i) runtime parsing using the Erarchy, and therefore unification of any pair of fea-
HPSG grammar with the extracted rules. The exiure structures is defined. One example is described
tracted rules work robustly since they reflect the ef-gy Imdauchl_fanc:_ Matsu_lr_rp]o'go (19]?5) t(_they Icall It cost-
fects of recovery rules applied during offline robust®@s€d unification). ‘Their unification always suc-
parsing and the conditions in which they are ap-CE€dS by supposing the top type, and it also keeps
plied. the information about inconsistent types. Forced
Sections 3 and 4 describe our default unificationur"ﬁcatIon can be regarded as one of the toughest
Our robust parsing is explained in Section 5. SecTObUSt processing because it always succeeds and
tion 6 shows a series of experiments of robust parstcVer loses tp]e (ljnforrg:atll?n fefmbe%ded_f!n feature
ing with default unification. structures. The drawback of forced unification is
the postprocessing of parsing, i.e., feature structures
with top types are not tractable. We wrkel; G for
the forced unification oF andG.

2 Background

Default unification has been investigated by many . o
researchers (Bouma, 1990; Russell et al., 19913 Ideal Lenient Default Unification

Copestake, 1993; Carpenter, 1993; Lascarides ang this section, we explain our default unification,
Copestake, 1999) in the context of developing lexigea] lenient default unificatian Ideal lenient de-
cal semantics. Here, we first explain the definitions, it ynification tries to maximize the amount of
given by Carpenter (1993) because his definition isnformation of the result, subsuming the result of
both concise and comprehensive. forced unification. In other words, ideal lenient de-
2.1 Carpenter's Default Unification fault unification tries to generate a result as similar
as possible to the result of forced unification such

Carpenter proposed two types of default unification¢hat the result is defined in the type hierarchy with-
credulous default unificatioand skeptical default oyt the top type. Formally, we have:

unification

(Credulous Default Unification) Definition 3.1 Ideal Lenient Default Unification

<~ /| G' C Gis maximal such that
F”CG—{FHG FLIG is defined }

(Skeptical Default Unification)

such thatr UG is defined

B G' C¢ (FU¢G) is maximal
FUG=[{FuUG
without the top type

whereC¢ is a subsumption relation where the top

F is called astrict feature structurewhose in-  type is defined. _ B
formation must not be lost, an@ is called ade- From the definition of skeptical default unifica-
fault feature structurewhose information might be tion, ideal lenient default unification is equivalent

lost but as little as possible so thfatandG can be o F (s (FU{G) assuming that skeptical default uni-
unified. A credulous default unification operation fication does not add the default information that in-

is greedy in that it tries to maximize the amount of cludes the to type to the strict information.
information it retains from the default feature struc- Consider tﬁe following feature structures.

ture. This definition returns a set of feature struc-

tures rather than a unique feature structure. E: (':33%

Skeptical default unification simply generalizes E_ "R G [F
the set of feature structures which results from cred- I R =Y N (e
ulous default unification. The definition of skeptical G|ca



In the case of Carpenter’s default unification, the
results of skeptical and credulous default unification

become as followsE (s G = F,F (. G= {F}. This .
is becausés is generalized to the bottom feature
structure, and hence the result is equivalent to the
strict feature structure.

With ideal lenient default unification, the result
becomes as follows.

F @ Ctopnode(H)
F: |Gb a © 0 fprode(H)
< HZ F G: T @ O fpchild(H)
F Llj G = F Lt H:c
G: |Ga Gl
H{2]

generalize(H) =

Note that the result of ideal lenient default unifica-

tion subsumes the result of forced unification. _ _ _
As we can see in the example, ideal lenient de-  Figure 1:F, G andH in the graph notation

fault unification tries to keep as much information

of the structure-sharing as possible (ideal lenient

default unification succeeds in preserving the struc- F L H fails because some of the path valueHin

ture-sharing tagged &sand2lthough skeptical and conflict with F, or some of the path equivalence in

credulous default unification fail to capture it). H cause inconsistencies. The basic ideas are that
_ o i) the inconsistency caused by path value specifica-
4 Lenient Default Unification tions can be removed by generalizing the types as-

