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Abstract

In word prediction systems for augmentative and al-
ternative communication (AAC), productive word-
formation processes such as compounding pose a
serious problem. We present a model that predicts
German nominal compounds by splitting them into
their modifier and head components, instead of try-
ing to predict them as a whole. The model is im-
proved further by the use of class-based modifier-
head bigrams constructed using semantic classes
automatically extracted from a corpus. The eval-
uation shows that the split compound model with
class bigrams leads to an improvement in keystroke
savings of more than 15% over a no split compound
baseline model. We also present preliminary results
obtained with a word prediction model integrating
compound and simple word prediction.

1 Introduction

N-gram language modeling techniques have been
successfully embedded in a number of natural lan-
guage processing applications, including word pre-
dictors for augmentative and alternative communi-
cation (AAC). N-gram based techniques rely cru-
cially on the assumption that the large majority of
words to be predicted have also occurred in the cor-
pus used to train the models.

Productive word-formation by compounding in
languages such as German, Dutch, the Scandina-
vian languages and Greek, where compounds are
commonly written as single orthographic words, is
problematic for this assumption.

Productive compounding implies that a sizeable
number of new words will constantly be added to
the language. Such words cannot, in principle, be
contained in any already existing training corpus,
no matter how large. Moreover, the training cor-
pus itself is likely to contain a sizeable number of
newly formed compounds that, as such, will have

an extremely low frequency, causing data sparse-
ness problems.

New compounds, however, differ from other
types of new/rare words in that, while they are rare,
they can typically be decomposed into more com-
mon smaller units (the words that were put together
to form them). For example, in the corpus we an-
alyzed,Abend’evening’ andSitzung’session’, the
two components of the German compoundAbend-
sitzung’evening session’, are much more frequent
words than the latter. Thus, a natural way to handle
productively formed compounds is to treat them not
as primitive units, but as the concatenation of their
components.

A model of this sort will be able to predict newly
formed compounds that never occurred in the train-
ing corpus, as long as they can be analyzed as the
concatenation of constituents that did occur in the
training corpus. Moreover, a model of this sort
avoids the specific type of data sparseness problems
caused by newly formed compounds in the training
corpus, since it collects statistics based on their (typ-
ically more frequent) components.

Building upon previous work (Spies, 1995;
Carter et al., 1996; Fetter, 1998; Larson et al.,
2000), Baroni et al. (2002) reported encouraging
results obtained with a model in which two-element
nominal German compounds are predicted by treat-
ing them as the concatenation of amodifier(left el-
ement) and ahead(right element).

Here, we report of further improvements to this
model that we obtained by adding a class-based bi-
gram term to head prediction. As far as we know,
this it the first time that semantic classes auto-
matically extracted from the training corpus have
been used to enhance compound prediction, inde-
pendently of the domain of application of the pre-
diction model.

Moreover, we present the results of preliminary
experiments we conducted in the integration of



compound predictions and simple word predictions
within the AAC word prediction task.

The remainder of this paper is organized as fol-
lows. In section 2, we describe the AAC word pre-
diction task. In section 3, we describe the basic
properties of German compounds. In section 4, we
present our split compound prediction model, focus-
ing on the new class-based head prediction compo-
nent. In section 5, we report the results of simu-
lations run with the enhanced compound prediction
model. In section 6, we report about our prelimi-
nary experiments with the integration of compound
and simple word prediction. Finally, in section 7,
we summarize the main results we obtained and in-
dicate directions for further work.

2 Word prediction for AAC

Word prediction systems based onn-gram statistics
are an important component of AAC devices, i.e.,
software and possibly hardware typing aids for dis-
abled users (Copestake, 1997; Carlberger, 1998).

Word predictors provide the user with apredic-
tion window, i.e. a menu that, at any time, lists the
most likely next word candidates, given the input
that the user has typed until the current character.
If the word that the user intends to type next is in
the prediction window, the user can select it from
there. Otherwise, the user will keep typing letters,
until the target word appears in the prediction win-
dow (or until she finishes typing the word).

