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Abstract

We present a new approach to topological pars-
ing of German which is corpus-based and built
on a simple model of probabilistic CFG parsing.
The topological field model of German provides
a linguistically motivated, flat macro structure
for complex sentences. Besides the practical as-
pect of developing a robust and accurate topo-
logical parser for hybrid shallow and deep NLP,
we investigate to what extent topological struc-
tures can be handled by context-free probabilis-
tic models. We discuss experiments with sys-
tematic variants of a topological treebank gram-
mar, which yield competitive results.!

1 Introduction

We present a new approach to topological pars-
ing for German which is corpus-based and built
on a simple model of probabilistic CFG pars-
ing. Topological parsing is of special interest
for shallow pre-processing of languages like Ger-
man, which exhibit free word order and the so-
called verb-second (V2) property. The topologi-
cal field model (Hohle, 1983) is a theory-neutral
model of clausal syntax that provides a linguis-
tically well-motivated, but flat macro structure
for complex sentences. As opposed to chunk-
based partial parsing, the topological model is
compatible with deep syntactic analysis, and
thus perfectly suited for integrated shallow and
deep NLP, by guiding deep syntactic analysis
by partial, topological bracketing (Crysmann et

!The ideas that led to this paper grew from discus-
sions with Feiyu Xu and Jakub Piskorski. The work
was in part supported by a BMBF grant to the DFKI
project WHITEBOARD (FKZ 01 IW 002). Special thanks
go to Bernd Kiefer for providing us with a CFG parser
and for his support in technical issues, and to Hubert
Schlarb and Holger Neis for manual correction of our
test corpus.

al., 2002), or for pre-structuring of complex sen-
tences for chunk-based processing (Neumann et
al., 2000), as a divide and conquer strategy.

Previous approaches to topological parsing
of German make use of hand-coded gram-
mars (Wauschkuhn, 1996; Braun, 1999). In
this paper we pursue a corpus-based, statisti-
cal approach, aiming at a robust parser with
high accuracy. We make use of a treebank-
induced probabilistic non-lexicalised CFG, fol-
lowing (Charniak, 1996). While this simple
model is clearly outperformed by more refined
stochastic models for full constituent-structure
parsing,? our experiment is interesting in show-
ing that for topological parsing a robust parser
with high accuracy figures can be obtained with
a standard stochastic model of non-lexicalised
context-free treebank grammars.

Topological structures are partial or under-
specified in that they do not encode internal
structure and demarcation of subsentential con-
stituents, i.e. NP, AP, PP or VP constituents.
Topological base clauses® are characterised by
morphological and categorial properties. Still,
the topological parsing task is not trivial, in
that the boundaries and relative embedding of
base clauses and the demarcation of fields in
general are not deterministic, and also lexically,
or semantically determined. Thus, the com-
plexity of topological parsing lies somewhere
between chunk parsing and full constituent-
structure parsing. The interesting question we
are exploring in our approach is whether this
type of syntactic structure can be successfully
dealt with using a non-lexicalised PCFG model.

The aim of this paper is three-fold. Besides
the practical aspect of (i) developing a robust

’E.g. (Collins, 1997) and later work, see (Belz, 2001).
31.e. sentential clauses, see Section 2 for more detail.



and accurate topological parser, to be used for
integration with deep syntactic analysis or for
cascaded shallow analysis systems, we (ii) in-
vestigate how well topological structures can
be modeled by context-free probabilistic gram-
mars, while (iii) trying to detect specific phe-
nomena that require more sophisticated models.

The paper is structured as follows. In Sec-
tion 2 we present the field model for German
and describe the creation of a topologically
structured treebank, which we derive from the
NEGRA corpus (Brants et al., 1997). Section 3
discusses previous work. Section 4 describes our
corpus-based stochastic approach to topological
parsing. In Section 5 we introduce formal vari-
ants of our treebank grammar, which illustrate
problematic aspects in topological stochastic
parsing, and possible strategies to their solu-
tion. Section 6 presents the testing setup and
evaluation results for different grammar vari-
ants. The results are analysed in detail in Sec-
tion 7. Section 8 concludes.

