
Automatic Semantic Grouping in a Spoken Language User Interface
Toolkit

Hassan Alam, Hua Cheng, Rachmat Hartono, Aman Kumar, Paul Llido, Crystal Nakatsu, Huy

Nguyen, Fuad Rahman, Yuliya Tarnikova, Timotius Tjahjadi and Che Wilcox

BCL Technologies Inc.
Santa Clara, CA 95050 U.S.A.

fuad@bcltechnologies.com

Abstract
With the rapid growth of real
application domains for NLP systems,
there is a genuine demand for a general
toolkit from which programmers with no
linguistic knowledge can build specific
NLP systems. Such a toolkit should
provide an interface to accept sample
sentences and convert them into
semantic representations so as to allow
programmers to map them to domain
actions. In order to reduce the workload
of managing a large number of semantic
forms individually, the toolkit will
perform what we call semantic grouping
to organize the forms into meaningful
groups. In this paper, we present three
semantic grouping methods: similarity-
based, verb-based and category-based
grouping, and their implementation in
the SLUI toolkit. We also discuss the
pros and cons of each method and how
they can be utilized according to the
different domain needs.

1 Introduction and Motivation

With the improvement of natural language
processing (NLP) and speech recognition
techniques, spoken language will become the
input of choice for software user interfaces, as
it is the most natural way of communication. In
the mean time, the domains for NLP systems,
especially those handling speech input, have
grown rapidly in recent years. However, most
computer programmers do not have enough
linguistic knowledge to develop an NLP
system to handle speech input. There is a

genuine demand for a general toolkit from
which programmers with no linguistic
knowledge can rapidly build speech based
NLP systems to handle their domain specific
problems more accurately (Alam, 2000). The
toolkit will allow programmers to generate
Spoken Language User Interface (SLUI) front
ends for new and existing applications using,
for example, a program-through-example
method. In this methodology, the programmer
will specify a set of sample input sentences or
a domain corpus for each task. The toolkit will
then organize the sentences by meaning and
even generate a large set of syntactic variations
for a given sentence. It will also generate the
code that takes a user’s spoken request and
executes a command on an application. This
methodology is similar to using a GUI toolkit
to develop a graphical user interface so that
programmers can develop GUI without
learning graphics programming. Currently this
is an active research area, and the present work
is funded by the Advanced Technology
Program (ATP) of the National Institute of
Standards and Technology (NIST).

In the program-through-example approach,
the toolkit should provide an interface for the
programmers to input domain specific corpora
and then process the sentences into semantic
representations so as to capture the semantic
meanings of the sentences. In a real world
application, this process results in a large
number of semantic forms. Since the
programmers have to manually build the links
between these forms and their specific domain
actions, they are likely to be overwhelmed by
the workload imposed by the large number of
individual semantic forms. In order to
significantly reduce this workload, we can

organize these forms in such a way so that the
programmers can manipulate them as groups
rather than as individual items. This will speed
up the generation process of the domain
specific SLUI system. We call this process the
semantic grouping process.

One straightforward way to group is to
organize different syntactic forms expressing
the same meaning together. For example,

(1.1) I want to buy this book online.
(1.2) Can I order this book online?
(1.3) How can I purchase this book online?
(1.4) What do I need to do to buy this book

online?

The semantic forms of the above sentences
may not be the same, but the action the
programmer has in mind in an e-business
domain is more or less the same: to actually
buy the book online. In addition to the above
sentences, there are many variations that an
end-user might use. The embedded NLP
system should be able to recognize the
similarity among the variations so that the
SLUI system can execute the same command
upon receiving the different queries. This
requires a group to contain only sentences with
the same meaning. However in real
applications, this might be difficult to achieve
because user requests often have slight
differences in meaning.

This difficulty motivates a different style
for semantic grouping: organizing the semantic
forms into groups so that those in the same
group can be mapped roughly to the same
action. The action can be either a command,
e.g., buy something, or concerning an object,
e.g., different ways of gathering information
about an object. For example, sentence (1.5)
would be grouped together with the above
example sentences because it poses the same
request: buy books; and sentences (1.6) to (1.8)
would be in one group because they are all
about price information.

