
Design and evaluation of grammar checkers in multiple languages

Antje HELFRICH
NLG, Microsoft Corp.

1 Microsoft Way
Redmond, WA 98052
antjeh@microsoft.com

Bradley MUSIC
NLG, Microsoft Corp.

1 Microsoft Way
Redmond, WA 98052

brmusic@microsoft.com

Abstract
This paper describes issues involved in the development of a grammar checker in multiple languages at Microsoft
Corporation. Focus is on design (selecting and prioritizing error identification rules) and evaluation (determining
product quality).

Introduction
The goal of the project discussed here is to develop
French, German and Spanish grammar checkers
for a broad user base consisting of millions of
Microsoft Word customers – users who create
documents of all types, styles and content, using
various terminology and dialects, and who want
proofing tools that help eliminate mistakes in an
efficient and non-intruding fashion.

The fact that the user base is so broad
poses many challenges, among them the questions
of which errors are most common among such a
diverse set of users, and what types of input the
grammar checkers need to be tested and evaluated
on.

This paper will describe the common
methods and processes that we use across the
language teams for design and evaluation, while
focusing on language-specific characteristics for
the actual product design. The central role of large
text corpora in the three languages (including
regional variations) for both design and evaluation
will be discussed.

Design: How do we know what the right
features are?
In the design phase of the software development
process, we ask the question: What should the
product do for the user? For a grammar checker,
the main features are the error detection and
correction rules, or “critiques”. The goal of the
design phase is to determine which level of
proofing and which error types typical Microsoft
Word users care about most. It is important to
remember that our grammar checker is not a
standalone product, but a component within
Microsoft Word, and that the main goal of the user

is to create documents as efficiently as possible.
We don’t want to distract, delay or bother people
with a picky proofing component that points out
linguistic issues most users don’t care about (even
if we could critique those with high precision1) or
eagerly highlights any “suspicious” sentence with a
potential problem. Instead, we focus on critiques
that are actually helpful to the majority of users
from their point of view and support them in their
ultimate goal of creating grammatically clean
documents efficiently.

Researching the customer
The first step towards determining the feature set is
to describe the target user of the grammar checker.
One early decision was to focus on native users,
since we are developing a grammar checker and
not a language-learning tool. However, many of
the grammar mistakes native users make are also –
or even more – common among non-native users,
so we know that the grammar checker will be
helpful to this population as well.

The target user base for our grammar
checkers are current and future Microsoft Word
users, and we benefit from information that has
already been gathered about the Microsoft Word
user profile. We know that Microsoft Word is used
mostly at the workplace, and we know what types
of documents various professionals create in the
respective countries.

In addition to relying on general Microsoft
Word user information, we learn about people’s
proofing behavior in interviews, focus groups and

1 Even actual errors can belong in this category: the French
capitalization rules for language names vs. people (e.g.
françaisvs.Français), for instance, are clear, but customer
research shows that many users don’t want such errors to be
pointed out.



surveys, conducted in the target markets Germany
(where we include Swiss and Austrian speakers),
France, Canada, Spain, and Latin America. We
develop discussion guides and questionnaires to
gather detailed information about how people
ensure that their documents are “grammar-clean”,
starting with questions about the types of
documents they write, whether they care about the
correctness of their writing equally for all
documents (and have found, not surprisingly, that
the level of desired proofing depends on the
intended formality of the document, which in turn
depends on the target audience for the text) and
proceed with questions about how they proof their
texts and what types of issues they feel they need
help with.

Focus groups and survey participants
provide a lot of input on the question of what
errors people care about most. We know from
these studies to focus on actual grammar errors
instead of on stylistic issues, since there is no
common agreement about the latter and people are
generally less interested in seeing them pointed
out. We also receive detailed feedback on
language-specific priorities for error detection: we
have learned for instance that French speakers care
about agreement and getting tense and mood right,
German speakers care about selection of case,
capitalization and spelling together vs. apart rules,
and Spanish speakers care about agreement,
correct use of clitics, and confusable words, among
other error types.

Selecting and prioritizing the features
After determining the target user for the grammar
checker, we systematically compile the set of
critiques that will be helpful to this user base. For
features like the user interface we use data gained
from user feedback concerning the existing English
grammar checker and confirm the findings in the
target countries; the actual error recognition rules,
however, are selected solely on a language-specific
basis.