2 A Topological Corpus of German

German sentence structure is traditionally anal-
ysed in terms of its “field” or topological struc-
ture, which is determined by the position of the
finite verb in left (LB) or right (RB) bracket
position (1). In main clauses the finite verb
typically occupies the second constituent posi-
tion, following the so-called “Vorfeld” (VF) (V2
clauses). The Vorfeld can be missing in yes/no
questions or embedded conditional clauses (V1
clauses), as well as in subordinate clauses with
complementizer. In subordinate clauses the
complementizer (or wh-/rel-phrase) demarcates
the LB position, the finite verb is in RB po-
sition (VL clauses). Arguments and modifiers
between LB and RB occupy the “middle field”
(MF), extraposed material is found to the right
of the right bracket, in the “Nachfeld” (NF).

(1) | Vorfeld Left (LB) Middle Right (RB) Nachfeld
(VF) Bracket Field Bracket (NF)
V2 |topic/ finite args/ (verbal extraposed
wh-phr. verb adjs  complex) constituents
V1 |- finite args/ (verbal extraposed
- verb adjs  complex) constituents
VL |- compl args/ (verbal extraposed
wh-phr. - complex)
rel-phr. - adjs  +finite constituents
verb constituents

All modern theories of syntax rely — in one way
or the other — on this descriptive model of Ger-
man sentence structure. It is thus straightfor-
ward to define mappings from topological to
deep syntactic structures of almost any syn-
tactic framework. Its compatibility with deep
syntactic analysis makes topological syntactic
structure an ideal candidate for interleaving of
shallow and deep NLP (Crysmann et al., 2002).
For our corpus-based approach, no topo-
logically annotated corpus of German was avail-
able. The NEGRA treebank (Brants et al., 1997),
a large annotated corpus of German newspaper
text, follows an annotation scheme which com-
bines structural and dependency annotations.
However, the crucial topological clues, in partic-
ular the distinction between fronted or clause-
final verb position, as well as the delimitation of
pre-, middle- and post-fields are not encoded.
To derive a topological “treebank grammar”
from the NEGRA corpus, we applied the tree-
bank conversion method of (Frank, 2000). This
method is built on a general tree description lan-
guage, and allows the definition of fine-grained
rules for structure conversion. Conversion rules
specify partial structural constraints and ac-
tions for tree modifications, which are applied
by removing or adding tree description predi-
cates from the trees that satisfy the constraints.
We derived a topological corpus from the
NEGRA treebank, by defining linguistically in-
formed conversion rules which exploit addi-
tional annotations in the corpus, i.e. indirect
linguistic evidence, to assign topological clues.
In a second step we induced topological struc-
tures by flattening irrelevant internal structure
within topological fields and introducing topo-
logical category nodes DF, VF, MF, and NF as
well as LB and RB for left and right brackets.*
Basic clauses are marked with labels CL which
expand to various patterns of DF, VF, LB, MF,
LB, and NF nodes. Basic clauses can be em-
bedded within phrasal fields VF, MF, NF. The
resulting structures give (i) an internal struc-
ture of basic clauses in terms of fields which
are internally flattened to POS sequences, and
(ii) an overall hierarchical structure of clausal
embedding, including coordination. (2) gives
an example of a complex topological struc-

“DF marks a special “discourse field” preceding VF, as
in Naja, er kommt halt spiter—Well, he will come later.



(2) oL-va
VF-TOPIC $ LB-VFIN MF RB-PTK NF
\ s \ 7 T~ \ \
CL-WH VVFIN NE ART NN PTKVZ CL-INF
wies Souza die Polizei an
VF-WH MF RB-VFIN MF RB-VINF NF
\ / \ , \
PWAV NE VVFIN ART NN PTKZU VVINF CL-REL
Wie BBC meldete den Hiuptling zu fassen
$ VF-REL MF RB-VFIN
’ [
PRELS PRF VVPP  VVFIN
der sich versteckt halt
As BBC reported ordered Souza the police the chieftain to catch who himself hidden keeps

ture. It illustrates the use of parameterised
category nodes, which distinguish various types
of clauses: CL-V2,-V1,-INF,-REL,-WH, pre-fields:
VF-TOPIC,-WH,-REL, left: LB-COMPL,-VFIN and
right brackets: RB-VFIN,-VINF,-VPART,-PTK.
The automatically derived topological corpus
is used for extraction of a stochastic treebank
grammar with reserved development and test
sections. The test corpus was manually checked
and corrected by two independent annotators.
Manual correction of the test section yielded
93.0% labelled precision and 93.7% labelled re-
call of the automatic conversion procedure.