(1.5) I want to buy the latest book about e-

business.

(1.6) Please send me a price quote.
(1.7) What is the reseller price?
(1.8) Do you have any package pricing for

purchasing multiple products at once?

This type of grouping is the focus of this
paper. We propose three grouping methods:
similarity-based grouping, verb-based
grouping and category-based grouping. The
process of grouping semantic forms is domain
dependent and it is difficult to come up with a
generally applicable standard to judge whether
a grouping is appropriate or not. Different
grouping techniques can give programmers
different views of their data in order to satisfy
different goals.

This paper is organized into 6 sections. In
Section 2, we briefly describe the system for
which the grouping algorithms are proposed
and implemented. Section 3 presents the three
grouping methods in detail. In Section 4, we
describe how the algorithms are implemented
in our system. We test the methods using a set
a sentences from our corpus and discuss the
pros and cons of each method in Section 5.
Finally, in Section 6, we draw conclusions and
propose some future work.

2 SLUITK

As mentioned in the previous section, the
Spoken Language User Interface Toolkit
(SLUITK) allows programmers with no
linguistic knowledge to rapidly develop a
spoken language user interface for their
applications. The toolkit should incorporate
the major components of an NLP front
end, such as a spell checker, a parser and a
semantic representation generator. Using
the toolkit, a programmer will be able to create
a system that incorporates complex NLP
techniques such as syntactic parsing and
semantic understanding.

2.1 The Work Flow

Using an Automatic Speech Recognition
(ASR) system, the SLUITK connects user
input to the application, allowing spoken
language control of the application. The
SLUITK generates semantic representations of
each input sentence. We refer to each of these
semantic representations as a frame, which is
basically a predicate-argument representation
of a sentence.

The SLUITK is implemented using the
following steps:

1. SLUITK begins to create a SLUI by
generating semantic representations of
sample input sentences provided by the
programmer.

2. These representations are expanded using
synonym sets and other linguistic devices,
and stored in a Semantic Frame Table
(SFT). The SFT becomes a
comprehensive database of all the
possible commands a user could request a
system to do. It has the same function as
the database of parallel translations in an
Example-based machine translation
system (Sumita and Iida, 1991).

3. The toolkit then creates methods for
attaching the SLUI to the back end
applications.

4. When the SLUI enabled system is
released, a user may enter an NL
sentence, which is translated into a
semantic frame by the system. The SFT is
then searched for an equivalent frame. If a
match is found, the action or command
linked to this frame is executed.

In a real application, a large number of

frames might be generated from a domain
corpus. The semantic grouper takes the set of
frames as the input and outputs the same
frames organized in a logical manner.

2.2 The Corpus
We use a corpus of email messages from our
customers for developing and testing the
system. These email messages contain
questions, comments and general inquiries
regarding our document-conversion products.
We modified the raw email programmatically
to delete the attachments, HTML and other
tags, headers and sender information. In
addition, we manually deleted salutations,
greetings and any information that was not
directly related to customer support. The
corpus contains around 34,640 lines and
170,000 words. We constantly update it with
new email from our customers.

We randomly selected 150 sentential
inquiries to motivate and test the semantic
grouping methods discussed in this paper.

3 Semantic Grouping

We have mentioned in Section 1 that grouping

semantic frames is domain dependent.
Grouping depends on the nature of the
application and also the needs of the domain
programmer. Since this is a real world
problem, we have to consider the efficiency of
grouping. It is not acceptable to let the
programmer wait for hours to group one set of
semantic forms. The grouping should be fairly
fast, even on thousands of frames.

These different considerations motivate
several grouping methods: similarity-based
grouping, verb-based grouping and category-
based grouping. In this section, we describe
each of these methods in detail.

3.1 Similarity-based Grouping
Similarity-based grouping gathers sentences
with similar meanings together, e.g., sentences
(1.1) to (1.4). There is a wide application for
this method. For example, in open domain
question-answering systems, questions need to
be reformulated so that they will match
previously posted questions and therefore use
the cached answers to speed up the process
(Harabagiu et al., 2000).