: : : .« signed to the fail points i, and that ii) the incon-
The optimal answer for ideal Ignlcintdefaultumﬂca—sistency caused by path equivalence specifications
tion can be found by calculating us (FUtG). As  can be removed by unfolding the structure-sharing
Copestake (1993) mentioned, the time complexityof fail path nodes itH.

of skeptical default unification is exponential, and | et H be (Qy,qy, 64, 34), whereQ is a set of a
therefore the time complexity of ideal lenient de-feature structure’s nodegjs the root noded(q) is
fault unification is also exponential. .atotal node typing function, an®i(7t,q) is a partial

~ As other researchers pursued efficient default unifunction that returns a node reached by following
fication (Bouma, 1990; Russell et al., 1991; Copespath 1t from q. We first give several definitions to
take, 1993), we also propose another definition Ogefine a generalized feature structure.

default unification, which we callenient default o

unification An algorithm derived for it finds its an- Definition 4.1

swer efficiently. toppath{H) = {r]3q € topnodéH).(q = dy (1T, Gt
Given a strict feature structufé and a default faﬂ%atrfg(H) :{{A\aqq € anod§H§,E3: a(nq_:%%%
feature structur&, letH be the result of forced uni-  sqH) = {m{3q  fpchild(H).(q= 4 (m,qn))}

as a function that returns the fail points (the nodes V(H) — g | dme failpath(H).
that are assigned the top type ki), fpnodeéH) (H)=U (F =PV(11,64 (o4 (1T,01))))
as a function that returns the fail path nodes (the 1”(H) = 1(H)ul’(H
nodes from which a fail point can be reached), and py(r o) — { the least feature structures where
f pchild(H) as a a function that returns all the nodes ’ path value ofitis o
that are not fail path nodes but the immediate chil-
dren of fail path nodes.

Consider the following feature structures.

fication, i.e.,H = FU{G. We definetopnodéH) I(H)=L({F|3metoppatiH).(F = PV(;,L))})

Q

LetI(={(Qi,a1,6,9)) bel”(H). The definition
of the generalized feature structure is given as fol-

lows:
EE ﬁ%‘atj Definition 4.2 (Generalization oH)
‘H:C . . _
F_ EE - [FFIL generalizéH) = (Qy/, a1, 614/, &) Where
G: [G:iﬁ:ﬁ%} ’ [G:G } Qu=0QnU GI @ ifgeo
| _ [ tu(@ ifgeQu
HiHa Oh(a) = { 6(a) ifgeQ
Figure 1 shows, G andH in the graph notation. S (f,q) = { o(f,q) ifgeQn
This figure also shows the nodes that correspond to v a(t,q) ifqeQ

topnodéH), f pnodéH) and f pchild(H). O (m,qr) = &(m,Gn) for all e sgH)



p“é??ﬁ{é'ignee”weé?gée;ﬁf” the size of feature structurés and G because the
ool then _ time complexity of each algorithm (the algorithm
81(d) 1= o1 (B Pt e ) for finding fail points, finding fail path nodes, and
forerr s 14 1) is defineq do generalization) is linear to their size.
r= 3(f,q); .
e s st ) Comparison _ _ -
) = The difference between ideal lenient default unifi-
et cation and lenient default unification can be exem-
bosedre generalaE = (O G 6751T] plified by the following example.
q= generalize-sub. G ); (skeptical default unification)
return(QH, 9, 64,04); F al -F_ -F_ a—
. _ G:a|is |Gl = |G 2
Figure 2: An algorithm that maké4$ more general [H: b] H: H:b |
Figure 1 also shows the resultgéneraliz¢F LIt G). (|E'd:<.agl_len|e_r|§efault %r,lcgt'on)
Finally, lenient default unificatiofr 0 G is de- S}g i G:} = |G:[2]
fined as follows: (H:bl [H: (1] H:b |
Definition 4.3 (Lenient Default Unification) (lenient default unification)
F:a] . F:(1 F:a
F 0 G = F Ugeneraliz¢FLI;G) S;g Y ﬁ - ﬁ;g