The (percentage)keystroke savings rate(ksr) is a
standard measure used in AAC research to evaluate
word predictors. Theksr can be thought of as the
percentage of keystrokes that a “perfect” user would
save by employing the relevant word predictor to
type the test set, over the total number of keystrokes
that are needed to type the test set without using the
word predictor.

Usually, theksr is defined by

ksr = (1− ki + ks
kn

) ∗ 100 (1)

where:ki is the number of input characters actually
typed,ks is the number of keystrokes needed to se-
lect among the predictions presented by the model
andkn is the number of keystrokes that would be
needed if the whole text was typed without any
prediction aid. Typically, the user will need one
keystroke to select among the predictions , and thus
we assume thatks equals 1.1

1In the split compound model, the user needs one keystroke
to select the modifier and one keystroke to select the head.

The ksr is influenced not only by the quality of
the prediction model but also by the size of the pre-
diction window. In our simulations, we use a 7 word
prediction window.

Ksr is not a function of perplexity, but it is gener-
ally true that there is an inverse correlation between
ksr and perplexity (Carlberger, 1998).

3 Compounding in German

Compounding is an extremely common and produc-
tive mean to form words in German.

In an analysis of the APA newswire corpus (a
corpus of over 28 million words), we found that al-
most half (47%) of the wordtypeswere compounds.
However, the compounds accounted for a small por-
tion of the overalltokencount (7%). This suggests
that, as expected, many of them are productively
formed hapax legomenaor very rare words (83%
of the compounds had a corpus frequency of 5 or
lower).

By far the most common type of German com-
pound is the N+N type, i.e., a sequence of two
nouns (62% of the compounds in our corpus have
this shape). Thus, we decided to limit ourselves, for
now, to handling compounds of this shape.

In German, nominal compounds, including the
N+N type, areright-headed, i.e., the rightmost ele-
ment of the compound determines its basic semantic
and morphosyntactic properties.

Thus, the context of a compound is often more
informative about its right element (thehead) than
about its left element (themodifier).

In modifier context, nouns are sometimes fol-
lowed by alinking suffix(Krott, 2001; Dressler et
al., 2001), or they take other special inflectional
shapes.

As a consequence of the presence of linking suf-
fixes and related patterns, the forms that nouns take
in modifier position are sometimes specific to this
position only, i.e., they are bound forms that do not
occur as independent words.

We did not parse special modifier forms in or-
der to reconstruct their independent nominal forms.
Thus, we treat all inflected modifier forms, includ-
ing bound forms, as unanalyzed primitive nominal
wordforms.

4 The split compound prediction model

In Baroni et al. (2002), we present and evaluate a
split compound model in which N+N compounds



are predicted by treating them as the sequence of a
modifier and a head.

Modifiers are predicted on the basis of weighed
probabilities deriving from the following three
terms: the unigram and bigram training corpus fre-
quency of nominal wordforms as modifiers or in-
dependent words, and the training corpus type fre-
quency of nominal wordforms as modifiers:2

Pmod(w) = λ1P (w) + λ2P (w|c) + λ3Pismod(w) (2)

The type frequency of nouns as modifiers is de-
termined by the number of distinct compounds in
which a noun form occurs as modifier.

Heads are predicted on the basis of weighted
probabilities deriving from three terms analogous to
the ones used for modifiers: the unigram and bigram
frequency of nouns as heads or independent words,
and the type frequency of nouns as heads:

Phead(w) = λ1P (w) +λ2P (w|c) +λ3Pishead(w) (3)

The type frequency of nouns as heads is de-
termined by the number of distinct compounds in
which a noun form occurs as head.

Given that compound heads determine the syn-
tactic properties of compounds, bigrams for head
prediction are collected by considering not the im-
mediate left context of heads (i.e., their modifiers),
but the word preceding the compound (e.g.,die
Abendsitzungis counted as an instance of the bi-
gramdie Sitzung).