The question reformulation algorithm of
Harabagiu et al. tries to capture the similarity
of the meanings expressed by two sentences.
For a given set of questions, the algorithm
formulates a similarity matrix from which
reformulation classes can be built. Each class
represents a class of equivalent questions.

The algorithm for measuring the similarity
between two questions tries to find lexical
relationships between every two questions that
do not contain stop words. The algorithm
makes use of the WordNet concept hierarchy
(Fellbaum, 1998) to find synonym and
hypernym relations between words.

This algorithm does not infer information
about the meanings of the questions, but rather
uses some kind of similarity measurement in
order to simulate the commonality in meaning.
This is a simplified approach. Using different
threshold, they can achieve different degrees of
similarity, from almost identical to very
different.

This method can be used for similarity-
based grouping to capture the similarity in
meanings expressed by different sentences.

3.2 Verb-based Grouping
Among the sentences normally used in the e-
business domain, imperative sentences often
appear in sub-domains dominated by
command-and-control requests. In such an
application, the verb expresses the command
that the user wants to execute and therefore
plays the most important role in the sentence.
Based on this observation, a grouping can be
based on the verb or verb class only. For
example, sentences with buy or purchase etc.
as the main verbs are classified into one group
whereas those with download as the main verb
are classified into a different group, even when
the arguments of the verbs are the same.

This is similar to sorting frames by the
verb, taking into account simple verb synonym
information.

3.3 Category-based Grouping
Since SLUITK is a generic toolkit whereas the
motivation for grouping is application
dependent, we need to know how the
programmer wants the groups to be organized.
We randomly selected 100 sentences from our
corpus and asked two software engineers to
group them in a logical order. They came up
with very different groups, but their thoughts
behind the groups are more or less the same.
This motivates the category-based grouping.

This grouping method puts less emphasis
on each individual sentence, but tries to
capture the general characteristics of a given
corpus. For example, we want to group by the
commands (e.g., buy) or objects (e.g., a
software) the corpus is concerned with. If a
keyword of a category appears in a given
sentence, we infer that sentence belongs to the
category. For example, sentences (1.6) to (1.8)
will be grouped together because they all
contain the keyword price.

These sentences will not be grouped
together by the similarity-based method
because their similarity is not high enough, nor
by the verb-based method because the verbs
are all different.

4 Grouping in SLUITK

Because we cannot foresee the domain needs
of the programmer, we implemented all three

methods in SLUITK so that the programmer
can view their data in several different ways.
The programmer is able to choose which type
of grouping scheme to implement.

In the question reformulation algorithm of
(Harabagiu, et al. 2000), all words are treated
identically in the question similarity
measurement. However, our intuition from
observing the corpus is that the verb and the
object are more important than other
components of the sentence and therefore
should be given more weight when measuring
similarity. In Section 4.1, we describe our
experiment with the grouping parameters to
test our intuition.

4.1 Experimenting with Parameters
We think that there are two main
parameters affecting the grouping result: the
weight of the syntactic components and the
threshold for the similarity measurement in the
similarity-based method. Using 100 sentences
from our corpus, we tried four different types
of weighting scheme and three thresholds with
the category-based methods. Human judgment
on the generated groups confirmed our
intuition that the object plays the most
important role in grouping and the verb is the
second most important. The differences in
threshold did not seem to have a significant
effect on the similarity-based grouping. This
is probably due to the strict similarity
measurement.

This experiment gives us a relatively
optimal weighting scheme and threshold for
the similarity-based grouping.

One relevant issue concerns the
simplification of the semantic frames. For a
sentence with multiple verbs, we can simplify
the frame based on the verbs used in the
sentence. The idea is that some verbs such as
action verbs are more interesting in the e-
business domain than others, e.g., be and have.
If we can identify such differences in the verb
usage, we can simplify the semantic frames by
only keeping the interesting verb frames. For
example, in the following sentences, the verb
buy is more interesting than be and want, and
the generated semantic frames should contain
only the frame for buy.