. N < In the example above, the results of ideal lenient
ForF andG depicted in Figure 1F L Gbecomes as  gefault unification and skeptical default unification

follows: are the same. In the case of lenient default unifi-
cation, all the information embedded in the default
F{lla . ;
FE |G:Gb is removed because all structure-sharings tagged as
B H{2kc are on the paths that lead to the fail points in the
FuG= F{d] result of forced unification. Lenient default unifica-
G: |Gt |G:Ga tion is much more suspicious in removing informa-
” _Hai tion from the default than the ideal one. Lenient

default unification may remove structure-sharings
Both ideal and non-ideal lenient default unifica- that are irrelevant to unification failure. Another de-

tion satisfy the following desiderata: 1) It is always f€Ct of lenient default unification is that the bottom
defined (and produces a unique result). 2) All stricttyP€ IS assigned to nodes that correspond to the fail

. S . < points in the result of forced unification. The type
information is preserved. That i, C (FUG) Tt gsigned to their nodes should be more specific than

(FL¢G). 3)F 0 Gis defined without the top type. 4) the bottom type as the bottom type has no feature,
It reduces to standard unification in the c&sand i.e., all the arcs that go out from the fail point are
G are consistent (unifiable). ThatBSG=FLG  cut.
if F UG is defined. Though lenient default unification seems to have
Algorithm many defects, lenient default unification has the ad-
g ) ) o vantage of efficiency. As we are thinking to use de-
Our algorithm for lenient default unification pro- fault unification for practical robust processing, the
ceeds in the following steps. 1) Calculate forcedefficiency is of great importance. Furthermore, the
unification of F andG (let H be FL{G). 2) Find  result of lenient default unification can be more in-
fail points andfail path nodesn H. 3) Generalize formative than that of skeptical default unification in
H so that~ LIH can be unified. ~ many cases of practical applications. For example,
Figure 2 describes the algorithm that generalizegyppose that the grammar rieand the daughters
the result of forced unificatioh The time complex- DT Rare given as follows.

ity of the algorithm for findingF 0 G is linear to MOTHER:HEAD: 1]
Lin this paper, we assume acyclic feature structures. Our R DTRS: |H: 2 [HEAD: [1head
algorithm never stops if a cyclic part in a feature structure is to NH:SPR{2]

be generalized. Acyclicity is easily enforced by requiring that ) ] obi

no path has a proper extension that leads to the same node. We DTR= [DTRS: {H#gég:ﬁéigngJSEnomH

also assume outputs of default unification are not necessarily ' ' '

totally-well typed since constraints of appropriateness condi-Suppose also that the typead hasPHON;, CASE;
tions of types can propagate a node to its subnodes, and thiyy: andTENSE:as its features, and the typgnhas

behavior makes the definitions of default unification complex. HEAD: andVAL: . The result of skeptical default uni-
Instead, totally-well typedness can be easily enforced by the ' .

total type inference function. fication DTRs R becomeDTR This is because



all structure-sharings embeddedRrare relevantto behind this construction are that (i) we had better
unification failure. However, the result of lenient construct a mother node without the information of
default unification is more informative.

DTR3 R=DTROR=

the non-head daughter rather than construct noth-
ing (i.e., we had better construct a mother node by
unifying only a head-daughter and a grammar rule),

Pﬁ%dN. (i) we had better construct a mother node with the
MOTHER:HEAD: |CASE: L maximal information of a non-head daughter rather
INV: than have no information of the non-head daughter
TENSE:[5] i added. Parse trees can be derived even if a parse tree
sign cannot be derived by normal unification.
Pﬁ%dN_ Offline robust parsing is based on A* algorithm,
H: |HEAD: |CASE:obj but we generate only parse trees which meet the fol-
' INV: lowing conditions, 1) a generated parse tree must
TENSE:[5] be consistent with an existing bracketed corpus, and
DTRS: VAL: [6] 2) the parsing cost of a generated parse tree must
Ign q be minimum. This means that i) we can limit a
Pﬁ%N_ search space, and thatii) the parsing result is valid in
NH:SPR: |HEAD: |CASE:nom the sense that it is consistent with the existing cor-
INV: pus. The cost of a parse tree can be calculated by
TENSE:[5] adding the cost of lenient default unification, which
L VAL: [6] 1] is the amount of information that is lost by lenient