For reasons of size and efficiency, single uni- and
bigram count lists are used for predicting modifiers
and heads.3 For the same reasons, and to minimize
the chances of over-fitting to the training corpus, all
n-gram/frequency tables are trimmed by removing
elements that occur only once in the training corpus.

We currently use a simple interpolation model, in
which all terms are assigned equal weight.

4.1 Improving head prediction
While we obtained encouraging results with it (Ba-
roni et al., 2002), we feel that a particularly unsat-
isfactory aspect of the model described in the previ-
ous section is that information on the modifier is not

2Here and below,c stands for the last word in the left con-
text of w; w is the suffix of the word to be predicted minus
the (possibly empty) prefix typed by the user up to the current
point.

3This has a distorting effect on the bigram counts (words
occurring before compounds are counted twice, once as the left
context of the modifier and once as the left context of the head).
However, preliminary experiments indicated that the empirical
effect of this distortion is minimal.

exploited when trying to predict the head of a com-
pound. Intuitively, knowing what the modifier is
should help us in guessing the head of a compound.
However, constructing a plausible head-prediction
term based on modifier-head dependencies is not
straightforward.

The word-form-based compound-bigram fre-
quency of a head, i.e., the number of times a specific
head occurs after a specific modifier, is not a very
useful measure: Counting how often a modifier-
head pair occurs in the training corpus is equiv-
alent to collecting statistics on unanalyzed com-
pounds, and it will not help us to generalize beyond
the compounds encountered in the training corpus.
Moreover, if a specific modifier-head bigram is fre-
quent, i.e., the corresponding compound is a fre-
quent word, it is probably better to treat the whole
compound as an unanalyzed lexical unit anyway.

POS-based head-modifier bigrams are not going
to be of any help either, since we are considering
only N+N compounds, and thus we would collect a
single POS bigram (N N) with probability 1.4

We decided instead to try to exploit a
semantically-driven route. It seems plausible
that modifiers that are semantically related will
tend to co-occur with heads that are, in turn,
semantically related. Consider for example the
relationship between the class of fruits and the
class of sweets in English compounds. It is easy
to think of compounds in which a member of
the class of fruits (bananas, cherries, apricots...)
modifies a member of the class of sweets (pies,
cakes, muffins...). Thus, if you have to predict the
head of a compound given a fruit modifier, it would
be reasonable, all else being equal, to guess some
kind of sweet.

4.1.1 Class-based modifier-head bigrams
While semantically-driven prediction makes sense
in principle, clustering nouns into semantic classes
is certainly not a trivial job, and, if a large input lex-
icon must be partitioned, it is not a task that could
be accomplished by a human expert. Drawing inspi-
ration from Brown et al. (1990), we constructed in-
stead semantic classes using a clustering algorithm
extracting them from a corpus, on the basis of the
average mutual information(MI) between pairs of
words (Rosenfeld, 1996).5

4Even if the model handled other compound types, very few
POS combinations are attested within compounds.

5We are aware of the fact that other measures of lexical as-
sociation have been proposed (Evert and Krenn, 2001, and



MI values were computed using Adam Berger’s
trigger toolkit (Berger, 1997).6 The same training
corpus of about 25.5M words (and with N+N com-
pounds split) that we describe below was used to
collect MI values for noun pairs. All modifiers and
heads of N+N compounds and all corpus words that
were parsed as nouns by the Xerox morphological
analyzer (Karttunen et al., 1997) were counted as
nouns for this purpose.

MI was computed only for pairs that co-occurred
at least three times in the corpus (thus, only a subset
of the input nouns appears in the output list). Valid
co-occurrences were bound by a maximal distance
between elements of 500 words, and a minimal dis-
tance of 2 words (to avoid lexicalized phrases, such
as proper names or phrasal loanwords).

