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Abstract  

To help developing a localization oriented 
EBMT system, an automatic machine 
translation evaluation method is 
implemented which adopts edit distance, 
cosine correlation and Dice coefficient as 
criteria. Experiment shows that the 
evaluation method distinguishes well 
between “good” translations and “bad” ones. 
To prove that the method is consistent with 
human evaluation, 6 MT systems are scored 
and compared. Theoretical analysis is made 
to validate the experimental results. 
Correlation coefficient and significance tests 
at 0.01 level are made to ensure the 
reliability of the results. Linear regression 
equations are calculated to map the 
automatic scoring results to human scorings. 

Introduction 

Machine translation evaluation has always been 
a key and open problem. Various evaluation 
methods exist to answer either of the two 
questions (Bohan 2000): (1) How can you tell if 
a machine translation system is “good”? And (2) 
How can you tell which of two machine 
translation systems is “better”? Since manual 
evaluation is time consuming and inconsistent, 
automatic methods are broadly studied and 
implemented using different heuristics. Jones 
(2000) utilises linguistic information such as 
balance of parse trees, N-grams, semantic 
co-occurrence and so on as indicators of 
translation quality. Brew C (1994) compares 
human rankings and automatic measures to 
decide the translation quality, whose criteria 
involve word frequency, POS tagging 

distribution and other text features. Another type 
of evaluation method involves comparison of the 
translation result with human translations. 
Yokoyama (2001) proposed a two-way MT 
based evaluation method, which compares 
output Japanese sentences with the original 
Japanese sentence for the word identification, 
the correctness of the modification, the syntactic 
dependency and the parataxis. Yasuda (2001) 
evaluates the translation output by measuring the 
similarity between the translation output and 
translation answer candidates from a parallel 
corpus. Akiba (2001) uses multiple edit 
distances to automatically rank machine 
translation output by translation examples. 
Another path of machine translation evaluation 
is based on test suites. Yu (1993) designs a test 
suite consisting of sentences with various test 
points. Guessoum (2001) proposes a 
semi-automatic evaluation method of the 
grammatical coverage machine translation 
systems via a database of unfolded grammatical 
structures. Koh (2001) describes their test suite 
constructed on the basis of fine-grained 
classification of linguistic phenomena. 

There are many other valuable reports on 
automatic evaluation. All the evaluation 
methods show the wisdom of authors in their 
utilisation of available tools and resources for 
automatic evaluation tasks. For our 
localization-oriented lexicalised EBMT system 
an automatic evaluation module is implemented. 
Some string similarity criteria are taken as 
heuristics. Experimental results show that this 
method is useful in quality feedback in 
development of the EBMT system. Six machine 
translation systems are utilised to test the 
consistency between the automatic method and 
human evaluation. To avoid stochastic errors, 
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significance test and linear correlation are 
calculated. Compared with previous works, ours 
is special in the following ways: 1) It is 
developed for localisation-oriented EBMT, 
which demands higher translation quality. 2) 
Statistical measures are introduced to verify the 
significance of the experiments. Linear 
regression provides a bridge over human and 
automatic scoring for systems. 

The paper is organised as follows: First the 
localization-oriented lexicalised EBMT system 
is introduced as the background of evaluation 
task. Second the automatic evaluation method is 
further described. Both theoretical and 
implementation of the evaluation method are 
fully discussed. Then six systems are evaluated 
both manually and with our automatic method. 
Consistency between the two methods is 
analysed. At last before the conclusion, linear 
correlation and significance test validate the 
result and exclude the possibility of random 
consistency. 

1 EBMT Evaluation Solution 

1.1 EBMT System Setup 

From Figure 1 you can get a general overview of 
our EBMT system. 
 

Input sentence 
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Figure 1. Flowchart of the EBMT System 

The EBMT system is developed for 
localization purpose, which demands the 
translation to be restricted in style and 
expression. This makes it rational to take string 
similarity as criterion for translation quality 
evaluation. The solution is useful because in 
localization, an example based machine 
translation system helps only if it outputs the 
very high quality translation results. 

1.2 Evaluation Criteria 

The criteria we utilise for evaluation include edit 
distance, dice coefficient and cosine correlation 
between (the vectors or word bag sets of) the 
machine translation and the gold standard 
translation. Followed is a detailed description of 
the three criteria. 