. . _ default unification. We regard it as the difference
The information of structure-sharing is preservedyetween the number of path values and structure-
as much as possible. In the example abovegharing in the results of a lenient default unification
the structure-sharing tagged @5in the original  5nd a forced unification.

grammar ruleR is decomposed into the structure- — 5o o0 o teaction is ver -
. : § ; y concise. When we
sharings3l[4l51[6. That is, the structure-sharing g4 a mothemM in the result of offline parsing that

tagged a&lis preserved excepiEAD:CASE: cannot be derived by using unification but can be

. . derived by default unification, we regakdl — L,R
5 Offline Robust Parsing and Grammar as a new rule, wheré and R are the daughters
Extraction of the mother. The rules extracted in such a way
This section describes a new approach to robustan reconstruct the mothers as does default uni-
parsing using default unification. Given an HPSGfication, and they reflect the condition of trigger-
grammar, our approach takes two steps; i) extractiofng default unification, i.e., the extracted rules are
of grammar rules from the result offline robust not frequently triggered because they can be ap-
parsing using default unification for applying the plied to feature structures that are exactly equiva-
HPSG grammar rules, and iyntime parsingusing  lent to their daughter’s part. By collecting a number
the HPSG grammar with the extracted rules. Offlineof such rules, a grammar becomes wide-coverage
parsing is a training phase to extract grammar rulesyith some overgeneration. They can be regarded
and runtime parsing is a phase where we apply thas exceptions in a grammar, which are difficult to
extracted rules to practice. The extracted rules worke captured only by propagating information from
robustly over corpora other than the training corpusdaughters to a mother.
because the extracted rules reflect the effects of de- This approach can be regarded as a kind
fault unification that are applied during offline pars- of explanation-based learning (Samuelsson and
ing. Given an annotated corpus, our algorithm exRayner, 1991). The explanation-based learning
tracts grammar rules that make the coverage of thghethod is recently attracting researcher’s attention
HPSG grammar wider. _ Xia, 1999; Chiang, 2000) because their parsers are
In the offline parsing, constituents are generate@omparative to the state-of-the-art parsers in terms
by default unification of daughters and grammarof precision and recall. In the context of unification-
rules of the HPSG gramnfarwhere a head daugh- based grammars, Neumann (1994) has developed a
ter and a grammar rule are strict feature structureparser running with an HPSG grammar learned by
and a non-head daughter is a default feature stru@xplanation-based learning. It should be also noted
ture. With this construction, the information in a that Kiyono and Tsujii (1993) exemplified the gram-
grammar rule and a head daughter is strictly premar extraction approach using offline parsing in the
served and the information in a non-head daughter
is partially lost (but, as little as possible). The ideas  3ajthough the size of the grammar becomes very large, the
extracted rules can be found by a hash algorithm very effi-

2|In HPSG, both constituents and grammar rules are repreeiently. This tractability helps to use this approach in practical
sented by feature structures. applications.




Training | Test Set| Test Set [_Phenomena LA LB [ €)1 D0 ]
COF us A B Tack of Iexical entry 118 32 86 729
p inconsistency between XHPSG and Penn Tree- 44 13 31 705
bank
# Of sentences 5’903 11480 100 punctuation, quotafion, parenthesis 36 15 21 58.3
Avg. length 23.59 23.93 6.63 Coordination 4 - 619
apposition K
Of sentences compound noun/adjective/adverb 14 3 1T 78.6
Adv modifying PP 12 2 10 833
relafive clause 12 5 7 58.3
. . fopicalization 1T 0 1T 100.0
Table 1: Corpus size and average length of sen-ounmoarer 728 800
omission 8 2 6 75.0
tences parenthetical expression 7 3 7 57.1
verb saying 7 1 6 85.7
expression of frequency, NP +a + N 7 0 7 100.0
350 present participle construction 5 3 3 50.0
idiom 5 2 3 60.0
300 violation of agreement 3 0 3 100.0
$ adverbial noun 3 0 3 100.0
3 250 present progressive, be + Adv + present prp- 3 T 2 66.7
N gressive
§ 200 sentence modification from the beginning of @ 2 0 2 100.0
e sentence
i be + complement sentence 2 0 2 100.0
s nominalization of adjective 1 0 1 100.0
2% double numerals (NP + roughly + double + NR) 1 T 0 0.0
" [totarl [ 349 ] 99 [ 250 | 716 )
0
0 20000 40000 60000 80000 100000 120000 140000 (A) ... frequency of phenomena that the XHPSG grammar fails to analyze
the number of extracted rules (B) ... frequency of phenomena that the XHPSG grammar with the extracted rules fails to
analyze
. . C)=(A) — (B) ... frequency of phenomena that cannot be analyzed by the XHPSG grammar
Figure 4. The average number of edges Whemitcan be analyzed by the XHPSG grammar with the extracted rules
TestSetBvas parsed (D) = (C)/(A) ... the ratio of phenomena that are recovered