3 Topological Parsing of German

While partial parsers for detection of clausal
structure are now available in many varieties
and for many languages,® this type of pars-
ing approach has always been considered dif-
ficult for languages like German. (Wauschkuhn,
1996) was among the first to present a par-
tial parser for German. In a first step, the
coarse syntactic clause structure is detected, us-
ing indicators like verbs, conjunctions, punctu-
ation, etc. A fine grained analysis is carried out
in the second step, by grouping the remaining
fields into sequences of minimal ”base” NPs or
PPs. The analysis is still partial in that attach-
ments of base NPs and PPs are not determined.
The grammar is defined as a CFG with feature
structures, where grammar rules are annotated
with manually adjusted weights for parse rank-
ing. Grammar rules, including the associated
weights, are handcoded. (Wauschkuhn, 1996)
reports coverage of 85.7% for clausal analysis.
No figures are given for precision or recall.
(Braun, 1999; Neumann et al., 2000) report
an approach to topological parsing of German,
based on cascaded finite state automata. In

5See for example (Ait-Mokhtar and Chanod, 1997;
Gala-Pavia, 1999) for English, French, and Spanish.

a first pass, possible verb groups are identi-
fied. A second pass identifies subordinate clause
structures, using similar cues as (Wauschkuhn,
1996). (Braun, 1999) carried out an evalua-
tion over 400 sentences and reports coverage of
94.3%, precision of 89.7% and recall of 84.75%.

While these approaches are similar to our
work in inducing topological structure from key
linguistic indicators, they suffer from several
problems. (i) Hand-coding of rules is labori-
ous® and likely to miss out rare or exceptional
phenomena, including ungrammatical construc-
tions. (ii) Ambiguities are either resolved by
manually assigned weights, or simply by using
a greedy strategy (Braun, 1999). (iii) These ap-
proaches heavily exploit prescriptive punctua-
tion rules. This is problematic for performance
influenced deviations from standard punctua-
tion or less standardised text sorts, leading to
either a loss of coverage, or accuracy.

4 A Stochastic Topological Parser

In response to these problems we investigate a
corpus-based, stochastic approach to topological
parsing. It has been demonstrated? that sto-
chastic parsing can achieve high figures of ro-
bustness and accuracy, while mostly restricted
to purely constituent-based syntactic analysis.
For our task of topological parsing, we in-
vestigate the adequacy of the very simple, non-
lexicalised model of (Charniak, 1996), if applied
to rather flat, topological structures. Qur work-
ing hypothesis was that the model should per-
form well, even if not lexicalised, since (i) there
are less attachment decisions, due to the rather
flat target structures. (ii) Topological struc-
tures as such, as well as attachment decisions for
base clauses are less dependent on lexical infor-
mation, than, e.g., attachment of PPs. Finally,
(iii) a corpus-based stochastic grammar has a

SWauschkuhn uses 366 rules for clausal analysis.



better chance to account for exceptional con-
structions and performance-influenced input.

Following the method of (Charniak, 1996) we
extract a context free grammar from the cor-
pus described in Section 2. From this grammar
we derive formal grammar variants (see Section
5). Rule probabilities are estimated using maxi-
mum likelihood. We employ a flexible and effici-
ent CFG chart parser (Kiefer and Scherf, 1996),
which we extended to manage rule probabilities.
Currently, we let the parser compute the full
search space. N-best parse trees are efficiently
determined by applying the Viterbi algorithm
over packed tree structures.

5 Variations of Topological Grammars

As part of our experimental setup we induce for-
mal variants of the topological treebank gram-
mar. The aim is to explore different strategies,
or ‘models’, and how well they perform in terms
of coverage and accuracy.” These grammar vari-
ants illustrate problematic aspects in topologi-
cal stochastic parsing, and strategies to their
solution. In particular, we discuss (a) parame-
terisation of field categories, (b) alternative ap-
proaches to punctuation, (c) the use of binary
field structures to address sparseness problems,
and (d) the effects of grammar pruning.

(a) Parameterised categories Our topo-
logical corpus defines maximally informative
structures where topological categories are asso-
ciated with more fine-grained syntactic labels.
For instance, relative clauses, which dominate
a finite right bracket daughter RB-VFIN, are
marked CL-REL, as opposed to verb-second
clauses CL-V2 with finite left bracket (LB-VFIN)
(see (2)). A VF category that contains a rela-
tive pronoun will be marked VF-REL. Such fine-
grained labels implicitly encode a larger syn-
tactic context (cf. (Belz, 2001)): for example,
a relative pronoun in VF-REL predicts (through
coocurrence data in the corpus) that it is domi-
nated by a grandfather category CL-REL, which
takes a right bracket daughter RB-VFIN, as op-
posed to a left bracket daughter.