The edit distance between two strings s1 
and s2, is defined as the minimum number of 
operations to become the same 
(Levenshtein1965). It gives an indication of how 
`close' or ‘similar’ two strings are. Denote the 
length of a sentence s as |s|. A two-dimensional 
matrix, m[0...|s1|,0...|s2|] is used to hold the edit 
distance values. The algorithm is as follows 
(Wagner 1974): 
Step 1 Initialization: 
For i=0 to |s1| 

m[i, 0] = i//initializing the columns  
For j=1 to |s2| 

m[0, j] = j //initializing the rows 
Step 2 Iteration: 
For i=1 to |s1| 

For j=1 to |s2| 
 if(s1[i] = s2[j]) 
 { 
    d=m[i-1,j-1] 
 }//equality 
 else 
 { 

d=m[i-1,j-1]+1 
 }//substring 
 m[i, j]=min(m[i-1,j]+1,m[i,j-1]+1,d) 

End For 
End For 
Step 3: Result: 
Return m[i,j] 

Figure 2. Algorithm for Edit Distance 

The time complexity of this algorithm is 
O(|s1|*|s2|). If s1 and s2 have a `similar' length, 
about `n' say, this complexity is O(n2). 

Taking into account the lengths of 
translations, the edit distance is normalised as 
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Cosine correlation between the vectors of 
two sentences is often used to compute the 
similarity in information retrieval between a 
document and a query (Manning 1999). In our 



task, it is a similarity criterion defined as 
follows: 
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Where 
w1i = weight of ith term in vector of sentence 
s1, 
w2i = weight of ith term in vector for sentence 
s2, 
n = number of words in sum vector of s1 and s2. 
The cosine correlation reaches maximum value 
of 1 when the two strings s1 and s2 are the same, 
while if none of the elements co-occurs in both 
vectors, the cosine value will reach its minimum 
of 0. 

Another criterion we utilised is the Dice 
coefficient of element sets of strings s1 and s2, 
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The Dice coefficient demonstrates the 

intuitive that good translation tends to have 
more common words with standard than bad 
ones. This is especially true for example based 
machine translation for localization purpose. 
1.3 Relationship Among Similarity Criteria 

In this section we analyse the relationship 
between the criteria so that we have a better 
understanding of the experiment results. 
If weight of all words are 1, i.e. each word has 
the uniform importance to translation quality, 
the cosine value becomes very similar to the 
Dice coefficient criterion. if we assume 
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Similar to (3), this is also a calculation of the 
number of words in common The Dice 
coefficient and cosine function have common 
characteristics. Especially when two strings are 
of the same length, we have 
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The above equation holds if and only if |s1| 

== |s2|. The experimental results will clearly 
demonstrate the correspondence between cosine 
correlation and Dice coefficient. The two values 
become more similar as the lengths of the two 
strings draw nearer. They become the same 
when the two sentences are of the same length. 

The (normalized) edit distance evaluation 
has a somewhat different variance from the other 
two values. Edit distance cares not only how 
many words there are in common, but also takes 
into account the factor of word order adjustment. 
For example, take two strings of s1 and s2 
composed of words, 

s1 = w1 w2 w3 w4 
s2 = w1 w3 w2 w4 

Then, 
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Edit distance and the other two criteria have 

their respective good aspects and shortcomings. 
So they can complement each other in the 
evaluation work.  

In the EBMT development, we sort the 
translations by a combination of the three factors, 
i.e. first by Dice coefficient in descending order, 
then by cosine correlation in descending order, 
last by normalized edit distance in ascending 
order. This method makes a simple combination 



of the three factors, while no more complexity 
arises from this combination. 

2 Experiments and Results 

2.1 Experimental Setup 

Our evaluation method is designed to help in 
developing the EBMT system. It is supposed to 
sort the translations by quality. Experiments 
show that it works well sorting the sentences by 
order of it’s being good or bad translations. In 
order to justify the effectiveness of the 
evaluation method, we also design experiments 
to compare the automatic evaluation with human 
evaluation. The result shows good compatibility 
between the automatic and human evaluation 
results. Followed are details of the experimental 
setup and results. 