(4.1) Is it possible to buy this software online?
(4.2) I want to buy this software online.

Figure 1: A screen shot of SLUITK

We make use of a list of stop-words from
(Frakes, 1992) in order to distinguish between
interesting and uninteresting verbs. We look
for frames headed by stop-words and follow
some heuristics to remove the sub-frame of the
stop-word. For example, if there is at least one
verb that is not a stop-word, we remove all
other stop-words from the frame. In the
sentence [Is it possible to] buy the software in
Germany?, be is a stop-word, so only the
frame for buy is kept. This process removes the
redundant part of a frame so that the grouping
algorithm only considers the most important
part of a frame.

4.2 Implementation in SLUITK
Figure 1 shows a screen shot of the interface of
the SLUITK, which shows several grouped
semantic frames. In this section, we give more
detail about the implementation of the three
grouping methods used in SLUITK.

Similarity-based grouping

Similar to (Harabagiu, et al. 2001), our
similarity-based grouping algorithm calculates
the similarity between every two frames in the
input collection. If the similarity is above a
certain threshold, the two frames are

considered similar and therefore should be
grouped together. If two frames in two
different groups are similar, then the two
groups should be combined to a single group.
The central issue here is how to measure the
similarity between two frames.

Since we have found that some syntactic
components are more important to grouping
than others, we use a weighted scheme to
measure similarity. For each frame, all words
(except for stop-words) are extracted and used
for similarity calculation. We give different
weights to different sentence components.
Since in an e-business domain, the verb and
the object of a sentence are usually more
important than other components because they
express the actions that the programmers want
to execute, or the objects for which they want
to get more information, the similarity of these
components are emphasized through the
weighting scheme. The similarity score of two
frames is the summation of the weights of the
matched words.

There is a match between two words when
we find a lexical relationship between them.
We extend the method of (Harabagiu, et al.
2000) and define a lexical relationship between
two words W1 and W2 as in the following:

Table 1 : Comparison of grouping methods

1. If W1 and W2 have a common

morphological root. Various stemming
packages can be used for this purpose, for
example, Porter Stemmer (Porter, 1997).

2. If W1 and W2 are synonyms, i.e., W2 is
in the WordNet synset of W1.

3. If the more abstract word is a WordNet
hypernym of the other.

4. If one word is the WordNet holonym of
the other (signaling part of, member of
and substance of relations);

5. If W1 is the WordNet antonym of W2.

Domain specific heuristics can also be used
to connect words. For example, in the e-
business domain, you and I can be treated as
antonyms in the following sentences:

(4.3) Can I buy this software?
(4.4) Do you sell this software?

When none of the above is true, there is no

lexical relation between two given words.
Because the similarity-based grouping

needs to consult WordNet frequently for
lexical relations, it becomes very slow for even
a few hundred frames. We have to change the
algorithm to speed up the process, as it is too
slow for real world applications.

Instead of comparing every two frames, we
put all the words from an existing group
together. When a new frame is introduced, we
compare the words in this new frame with the
word collection of each group. The similarity
scores are added up as before, but it needs to
be normalized over the number of words in the
collection. When the similarity is above a
certain threshold, the new frame is classified as
a member of the group. This significantly
reduces the comparison needed for classifying
a frame, and therefore reduces the number of
times WordNet needs to be consulted.

We compared this improved algorithm with
the original one on 30 handcrafted examples;
the generated groups are very similar.

Verb-based grouping

The verb-based grouping implementation is
fairly straightforward and has been described
in Section 3.2.

Category-base grouping

For the category-based method, we first count
all the non stop-words in a given corpus and
retrieve a set of most frequent words and their
corresponding word classes from the corpus.
This process also makes use of the WordNet
synonym, hypernym, holonym and antonym
information. These word classes form the
categories of each group. We then check the
verbs and objects of each sentence to see if
they match these words. That is, if a category
word or a lexically related word appears as the
verb or the object of a sentence, the sentence is
classified as a member of that group. For
example, we can pick the most frequent 20
words and divide the corpus into 21 groups,
where the extra group contains all sentences
that cannot be classified. The programmer can
decide the number of groups they want. This
gives the programmer more control over the
grouping result.