We extract grammar variants with and with-
out parameterised categories, to investigate to
which extent a more fine-grained and implicitly

"Henceforth we use accuracy as a measure for both
precision and recall — often referred to as f-measure.

contextualised grammar helps to increase accu-
racy in a topological model of syntax.

(b) Punctuation The maximal decoration of
a tree contains punctuation marks like commas,
quotes, colons, etc.® While the correct attach-
ment of punctuation marks is not part of our
evaluation, the guiding intuition was that punc-
tuation should help to identify clause bound-
aries. On the other hand, irregularities in punc-
tuation setting cause noise in the data, increases
grammar size, and could cause coverage prob-
lems. We compare the performance of grammar
variants with and without punctuation.

(c) Binarisation Phrasal topological fields
VF, MF, NF are underspecified for constituent
boundaries of NPs, PPs, etc. The fields are radi-
cally flattened, directly expanding to sequences
of POS categories. We expect a great variety
of POS sequences as expansions of field cate-
gories, but at the same time reckon with consid-
erable sparseness problems, due to unseen POS
sequences.

To address this problem, we introduce (right-
branching) binary field structures. The flat
structure for the two constituents Souza die
Polizei in (2) is transformed to the tree (3).
Learning rules from binary subtrees effective-
ly induces a unigram language model where
the number of “cells” corresponds to the rather
small number of POS categories. Again, we ex-
periment with flat vs. binary grammar versions,
to test their respective coverage and accuracy.

MF
NE W
(3) SoLza ART/\MF
d‘ie N‘N

Polizei

(d) Pruning Due to automatic transforma-
tion, the topological corpus contains some ill-
formed structures. We test whether noise in the
grammar can be reduced by pruning single oc-
currences of rules. We compare the performance
of pruned and unpruned grammars.

8Full stops, brackets, and hyphens were deleted.



6 Experiments and Results

Experimental setup The NEGRA corpus was
split into randomised sections for training
(16476), development (1000) and testing (1058),
plus further held-out data for later experiments.
For training and development we used the auto-
matically derived topological corpus, while the
test data was manually corrected (Section 2).

To test the performance of the grammar inde-
pendently from a tagger, the input to the parser
consists of the manually disambiguated POS se-
quences of the test corpus.’

Evaluation Measures For evaluation we
employ the PARSEVAL measures of labeled re-
call and precision and crossing brackets, as well
as complete match, i.e. full structure identity.'?
To accommodate for the differences between
grammar versions, evaluation was conducted as
follows. The evaluation measures in Tables 1
and 2 disregard punctuation and are based on
simple node labels, i.e. category parameters are
stripped. Finally, to allow clear comparison be-
tween binarised and flat grammar versions bina-
rised parse trees are compiled to flat trees before
evaluation against flat target trees.!!

Results We conducted systematic tests for
all combinations of grammar variants: +para
(parameterised categories), +bin (binarised),
+pnct (punctuation), +prun (pruning single
rule occurrences), see results in Table 1.

Tables 2 and 3 give more detailed evalua-
tion figures for the best performing model (v1)
para+.bin+.pnct+.prun+. Table 2 lists labeled
recall and precision results for individual topo-
logical categories. Field categories VF...NF re-
ceive high figures above 90%, to the exception
of NF, yet with lower overall proportion (quota).

Table 3 reports alternative evaluation figures,
namely evaluation by disregarding category pa-
rameters (param —), or by evaluating on com-
plex category labels (param +); and by taking
or not punctuation into account (punct +/—).

Finally, Fig. 4 displays a learning curve for
stepwise extension of the training corpus.

98 sentences were set apart due to wrong POS tags.
0We verified our results using the evaluation tool
evalb by Satoshi Sekine

http://www.cs.nyu.edu/cs/projects/proteus/evalb/.

" Evaluating labeled recall and precision on binarised
trees would yield unduly high figures, due to a high num-
ber of field-internal trivial assignments.

7 Discussion of Results

Table 1 shows better performance of grammars
v1-8 using parameterised categories, as opposed
to the complementary versions v9-16. Parame-
terised grammars make use of a richer structure,
which is mapped to coarser topological cate-
gories for evaluation.'? The implicit contextual-
isation in category labels clearly improves pars-
ing results. While the rule set grows, a relative
loss of coverage is only visible for non-binarised
versions v5-8 as opposed to v13-16.