In order to evaluate the performance of our 
EBMT system, a sample from a bilingual corpus 
of Microsoft Software Manual is taken as the 
standard test set. Denote the source sentences in 
the test set as set S, and the target T. Sentences 
in S are fed into the EBMT system. We denote 
the output translation set as R. Every sentence ti 
in T is compared with the corresponding 
sentence ri in R. Evaluation results are got via 
the functions cosine(ti, ri), Dice(ti, ri), and 
normalized edit distance normal_editDistance(ti, 
ri). As discussed in the previous section, good 
translations tend to have higher values of cosine 
correlation, Dice coefficient and lower edit 
distance. After sorting the translations by these 
values, we will see clearly which sentences are 
translated with high quality and which are not. 
Knowledge engineers can obtain much help 
finding the weakness of the EBMT system. 

Some sample sentences and evaluation 
results are attached in the Appendix. In our 
experience, with Dice as example, the 

translations scored above 0.7 are fairly good 
translations with only some minor faults; those 
between 0.5 and 0.7 are faulty ones with some 
good points; while those scored under 0.4 are 
usually very bad translations. From these 
examples, we can see that the three criteria 
really help sorting the good translation from 
those bad ones. This greatly aids the developers 
to find out the key faults in sentence types and 
grammar points. 
2.2 Comparison with Human Evaluation 

In the above descriptions, we have presented our 
theoretical analysis and experimental results of 
our string similarity based evaluation method. 
The evaluation has gained the following 
achievements: 1) It helps distinguishing “good” 
translations from “bad” ones in developing the 
EBMT system; 2) The scores give us a clear 
view of the quality of the translations in 
localization based EBMT. In this section we will 
make a direct comparison between human 
evaluation and our automatic machine 
evaluation to test the effectiveness of the string 
similarity evaluation method. To tackle this 
problem, we carry out another experiment, in 
which human scoring of systems are compared 
with the machine scoring. 

The human scoring is carried out with a test 
suite of High School English. Six undergraduate 
students are asked to score the translations 
independent from each other. The average of 
their scoring is taken as human scoring result. 
The method is similar to ALPAC scoring system. 
We score the translations with a 6-point scale 
system. The best translations are scored 1. If it’s 
not so perfect, with small errors, the translation 
gets a score of 0.8. If a fatal error occurs in the 
translation but it’s still understandable, a point 
of 0.6 is scored. The worst translation gets 0 

Table 1. Human Evaluation of 6 Machine Translation Systems 
System# #1 #2 #3 #4 #5 #6 
Error5 5 5% 1 1% 2 2% 4 4% 9 9% 7 7% 
Error4 4 4% 6 6% 4 4% 7 7% 18 18% 21 21%
Error3 7 7% 14 14% 21 21% 23 23% 23 23% 26 26%
Error2 14 14% 15 14% 21 21% 19 19% 18 18% 17 17%
Error1 15 14% 17 17% 33 32% 16 16% 15 15% 8 8% 
Perfect 57 56% 49 48% 21 21% 33 32% 19 19% 23 23%
Good% 70% 65% 43% 48% 34% 31% 
Score 81 78 69 68 55 54 



point of score. Table 1 shows the manual 
evaluation results for 6 general-purpose machine 
translation systems available to us. In table 1, 
Error5 means the worst translation. Error4 to 
Error1 are better when the numbering becomes 
smaller. A translation is labelled “Perfect” when 
it’s a translation without any fault in it. 
“Good%” is the sum of percent of “Error1” and 
“Perfect”. Because “Error1” translations refer to 
those have small imperfections. “Score” is the 
weighted sum of scores of the 6 kinds of 
translations. E.g. for machine translation system 
MTS1, the score is calculated as follows: 
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In table 2, the human scorings and automatic 
scorings of the 6 machine translation systems are 
listed. The translations of system #1 are taken as 
standard for automatic evaluations, i.e. all 
scorings are made on the basis of the result of 
system #1. In principle this will introduce some 
errors, but we suppose it not so great as to 
invalidate the automatic evaluation result. This 
is also why the scorings of system #1 are 100. 
The last row labele AutoAver is the average of 
automatic evaluations. 