The methods we apply in order to
determine the critique sets are systematic and are
shared among the teams. First, error types and
potential critiques are compiled based on the
sources listed below; in a second step we prioritize
and trim down the list of potential critiques
according to criteria of frequency, helpfulness, and
reliability.

Language/linguistic knowledge: Each
language team consists of linguists and
computational linguists who grew up and were
educated in the native language community. We
painfully remember grammar rules that were
drilled into us back in elementary school and have
theoretical and practical experiences that range
from language teaching to translation/localization
backgrounds to PhDs in linguistics. While we
know that disagreement errors are common in all
our target languages due to forced agreement
(between subject and verb or between a noun and
its articles/modifiers), we pay special attention to
language-specific phenomena and error types. For
instance, analysis of French errors reveals a high
degree of confusion between infinitive and past
participial verb forms, presumably due to their
phonetic equality; we therefore developed special
confusable word detection algorithms for the
French grammar checker.

Another aspect of language knowledge is
to observe trends and changes in language use,
whether the changes are speaker-induced (e.g.
gradually changing case requirements after specific
prepositions in German) or externally motivated
like the spelling reform in Germany, which has
huge consequences for the grammar checker2.

Reference books: Books about typical (and
frequent) grammar errors can be hard to come by,
depending on the language being analyzed, though
we did find sources for typical “grammatical
stumbling blocks” for all languages. Excellent
information came from books about writing good
business letters, since their target readers overlap
with our target users, and they contain good lists of
grammar issues that people often grapple with (e.g.
capitalization in multiple word expressions,
including standard business letter phrases, in
German). Unfortunately most of these give no (or
very little) indication of the frequency of the error.

Customer research: As described above,
we spend considerable time and effort to
investigate what errors native language users
struggle with and would like help with.

2 The spelling reform affects the grammar checker since many
changes in capitalization rules and spelling together vs. apart
rules require syntactic parsing in order to identify and correct
mistakes. An example is “zur Zeit” which is still spelled apart
when governing a genitive object, but is, according to the new
spelling rules, spelled together and with lower case (“zurzeit”)
when used adverbially.



Market analysis: We study the market for
grammar checkers and proofing tools in general in
the French/German/Spanish-speaking countries, to
review what products and features users are
familiar with and might expect in a grammar
checker.

Text corpus: We process and review
millions of sentences for each language to find out
which errors actually occur and at what frequency.

All of the sources listed above contribute
to the design process. The most decisive factors
stem from our customer research, which informs us
about what users view as their biggest grammar
challenges, and the corpus analysis, which informs
us about what errors users actually make. Corpus
analysis plays such a central role in our feature
design that it is discussed separately in the next
section.

Analyzing text and error data
Our text corpora are central for product design and
evaluation, and we are investing heavily in
creating, acquiring, categorizing, storing, tracking,
and maintaining data for the grammar checker and
future product development projects. While we
have to compile three separate corpora for French,
German and Spanish, the methods and principles
we apply to building and maintaining the corpora
are shared.

The corpus used in the grammar checker
project is representative of the documents that
target users create, and therefore the input that the
grammar checker will have to deal with. It includes
a mix of documents from various media (e.g.
newspaper vs. web site), styles (e.g. formal vs.
casual) and content (e.g. finance vs. science). The
proportion of each category is predetermined
according to the Microsoft Word user profile
described above.

The research community benefits from
access to published corpora not available for
commercial use. In contrast, a corporation that
needs data for development and testing purposes is
much more restricted. The following list gives an
overview of some of the challenges we are faced
with:

Copyright issues: While we are surrounded
by a lot of text, especially on the internet, many of
these documents are copyrighted and cannot be
used without permission; we need to follow
detailed legal guidelines and procedures, which

can cause substantial lag time between identifying
useful corpus sources and actually acquiring and
using them.

Size: We need huge amounts of corpus, in
all languages, in order to represent the various
media, styles, and contents. To render test results
meaningful, we need to ensure that all of the error
types we develop critiques for have sufficient
representation in the corpus.