Table 2: Analysis of phenomena that are recovered

colr;itre]gh}?fvt\e/;(%lgggtigr;ét:ggsg é%?]gglcgllues in the exyvhich is a translation into HPSG of the manually-

tracted rules because they contain too specific inford€Veloped XTAG English grammar (The XTAG Re-
mation. For instance, a value BIONOLOGY:repre-  Search Group , 1995). The growth of the number

: ; f extracted rules is shown in the left of Figure 3.
sents alist of phoneme strings of a phrasal structurél)_he average cost per sentence in offline ar%in was
Without removing them, exiracted rules cannot beg g P parsing

: : : 8.11. This means the total number of nodes and
glegzgrei;\eg thje Ttl‘l when completely the same strings a structure-sharing that are removed was less than 9

for each sentence. The coverage for the training cor-
. pus by offline parsing was 95.4%.

6 Performance Evaluation The coverage was measured by using the XHPSG
We measured the performance of our robust parsgrammar with the extracted rules. The coverage for
ing algorithm by measuring coverage and degreq estSetfand TestSetBs illustrated in the middle

of overgeneration for the Wall Street Journal in theand right of Figure 3, respectively. As seen in the
Penn Treebank (Marcus et al., 1993). The trainindigure, the coverage for the Wall Street Journal grew
corpus consists of 5,903 sentences selected from thgom 24.7% to 65.3% fof estSetAnd from 64% to
Wall Street Journal (Wall Street Journal 00 — 02),88% for TestSetB

and we prepared two sets of test corpdrastSetA e measured the degree of overgeneration by
andTestSetBTestSetAonsists of 1,480 sentences measuring the number of edges, using a parser
(Wall Street Journal 03) and is used for measurpased on A* algorithm. Figure 4 shows the aver-
ing c_overagé. TestSetRBonsists of 100 sentences age number of edges whérestSetBvas parsed.
and is used for measuring the degree of overgenerg&rom this figure and Figure 3, we can observe that
tion. The sentences GfestSetBire the shortest 100 the coverage grew from 64% to 88% by generating
sentences iMestSetA Table 1 shows the average just 87.99 more edges (the number of edges grew
sentence length of each corpus. Here, ‘coverageérom 240.68 to 328.67 in average).

means the ratio of ‘the number of sentences that are From the experiments, we can say that our ap-

covered by a grammar’ to ‘the number of all sen-proach is effective in extending coverage with a lit-
tences’. Here, we say a sentence is covered Wheﬂe Overgeneration_

a sentence can be analyzed by a parser and the resuliye have analyzed the phenomena that cannot
includes trees that are consistent with brackets angg analyzed by the original XHPSG grammar but
POS tags annoltated in the Penn Treebafrf1|l_<. can be analyzed by the extracted rules in the first
_ Grammar rules were extracted by offline pars-oog sentences in Wall Street Journal 03 of the test
ing with the XHPSG grammar (Tateisi et al., 1998), gat. Among the 200 sentences, the original XH-
4In the experiment, we removed the values that corresponaDSG grammar can cover 38 sentences (.19% of the
to the phoneme strings of phrasal structures, some of syntactigentences) and the XHPSG grammar with the ex-
constraints, and semantics of phrasal structures tracted rules can analyze 131 sentences (65.5% of
5There is no overlap between the training and test corpus. the sentences). Table 2 shows the number of each
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Figure 3: The number of extracted rules (left), coveragd st SetAmiddle) andT estSetHright)

phenomenon that the original grammar fails to an-B. Carpenter, 1993inheritance, Defaults, and the Lexi-
alyze ((A) in the table), and also shows the num- con chapter Skeptical and credulous default unifica-
ber of each phenomenon that the XHPSG gram- tion with applications to templates and inheritance,
mar with the extracted rules still fails to analyze Pages 13-37. Cambridge University Press, Cam-
((B) in the table). As seen in the table, more than b”c(:jr?i:'ng 2000.  Statistical parsing with an