Table 2. Scoring of 6 MT Systems 
System# #1 #2 #3 #4 #5 #6 
Human 100 78 69 68 55 54 
Dice 100 70 57 65 48 56 
Cosine 100 75 64 72 55 63 
Edistance 100 78 69 75 63 68 
AutoAver 100 74 63 71 55 62 

Figure 3 presents the scorings of Dice 
coefficient, cosine correlation, edit distance and 
the average of the three automatic criterions in a 
chart, we can clearly see the consistency among 
these parameters. 
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Figure 3. Automatic Scoring of 6 MT Systems 

In Figure 3, the numbers on X-axis are the 
numbering of machine translation systems, 
while the Y-axis denotes the evaluation scores. 
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Figure 4. Scoring of 6 MT Systems 

The human and automatic average scoring 
is shown in Figure 4. The Automatic data refers 
to the average of Dice, cosine correlation and 
edit distance scorings. On the whole, human and 
automatic evaluations tend to present similar 
scores for a specific system, e.g. 78/74 for 
system #2, while 69/63 for system #3. 

3 Result Analysis 
The experimental results and the charts have 
shown some intuitionistic relationship among 
the automatic criteria of Dice coefficient, cosine 
value, edit distance and the human evaluation 
result. A more solid analysis is made in this 
section to verify this relationship. Statistical 
analysis is a useful tool to 1) find the 
relationship between data sets and 2) decide 
whether the relationship is significant enough or 
just for random errors.  

The measure of linear correlation is a way 
of assessing the degree to which a linear 
relationship between two variables is implied by 
observed data. The correlation coefficient 
between variable X and Y is defined as 

YXss
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   (7) 
where 
COV(X,Y) is the covariance defined by 

∑ −−
−

= ))((
1

1),( YYXX
n

YXCOV ii
 (8) 

The symbol meanings are as follows: 
sX: sample standard deviation of variable X 
sY: sample standard deviation of variable Y 
n: sample size 
Xi (Yi) : the ith component of variable X (Y) 
X (Y ): the sample mean of variable X (Y) 



From its definition, we know that the correlation 
coefficient is scale-independent and 11 ≤≤− r . 
After we get the correlation coefficient r, a 
significance test at the level 01.0=α  is made 
to verify whether the correlation is real or just 
due to random errors. Linear regression is used 
to construct a model that specifies the linear 
relationship between the variables X and Y. A 
scatter diagram and regression line will be 
presented for an intuitionistic view of the 
relationship. The results are presented in the 
graphs below. In the graphs, the human 
evaluation results are placed on the X axis, while 
the automatic results are on the Y axis. 
Correlation coefficient and the linear regression 
equation are shown below the graphs. Taking 
into the sample size and the correlation 
coefficient, the significance level is also 
calculated for the statistical analysis. 

 
Figure 5. Human (X) and AutoAver (Y) 

Y=8.0+0.89X, P < 0.01 
r = 0.96, P < 0.01 

 
Figure 6. Human (X) and Dice (Y) 

Y=6.9+1.03X, P < 0.01 
r = 0.96, P < 0.01 

 
Figure 7. Human (X) and Cosine (Y) 

Y=9.3+0.88X, P < 0.01 
r = 0.96, P < 0.01 

 
Figure 8. Human (X) and Edistance (Y) 

Y=23.3+0.74X, P < 0.01 
r = 0.95, P < 0.01 

It is a property of r that it has a value 
domain of [-1,+1]. A positive r implies that the 
X and Y tend to increase/decrease together. A 
minus r implies a tendency for Y to decrease as 
X increases and vice versa. When there is no 
particular relation between X and Y, r tends to 
have a value close to zero. From the above 
analysis, we can see that the Dice coefficient, 
cosine, and average of the automatic values are 
highly correlated with the human evaluation 
results with r=0.96. P < 0.01 shows the two 
variables are strongly correlated with a 
significance level beyond the 99%. While P < 
0.01 for the linear regression equation has the 
same meaning. 

Conclusion 

Our evaluation method is designed for the 
localization oriented EBMT system. This is why 
we take string similarity criteria as basis of the 
evaluation. In our approach, we take edit 
distance, dice coefficient and cosine correlation 
between the machine translation results and the 
standard translation as evaluation criteria. A 
theoretical analysis is first made so that we can 
know clearly the goodness and shortcomings of 
the three factors. The evaluation has been used 
in our development to distinguish bad 
translations from good ones. Significance test at 
0.01 level is made to ensure the reliability of the 
results. Linear regression and correlation 
coefficient are calculated to map the automatic 
scoring results to human scorings. 

Acknowledgements 

This work was done while the author visited 
Microsoft Research Asia. Our thanks go to Wei 
Wang, Jinxia Huang, and Professor Changning 
Huang at Microsoft Research Asia and Jing 
Zhang, Wujiu Huang at Harbin Institute of 



Technology. Their help has contributed much to 
this paper. 