Edited vs. unedited data: For our purposes,
we are especially interested in text that has not
undergone proofing and revision, in order to find
errors people actually make while entering text, as
well as to later test the quality of the grammar
checker. Such documents are extremely hard to
come by, so we found ways to have such unedited
text data specifically created for our project.
Edited data is used to verify that the grammar
checker does not falsely identify errors in correct
input.

Blind vs. non-blind data: We divide our
corpus into two parts of equal size and
corresponding content as far as document types,
subject matter and writing styles are concerned.
Half of the corpus is available to the whole team
and is used for design and development as well as
testing: The program manager uses this corpus to
identify and analyze error types and frequency, and
to support developers by providing corpus samples
for specific grammatical constructions or error
occurrences; the test team uses it to provide open
feedback to developers about the precision of the
parser and the grammar checker. The other half of
the corpus is “blind” and only available to the test
team; it is used to measure the accuracy of both
parser and grammar checker. When the test team
finds “bugs” (e.g. missed error identification, or
faulty analysis of a correct sentence as
grammatically wrong) in the blind corpus, the
underlying pattern of the problem is reported, but
the specific sentence is not revealed in order to
prevent tuning the product to individual sentences
and biasing the accuracy numbers. Doubling the
corpus in this way means that we need more data
in terms of sheer quantity; it also poses additional
challenges for categorizing, tracking, and securing
the data.

Cleaning: While we don’t want the corpus
clean in terms of grammar errors, we do need to
process it to standardize the format, remove



elements like HTML formatting codes, hard
returns, etc. so we can use it in automated tools.

The extensive effort put into design helps
to ensure that the product focuses on errors people
actually make and care about. The next section
describes the testing done to determine if we’ve
achieved acceptable quality for identification and
correction of these error types.

Evaluation: How do we know when we’re
done?
During the development process, testers give
feedback and quality assessment, based on both the
blind and non-blind corpora, and using a variety of
tools to provide quick turn-around after a change to
the system. Development feedback shows the
effects of each change to the lexicon, morphology,
grammar or critiquing system, where the testers
systematically apply language-independent
methods of analysis and reporting. Developers
need to know the impact of any changes they make
as soon as possible, so that further development
can proceed with confidence or, in the case of an
unexpected negative impact, problems can be
corrected before further development. Quality
assessment is partially reflected in terms of agreed-
upon metrics, such as recall, precision, and false
flags per page.

As we approach the end of the
development process, we continue to monitor the
metrics against pre-defined goals, but also shift
focus to other kinds of testing with orientation
towards the user’s experience with the grammar
checker.

This section will briefly outline key
metrics used for quality assessment as well as
some of the user-focused testing we do before
shipping the final version.

Precision
Precision = good flags/total flags, e.g. if the
grammar checker correctly identifies 160 errors on
a given corpus, and incorrectly flags 15
words/phrases as errors in that corpus, the
precision will be 160/175=91%. Determining
precision has less meaning the more the test corpus
has undergone editing. In the extreme case of a
highly edited text (e.g. a published book) where in
principle there should be no grammar errors
present at all, the only flags a grammar checker

could possibly get would be false flags, thus
precision would be 0%, which would give an
inaccurate impression of product quality.3

Precision is reported on a variety of corpora within
the language teams, these having the same
representativity across the teams.

Recall
Recall = good flags/expected flags, i.e. what
percentage of the errors is actually spotted.
Research on users’ impressions of grammar
checker quality consistently shows that users are
less concerned about recall than about the number
of false flags. This has entailed a cross-linguistic
prioritization of improving quality by the reduction
of false flags. In terms of metrics, this means that
increasing precision and decreasing the false flag
per page rate have had a higher priority than recall
for these grammar checkers. One challenge here is
the fact that methods for reducing false flags can
risk loss of good flags that would be helpful to our
users, so a light hand is required to balance
reduction of the absolute number of false flags vs.
still spotting and correcting the errors people really
make.