Having obtained a list of pairs from the toolkit,
the next step was to cluster them into classes, by
grouping together nouns with a high MI. For space
reasons, we do not discuss our clustering algorithm
in detail here (we motivate and analyze the algo-
rithm in a paper currently in preparation).

In short, the algorithm starts by building classes
out of nouns that occur with very few other nouns in
the MI pair list, and thus their assignment to classes
is relatively unambiguous, and it then adds progres-
sively more ambiguous nouns (ambiguous in the
sense that they occur in a progressively larger num-
ber of MI pairs, and thus it becomes harder to deter-
mine with which other nouns they should be clus-
tered). Each input word is assigned to a single class
(thus, we do not try to capture polysemy). More-
over, not all words in the input are clustered (see
step 5below).7

Schematically, the algorithm works as follows
(the input vocabulary ofstep 1is simply a list of
all the words that occur at least once in the MI pair

references quoted there) and are sometimes claimed to be more
reliable than MI, and we are planning to run our clustering al-
gorithm using alternative measures.

6The trigger toolkit returns directional MI values (i.e., sepa-
rate MI values for the pairs N1 N2 and N2 N1). Since we were
not interested in directional information, we merged pairs con-
taining identical nouns by summing their MI. We realize that
this is not mathematically equivalent to computing symmetric
MI values, but it is a practical approximation that allowed us to
use the trigger toolkit for our purposes.

7We also experimented with an iterative version of the al-
gorithm that tried to cluster all words, through multiple passes.
The classes generated by the non-iterative procedure described
in the text, however, gave better results, when integrated in the
head prediction task, than those generated with the iterative ver-
sion.

list):

• step 1:Rank words in input vocabulary on the
basis of how often they occur in the MI pair list
(from least to most frequent);

• step 2:Shift top word from ranked list and de-
termine with the members of which existing
class it has the highest average mutual infor-
mation;

• step 3: If highest value found instep 2is 0,
assign current word to new class; else, assign
it to class corresponding to highest value;

• step 4: If ranked list is not empty, go back to
step 2;

• step 5: Discard all classes that have only one
member.

This is a heuristic clustering procedure and there
is no guarantee that it will construct classes that
maximize MI. A cursory inspection of the output
list indicates that most classes constructed by our
algorithm are intuitively reasonable, while there are
also, undoubtedly, classes that contain heteroge-
neous elements, and missed generalizations. Table
1 reports a list of ten randomly selected classes that
were constructed using this procedure.

Alleinstehende, Singles, Alben, Platten, Platte, Sound,
Hits, Hit, Live, Songs, Single, Album, Pop, Studio,
Rock, Fans, Band
Atrophie, Hartung, Neurologe
Magische, Magie
Bilgen, Tivoli, Baur, Scharrer, Streiter, Winkel, Pfeffer,
Schmid, M
Effizienz, Transparenz
Harm, Radar, Jets, Flugzeugen, Typs, Abwehr, Raketen,
Maschinen, Angriffen, Flugzeuge, Kampf
Relegation, Birmingham, Stephen
Partnerschafts, Partnerschaft, Kooperation,
Bereichen, Aktiviẗaten
Importeure, Z̈olle
Labyrinths, Labyrinth

Table 1: Randomly selected noun classes

The algorithm generated 3744 classes, containing
a total of 14059 nouns (about one third of the nouns
in the training corpus).

Class-based modifier-head bigrams were then
collected by labeling all the modifiers and heads in
the training corpus with their semantic classes, and
counting how often each combination of modifier
and head class occurred.



Like the other tables, class-based bigrams were
trimmed by removing elements with a frequency of
1.

4.1.2 The class-based head prediction model
We compute the class-based probability of a com-
pound head given its modifier in the following way:

Pclass(h|m) = P (Cl(h)|Cl(m))P (h|Cl(h)) (4)
where

P (Cl(h)|Cl(m)) =
count(Cl(m), Cl(h))

count(Cl(m))
(5)

and
P (h|Cl(h)) =

1
|Cl(h)|

(6)

The latter term assigns equal probability to all
members of a class, but lower probability to mem-
bers of larger classes.