References  

A. Guessoum, R. Zantout, Semi-Automatic 
Evaluation of the Grammatical Coverage of 
Machine Translation Systems, MT Summit’ 
conference, Santiago de Compostela, 2001 

Brew C, Thompson H.S, Automatic Evaluation of 
Computer Generated Text: A Progress Report on 
the TextEval Project, Proceedings of the Human 
Language Technology Workshop, 108-113, 1994. 

Christopher D. Manning, Hinrich Schutze, 
Foundations of Statistical Natural Language 
Processing, the MIT Press, 1999, 530-572 

Douglas A. Jones, Gregory M. Rusk, 2000, Toward a 
Scoring Function for Quality-Driven Machine 
Translation, Proceedings of COLING-2000. 

Keiji Yasuda, Fumiaki Sugaya, etc, An Automatic 
Evaluation Method of Translation Quality Using 
Translation Answer Candidates Queried from a 
Parallel Corpus, MT Summit’ conference, Santiago 
de Compostela, 2001 

Language and Machines. Computers in Translation 
and Linguistics, (ALPAC report, 1966). National 
Academy of Sciences, 1966 

Niamh Bohan, Elisabeth Breidt, Martin Volk, 2000, 
Evaluating Translation Quality as Input to Product 
Development, 2nd International Conference on 
Language Resources and Evaluation, Athens, 2000. 

Shoichi Yokoyama, Hideki Kashioka, etc., An 
Automatic Evaluation Method for Machine 
Translation using Two-way MT, 8th MT Summit 
conference, Santiago de Compostela, 2001 

Sungryong Koh, Jinee Maeng, etc, A Test Suite for 
Evaluation of English-to-Korean Machine 
Translation Systems, MT Summit’ conference, 
Santiago de Compostela, 2001 

Shiwen Yu, Automatic Evaluation of Quality for 
Machine Translation Systems, Machine Translation, 
8: 117-126, 1993, Kluwer Academic Publishers, 
printed in the Netherlands. 

Wagner A.R.  and Fischer M., The string-to-stirng 
correction problem, Journal of the ACM, Vol. 21, 
No. 1, 168-173 

V.I. Levenshtein, Binary codes capable of correcting 
deletions, insertions and reversals. Doklady 
Akademii Nauk SSSR 163(4) 845-848, 1965 

Yasuhiro Akiba, Kenji Imamura, and Eiichiro Sumita, 
Using Multiple Edit Distances to Automatically 
Rank Machine Translation Output, MT Summit’ 
conference, Santiago de Compostela, 2001 

Appendix: Automatic Evaluation Results 
cosine      Dice  edistance* ̀  standard translation&EBMT translation 
0.27273     0.27273      44/6=7     不是有效的扩展MAPI库。 

                   是无效的extendedmapi库 
0.43301     0.42857     28/6=4     电子邮件工具列表 

                             列表mail工具 
0.53452     0.53333 30/7=4      为此用户选择角色 

                               选择role此用户 
0.62994     0.625     32/4=8      插入下一个连续号码 

                               插入下一序列号 
0.7     0.7      80/16=5      以磅为单位将文字行在页面的垂直方向上移动 

                               相对于页面以磅为单位移动文字行的纵向位置 
0.72058     0.72      50/11=4      用图片格式插入链接的对象 

                               将链接的对象插入为一幅图片 
0.78335     0.78261 46/3=15      用文本格式插入链接的对象 

                         以文本形式插入链接对象 
0.81786     0.81633 98/20=4      以磅为单位将后续文字移动到与栏或图文框相关的水平位置 

                             相对于栏或框架以磅为单位移动后续文字的水平位置 
0.8528     0.84211 76/12=6      插入以数据记录号作为结尾的数据，然后是开关。 

                               插入以开关后数据记录号结尾的数据 
0.86772     0.86486 37/2=18      请选择要执行的操作： 

                               选择要执行的操作: 
0.875      0.875  32/1=32    最近使用文件列表 

                               最近所用文件列表 
0.90889     0.90476 42/2=21      计划远程邮件传递时程... 

                               计划远程邮件传递... 
 

*Notes: The data presented in “edistance” is the reciprocal of the normalized edit distance: the numerator is |s1 + s2| in bytes ; the 
denominator is the edit distance in Chinese characters or English words. 
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