5 Discussion

We tested the three methods on 100 sentences
from our corpus. We had 5 people evaluate the
generated groups. They all thought that
grouping was a very useful feature of the
toolkit. Based on their comments, we
summarize the pros and cons of each method
in Table 1.

The similarity-based grouping produces a
large number of groups, most of which contain
only one sentence. This is because there are
usually several unrelated words in each
sentence, which decreases the similarity
scores. In addition, using WordNet we
sometimes miss the connections between
lexical items. The verb-based grouping

 Similarity-based Verb-based Category-based
Group Size small small large
Number of Groups large large variable
Speed slow on large corpus fast slow on large corpus
Application general command-and-control only general

produces slightly larger groups, but also
produces many single sentence groups.
Another problem is that when sentences
contain only stop-word verbs, e.g., be, the
group will look rather arbitrary. For example, a
group of sentences with be as the main verb
can express completely different semantic
meanings. The small group size is a
disadvantage of both methods. The number of
groups of the category-based grouping can
change according to the user specification. In
general it produces less groups than the other
methods and the group size is much larger, but
the size becomes smaller for less frequent
category words.

Both the similarity-based and category-
based grouping methods are slow because they
frequently need to use WordNet to identify
lexical relationships. The verb-based method is
much faster, which is the primary advantage of
this method.

The verb-based method should be used in a
command-and-control domain because it
requires at least one non stop-word verb in the
sentence. However, it will have a hard time in
a domain that needs to handle questions. From
the point of view of assigning a domain
specific action to a group, this grouping is the
best because each verb can be mapped to an
action. Therefore, the programmer can link an
action to each group rather than to each
individual frame. When the group size is
relatively large, this can greatly reduce the
workload of the programmer.

The category-based method produces a
better view of the data because the sentences in
each group seem to be consistent with the
keywords of the category. The disadvantage is
that it is difficult to link a group to a single
action, and the programmer might have to re-
organize the groups during action assignment.

The similarity-based method did not
perform well on the testing corpus, but it might
work better on a corpus containing several
different expressions of the same semantic
information.

In summary, each method has its
advantages and disadvantages. The decision of
which one to choose depends mainly on the
needs of the domain programmer and the
composition of the input corpus.

6 Conclusions and Future Work

In this paper we propose semantic grouping as
a way to solve the problem of manipulating
semantic frames in developing a general
Spoken Language User Interface Toolkit
(SLUITK). We introduced three methods for
grouping semantic frames generated by the
NLP components of the toolkit. We tested the
methods and discussed the advantages and
disadvantages of each method. Since the
judgment of the grouping result is application
dependent, the methods co-exist in our
SLUITK to suit the requirement of different
applications.

Future work includes improving the
efficiency and accuracy of the methods and
testing them on a larger corpus.

References
Alam H. (2000) Spoken Language Generic

User Interface (SLGUI). Technical Report
AFRL-IF-RS-TR-2000-58, Air Force Research
Laboratory, Rome.

Fellbaum C. (1998) WordNet, An
Electronic Lexical Database, The MIT Press,
Cambridge, Massachusetts.

Frakes W. and Baeza-Yates R. (1992)
Information Retrieval, Data Structures and
Algorithms, Prentice-Hall.

HaraBagiu S. and Moldovan D. and Pasca
M. and Mihalcea R. and Surdeanu M. and
Bunescu R. and Girju R. and Rus V. and
Morarescu P. (2000) FALCON: Boosting
Knowledge for Answer Engines, TREC 9.

Porter M. (1997) An algorithm for suffix
stripping, in Readings in Information
Retrieval, Karen Sparck Jones and Peter Willet
(ed), San Francisco: Morgan Kaufmann.

Sumita E. and Iida H. (1991) Experiments
and Prospects of Example-Based Machine
Translation. In Proceedings of the Annual
Meeting of the Association for Computational
Linguistics, pp. 185-192.

	Table of Content
	Topics
	Authors