0 H H L . J . . - . ?

th/ ;ﬁ;lgggr\)\?er?eegﬁ;&?e?gyoéﬁ;?T?Ie%rg(;nmg{ecagt automatically-extracted tree adjoining grammar.
' S In Proc. of ACL-2000pages 456—-463.

most of the phenomena that cannot be analyzed with . copestake. 1993The representation of lexical se-

the extracted rules were lack of lexical entry, in-  mantic information Ph.D. thesis, University of Sus-

consistency between the grammar and the treebank, sex.

and complicated phenomena that are currently ope8. Douglas and R. Dale. 1992. Towards robust PATR. In

problems in the field of linguistics. Proc. of COLING-1992pages 468-474.

Most of the lack of lexical entries failures were O. Imaichi and Y. Matsumoto. 1995. Integration of syn-
caused by the lack of ‘apostrophe s. This means tactic, semantic and contextual information in pro-
that just by adding lexical entries for ‘apostrophe E]eéi"lngg%rammat'cf‘gg”'lfﬂged inputs. Froc. of
s', we can cover almost half of this type of er- M. Ki OI:IO ar?dpﬁgeTssu'ii 1_993 Linguistic knowledge
ror. Among the words listed in the table, the XH- 4 : M. ' g 9

; . acquisition from parsing failures. IRroc. of EACL-
PSG grammar has no lexical entry for ‘itself’ and 193%' pléges 22210231'_ g fall

‘as (Adv)'. As our method is only concerned with A | ascarides and A. Copestake. 1999. Default repre-
grammar rules, our method cannot recover words sentation in constraint-based frameworomputa-
that have no lexical entry. This means that if a sen- tional Linguistics 25(1):55-105.

tence includes the word ‘itself’, the sentence cannoM. Marcus, B. Santorini, and M. A. Marcinkiewicz.

be recovered by our method. 1993. Building a large annotated corpus of En-
glish: the Penn Treebankomputational Linguistics
7 Conclusion 19(2):313-330.

... G. Neumann. 1994. Application of explanation-based
We proposed two new types of default unifica- |earning for efficient processing of constraint-based
tion, ideal and non-ideal lenient default unification. grammars. IrProc. of the 10th IEEE Conference on
Ideal lenient default unification is desirable in that Artificial Intelligence for Applications pages 208-
it maximizes the amount of information in the re- _ 215. o
sult, while other existing types of default unification The XTAG Research Group. 1995. A Lexicalized Tree
maximize the amount of information in the default. Adjoining Grammar for English. Technical Report
Although non-ideal lenient default unification gives . 22-03. I'IRCS* Unll\I/er5|éy of Pe””.'53|’(|"a”'a-
a less informative result than the ideal one, it workse: Russell, J. Carroll, and S. Warwick-Armstrong. 1991.

efficiently and retains the desiderata the ideal one :\(/:lg,!]tlﬂlﬁ lglgg ucl)tf|RI&eLr_ltlagngcleF:ggaegn2|fl|%a_t|202n1-'based lex-

satisfies. C. Samuelsson and M. Rayner. 1991. Quantitative eval-
We also proposed a new approach to extend the yation of explanation-based learning as an optimiza-

coverage of a grammar. We extracted grammar rules tion tool for a large-scale natural language system. In

from the results of robust parsing using lenient de- Proc. of IJCAI-199]pages 609-615.

fault unification. A series of experiments showedY. Tateisi, K. Torisawa, Y. Miyao, and J. Tsujii. 1998.

that the extracted rules work robustly, and the cov- Translating the XTAG English grammar to HPSG. In

erage of the XHPSG grammar for Penn Treebank Proc. of TAG+4 pages 172-175.

i i i i Xia. 1999. Extracting tree adjoining grammars from
greatly increased with a little overgeneration. bracketed corpora. IProc. of NLPRS-1999pages
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