Class-based probability is added to the
wordform-based terms of equation 3 obtaining
the following formula to compute head probability:

Phead(w) = (7)
λ1P (w) +λ2P (w|c) +λ3Pishead(w) +λ4Pclass(w|m)

5 Evaluation
The new split compound model and a baseline
model with no compound processing were eval-
uated in a series of simulations, using the APA
newswire articles from January to September 1999
(containing 25,466,500 words) as the training cor-
pus, and all the 90,643 compounds found in the
Frankfurter Rundschau newspaper articles from
June 29 to July 12 of 1992 (in bigram context) as
the testing targets.8

In order to train and test the split compound
model, all words in both sets were run though the
morphological analyzer, and all N+N compounds
were split into their modifier and head surface
forms.

We first ran simulations in which compound
heads were predicted using each of the terms in
equation 7 separately. The results are reported in
table 2.

As an independent predictor, the class-based term
performs slightly worse than wordform-based bi-
gram prediction.

We then simulated head and compound predic-
tion using the head prediction model of equation 7.

8In other experiments, including those reported in Baroni
et al. (2002), we tested on another section of the APA corpus
from the same year. Not surprisingly,ksr’s in the experiments
with the APA corpus were overall higher, and the difference
between the split compound and baseline models was less dra-
matic (because many compounds in the test set were already in
the training corpus).

model P (w) P (w|c) Pishead Pclass(w|m)
headksr 42.2 30.0 47.1 29.4

Table 2: Predicting heads with single term models

The results of this simulation are reported in table
3, together with the results of a simulation in which
class-based prediction was not used, and the re-
sults obtained with the baseline no-split-compound
model.

Model split split no split
w/ classes no classes

headksr 51.2 48.8 N/A
compoundksr 50.1 48.8 34.9

Table 3: Predicting heads and compounds

When used in conjunction with the other terms,
class bigrams lead to an improvement in head pre-
diction of more than 2% over the split compound
model without class-based prediction. This trans-
lates into an improvement of 1.3% in the prediction
of whole compounds. Overall, the split compound
model with class bigrams leads to an improvement
of more than 15% over the baseline model.

The results of these experiments confirm the use-
fulness of the split compound model, and they
also show that the addition of class-based predic-
tion improves the performance of the model, even
if this improvement is not dramatic. Clearly, fu-
ture research should concentrate on whether alterna-
tive measures of association, clustering techniques
and/or integration strategies can make class-based
prediction more effective.

6 Preliminary experiments in integration
In a working word prediction system, compounds
are obviously not the only type of words that the
user needs to type. Thus, the predictions provided
by the compound model must be integrated with
predictions of simple words. In this section, we re-
port preliminary results we obtained with a model
limited to the integration of N+N compound predic-
tion with simple noun prediction.

In our approach to compound/simple prediction
integration, candidate modifiers are presented to-
gether and in competition with simple word so-
lutions as soon as the user starts typing a new
word. The user can distinguish modifiers from sim-
ple words in the prediction window because the for-
mer are suffixed with a special symbol (for exam-
ple an underscore). If the user selects a modifier,



the head prediction model is activated, and the user
can start typing the prefix of the desired compound
head, while the system suggests completions based
on the head prediction model.

For example, if the user has just typedAbe,
the prediction window could contain, among other
things, the candidatesAbendand Abend. If the
user selects the latter, possible head completions for
a compound havingAbendas its modifier are pre-
sented.

Modifier candidates are proposed on the basis of
Pmod(w) computed as in equation 2 above. Simple
noun candidates are proposed on the basis of their
unigram and bigram probabilities (interpolated with
equal weights).

We experimented with two versions of the inte-
grated model.

In one, modifier and simple noun candidates are
ranked directly on the basis of their probabilities.
This risks to lead to over-prediction of modifier can-
didates (recall that, from the point of view of token
frequency, compounds are much rarer than simple
words; the prediction window should not be clut-
tered by too many modifier candidates when, most
of the time, users will want to type simple words).