False flags per page
Although highly edited texts are less interesting for
determining precision, they are important as a basis
for measuring how ‘noisy’ the grammar checker is
on a finished document.4 This can be measured in
terms of false flags per page, with the ideal being
zero – however language being as complex as it is,
it is in fact extremely difficult to achieve no false
flags in a system that attempts to parse and correct
the frequent errors in agreement, mood, etc. More
realistically, a trade-off has to be accepted that
gives the critiques room to work, while still staying
under what’s considered an annoying level of false
flags per page. In the French, German and Spanish
grammar checker development effort, we set a goal

3 This was a flaw in a recent evaluation of a French grammar
checker done by the French Academy, where a grammar-
checking product was run against French literature from the
last four centuries, with the none too surprising result that it
suggested changes to the great authors’ prose. [AFP99]
4

Note that noisiness is affected by factors other than grammar
checker quality; for instance the UI can help to reduce
annoying flags by remembering editing of each sentence so as
not to bother users with same errors once they’ve been
explicitly ignored, as is done in Microsoft Word.



of having less than one false flag per page. Once
we were well below that for each language (while
still achieving precision and coverage goals), we
subjected the grammar checkers to beta testing (see
below) to confirm whether the users’ impressions
of the helpfulness of the grammar checker conform
to the metrics.

Market analysis
Although the Natural Language Group doesn’t sell
the grammar checkers as standalone products, it is
still interesting for us to determine how we fare
against grammar checkers already on the market.
Since we can’t be sure that other grammar
checkers have been evaluated in exactly the same
way, we can’t rely on the competitors’ reported
metrics, such as false flag per page rates. We
therefore do our own objective quality comparison
based on the sameblind corpus as we evaluate
ourselves against. Here is where the strict division
between blind and non-blind is absolutely essential
to avoid skewing the results – if the non-blind
corpus were used, we would show ourselves to an
advantage, since the developers also have access to
that corpus and naturally train against it.

Final testing: ‘real world’, bug bashes, beta
testing
Even given a low false flag per page rate and
acceptable precision and recall measures, when all
is said and done the user’s impression of quality
and usefulness can still come down to highly
specific contexts. Regardless of how we score on
our own metrics, users will often turn a grammar
checker off due to a ‘spectacular’ false flag and/or
annoyance. An example of what is meant by a
spectacular false flag isNous sommes� *Nous
somme, wheresommesis the correct first person
plural present form of the French verbêtre ‘to be’,
while sommewithout the–shas both masculine
and feminine noun readings, entailing the
possibility of a misparse of the verb as a noun, and
therefore a potential false flag. A Canadian user
who encountered this false flag when using a
product that is now off the market immediately
turned off that grammar checker for good. An
error on a common word like this can give users a
very low opinion of the grammar checker quality
and cause them turn it off for this flag alone.
Regardless of what the metrics tell us as to overall

quality, it still comes down to a subjective user
experience.

Therefore, when the product is getting
close to its final shippable state, we break away
from the metrics to gain insight into how users
experience the grammar checker quality and
usefulness. ‘Real world testing’ refers to test
passes where the test teams use the grammar
checker to edit documents like actual users will.
Rather than focusing on detailed analysis of
specific errors, they gain a general impression of
the product quality.

Bug bashes are another type of testing,
where native speaker users from outside our group
are asked to set aside a dedicated time to finding
bugs in the grammar checker. These normally take
place over several hours. Users may be asked to
explore the limits of the grammar checker, for
instance by executing certain tasks, such as
proofing an existing document, changing their
settings, etc. The purpose is to find functional and
linguistic bugs that may have been missed by our
own extensive testing. We also ask the
participants to answer a few questions on their
overall experience with the grammar checker.

Finally, beta testing is simply where the
grammar checker is used in native speakers’ daily
document production environment – they are asked
to use it in their daily work, submitting bugs via
email. Eventually they are also asked to record
their impressions on the usefulness of the grammar
checker, with as many specifics as possible.

Conclusion
Developing a grammar checker for a broad user
base presents many challenges, and this paper
focused on two areas: design and evaluation. The
multilingual project environment allows for
substantial leveraging of knowledge, methods and
processes; in the end, though, a grammar checker’s
value is determined by the support it provides to a
specific language community. To this end, native
language data guides the development, including
the analysis of large corpora and intense study of
the target market’s customer and their proofing
needs.

References
[AFP99] Agence France-Presse press release, May

21, 1999, “L'Académie française met en
garde contre des logiciels de correction”.