Binarisation shows dramatic effects in cove-
rage and accuracy. Binarised grammars are
smaller than their flat counterparts, but far less
constrained, allowing the derivation of virtually
any POS sequence. Flat grammars suffer from
lack of coverage, especially those using rich cat-
egory labels and/or punctuation. We see dra-
matic differences of about 100% complete match
improvement between v6/v2, v8/v4, v16/v12,
and significant contrasts in LP/LR and CB
measures. Thus, binarisation solves the sparse-
ness problem for flat topological CFGs without
jeopardising accuracy.

Using punctuation in parsing leads to impro-
ved accuracy measures, yet only in binarised
grammars, where sparseness problems are cir-
cumvented. Flat grammars with punctuation
show lower coverage than their counterparts —
higher accuracy measures are probably due to
lower coverage. Use of punctuation is similar
to parameterisation of labels, in that grammar-
internally it helps to discriminate fields, while
for evaluation it is filtered from the parse trees.

Pruning of single rule occurrences leads to sig-
nificant reduction in grammar size, in particu-
lar for non-binarised grammars. Here, pruning
incurs significant loss in coverage. This is ex-
pected, since extremely flat rules are likely not
to re-occur several times. For binarised gram-
mars pruning yields rule sets of about 1/3, with
almost unchanged 100% coverage. Our hypoth-
esis was that pruning improves the quality of the
grammar by eliminating noise imported by au-
tomatic treebank conversion. This is confirmed,
in all binary grammars, by improved accuracy
measures. Since in binary grammars generic
field rules are binarised and frequently occur-
ing, rule pruning is likely to eliminate noise.

12Thus, parameterisation corresponds to the notion of
internal and external tagsets in (Brants, 1997).



version gram coverage perf. match LP LR | 0CB | 2CB
# | (trained on 16476 sents.) size n% | len|in% | len | in% |in% | in% | in%
1 | para+.bin+.pnct+.prun+
a) < 40 867 | 100.0 | 14.6 | 80.4 | 13.1 | 93.4 | 92.9 | 92.1 | 98.9
b) all 867 99.8 | 159 | 78.6 | 13.7 | 924 | 92.2 | 90.7 | 98.5
2 | para+.bin+.pnct+.prun- 2308 999 | 146 | 79.1 | 13.0 | 93.3 | 92.7 | 92.1 | 99.1
3 | para+.bin+.pnct-.prun+ 679 | 100.0 | 14.6 | 80.8 | 13.1 | 92.8 | 91.7 | 89.1 | 98.0
4 | para+.bin+.pnct-.prun- 1917 999 | 146 | 79.6 | 13.0 | 92.2 | 91.5 | 89.0 | 97.9
5 | para+.bin-.pnct+.prun+ 2962 57.5 | 10.3 | 49.7 571 63.2 | 79.9 | 59.3 | 87.6
6 | para+.bin-.pnct+.prun- 19536 88.4 | 13.6 | 37.5 6.5 | 54.0 | 73.1 | 48.0 | 78.8
7 | para+.bin-.pnct-.prun+ 2839 67.2 | 11.6 | 45.8 6.0 | 59.8 | 76.5 | 52.7 | 83.3
8 | para+.bin-.pnct-.prun- 18365 92,5 | 139 | 38.9 6.8 | 55.2 | 73.6 | 47.5 | 78.6
9 | para-.bin+.pnct+.prun+ 634 | 100.0 | 14.6 | 749 | 124 | 89.3 | 89.0 | 87.5 | 97.9
10 | para-.bin+.pnct+.prun- 1827 99.9 | 146 | 72.7 | 123 | 88.3 | 88.2 | 86.7 | 97.7
11 | para-.bin+.pnct-.prun+ 489 | 100.0 | 146 | 71.6 | 11.9 | 86.0 | 84.5 | 80.6 | 95.7
12 | para-.bin+.pnct-.prun- 1528 999 | 145 | 704 | 11.8 | 8.6 | 84.3 | 80.9 | 954
13 | para-.bin-.pnct+.prun+ 2756 76.4 | 12.8 | 37.4 5.6 | 53.4 | 71.7 | 46.6 | 80.1
14 | para-.bin-.pnct+.prun- 18979 94.9 | 14.2 | 34.6 6.4 | 534 | T71.5 | 46.9 | 804
15 | para-.bin-.pnct-.prun+ 2675 80.4 | 13.3 | 36.9 5.8 | 53.2 | 71.1 | 45.7 | 80.5
16 | para-.bin-.pnct-.prun- 17885 96.6 | 14.2 | 35.4 6.5 | 3.7 | 70.7 | 46.8 | 82.3