Thus, we constructed a second version of the in-
tegrated model in whichPmod(w) is multiplied by a
penalty term. This term discounts the probability of
modifier candidates built from nominal wordforms
that occur more frequently in the training corpus as
independent nouns than as modifiers (forms that are
equally or more frequent in modifier position are not
affected by the penalty).

The same training corpus and procedures de-
scribed in section 5 above were used to train the two
versions of the integrated model, and the baseline
model that does not use compound prediction.

These models were tested by treatingall the
nouns in the test corpus as prediction targets. The
integrated test set contained 90,643 N+N tokens and
395,731 more nouns. The results of the simulations
are reported in table 4.

Model integrated integrated simple pred
no penalty w/ penalty only

compoundksr 47.6 45.9 34.9
simple nksr 40.5 42.5 45.6
combinedksr 42.5 43.5 42.6

Table 4: Integrated prediction

Because of the simple noun predictions getting in

the way, the integrated models perform compound
prediction worse than the non-integrated split com-
pound model of table 3. However the integrated
models still perform compound prediction consid-
erably better than the baseline model.

The integrated model with modifier penalties per-
forms worse than the model without penalties when
predicting compounds. This is expected, since the
modifier penalties make this model more conserva-
tive in proposing modifier candidates.

However, the model with penalties outperforms
the model without penalties in simple noun predic-
tion. Given that in our test set (and, we expect, in
most German texts) simple noun tokens greatly out-
number compound tokens, this results in an overall
better performance of the model with penalties.

The integrated model with penalties achieves
an overallksr that is about 1% higher than that
achieved by the baseline model.

Thus, these preliminary experiments indicate that
an approach to integrating compound and simple
word predictions along the lines sketched at the be-
ginning of this section, and in particular the version
of the model in which modifier predictions are pe-
nalized, is feasible. However, the model is clearly in
need of further refinement, given that the improve-
ment over the baseline model is currently minimal.

7 Conclusion

The main result concerning German compound pre-
diction that was reported in this paper pertains to the
introduction of class-based modifier-head bigrams
to enhance head prediction.

We presented a procedure to cluster nominal
wordforms into semantic classes and to extract
class-based modifier-head bigrams, and then a
model to calculate the class-based probability of
candidate heads using these bigrams.

While we evaluated our system in the context
of the AAC word prediction task, we believe that
the class-based prediction model we proposed could
be extended to any other domain in whichn-gram-
based compound prediction must be performed.

The addition of class-based head prediction to the
split compound model of Baroni et al. (2002) leads
to an improvement in head prediction (from aksr of
48.8% to aksr of 51.2%). This translates into an
improvement of 1.3% in whole compound predic-
tion (from 48.8% to 50.1%). Overall, the split com-
pound model with class bigrams led to an improve-
ment of more than 15% over a no split compound



baseline model.
This result was presented in the context of the

AAC word prediction task, but we believe that the
class-based prediction model we proposed could be
extended to any other domain in whichn-gram-
based compound prediction must be performed.

While the results we report are encouraging,
the improvement obtained with the addition of the
class-based model is hardly dramatic. It is clear that
further work in this area is required.

In particular, we plan to experiment with different
measures of association to determine the degree of
relatedness of words, and with alternative clustering
techniques.

Moreover, we hope to improve the overall perfor-
mance of the compound predictor by resorting to a
better interpolation strategy than the uniform weight
assignment model we are currently using.

We also reported results obtained with a prelim-
inary model in which split compound prediction is
integrated with simple noun prediction. This model
outperforms the baseline model without compound
prediction, but only of about 1%ksr. Clearly, fur-
ther work in this area is also necessary. In partic-
ular, as suggested by a reviewer, we will try to ex-
ploit morpho-syntactic differences between simple
nouns and modifiers to help distinguishing between
the two types.
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