Table 1: Results for systematic grammar variations (sentence length < 40, except 1b)

LP LR
Category | in % | quota | in % | quota
CL 88.9 24.3 | 92.2 23.2
MF 93.2 23.8 | 93.1 23.7
LB 99.6 179 | 994 17.8
VF 96.1 16.3 | 91.8 16.9
RB 96.3 13.7 | 95.8 13.7
NF 82.6 3.6 | 734 4.1
S 4.8 0.3 5.3 0.3
DF 16.7 0.1 6.7 0.2
all 93.4 | 100.0 | 92.9 | 100.0

Table 2: Category-specific evaluation (v1,<40)!3

eval perf. match LP LR
param | punct |in % | len | in % | in %
- - 80.4 | 13.1 | 93.4 | 92.9

+ - 79.6 | 13.1 | 92.7 | 92.2

- + 78.5 | 12.8 | 92.1 | 91.6

+ + 77.7 | 12.8 | 91.,5 | 91.0

Table 3: Different evaluation schemes (v1,<40)

In sum, our best performing model (v1)
makes use of a maximally discriminative sym-
bolic grammar (parameterised categories, punc-
tuation), resolves sparseness problems by rule
binarisation, and can afford rule pruning to
eliminate noise. Applied to full sentence
lengths (vlb) we note a drop in performance,

139_categories were used for non-standard base clauses,
e.g. gapping, that did not fit the topological model.

but insignificantly so for coverage, and only by
1% in LP and 0.7% in LR.

Table 3 details alternative evaluation mea-
sures. Evaluation on parameterised categories
incurs a slight drop in accuracy, but in high
ranges.!* Evaluation of punctuation attach-
ment — which is of little importance — yields a
further drop.

The learning curve in Fig. 4 is surprising
in that we obtain relatively high performance
from rather small training corpora and gram-
mar sizes (size grows almost linearly from 313
to 2308).1% Saturation regarding coverage and
accuracy is obtained around training size 6000.

Finally, we determined phenomena that call
for stronger contextualisation or lexicalisation.
A case in point are verb-second (V2) sentences
with a fronted V2 clause in Vorfeld position
(i.e. with VF-V2 categories), which allow an
alternative analysis as coordinate clauses with
shared subjects. This type of construction was
frequently mis-analysed as a coordination struc-
ture since this structural ambiguity cannot be

4These measures are relevant for integration of shal-
low and deep NLP (Crysmann et al., 2002), as parame-
terised categories provide highly discriminative informa-
tion that can be used to guide deep syntactic processing.

15Note, however, that the curve pertains to a robust,
binarised grammar. We chose v2 (prun—) in order not to
unduly penalise small grammars. Lack of pruning could
explain the scattered values for lower training sizes.
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resolved on the basis of morphological or topo-
logical criteria. A promising strategy to en-
hance our model is (targeted) lexicalisiation, as
these constructions typically occur with a spe-
cific type of “reporting” verbs.

8 Conclusion and Future Work

We presented a topological parser for German,
using a standard PCFG model trained on an
annotated corpus. We have shown that for
the task of topological parsing a non-lexicalised
PCFG model yields competitive results. We
investigated various grammar versions to illus-
trate problematic aspects in stochastic topolog-
ical parsing. Category parameterisation (i.e.
contextualisation) and punctuation were shown
to increase accuracy. Binarisation results in
high coverage figures. Pruning of single rule oc-
currences eliminates noise in the automatically
constructed training corpus.

The complexity of topological parsing lies
somewhere between the complexity of chunk
parsing and full constituent structure parsing.
Our results indicate that a standard PCFG
model is appropriate for the chosen task, but
could possibly be enhanced by lexicalisation.

In future work we will explore extension to
a lexicalised model, and investigate cascaded
stochastic parsing, by applying a specialised
stochastic chunk parsing model to phrasal fields,
to obtain full constituent structure parses. Fur-
ther we will integrate the TnT tagger (Brants,
2000) to investigate the robustness of the parser

with respect to tagging errors, and extend the
model to a free parsing architecture.
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