
Extracting semantic clusters from the alignment of definitions

Gerardo SIERRA
Instituto de Ingeniería, UNAM

Apdo. Postal 70-472
México 04510, D.F.

gsm@pumas.iingen.unam.mx

John McNAUGHT
Department of Language Engineering, UMIST

PO Box 88
Manchester M60 1QD, UK

John.McNaught@umist.ac.uk

Abstract

Through the alignment of definitions from
two or more different sources, it is
possible to retrieve pairs of words that can
be used indistinguishably in the same
sentence without changing the meaning of
the concept. As lexicographic work
exploits common defining schemes, such
as genus and differentia, a concept is
similarly defined by different dictionaries.
The difference in words used between two
lexicographic sources lets us extend the
lexical knowledge base, so that clustering
is available through merging two or more
dictionaries into a single database and
then using an appropriate alignment
technique. Since alignment starts from the
same entry of two dictionaries, clustering
is faster than any other technique.
The algorithm introduced here is analogy-
based, and starts from calculating the
Levenshtein distance, which is a variation
of the edit distance, and allows us to align
the definitions. As a measure of similarity,
the concept of longest collocation couple
is introduced, which is the basis of
clustering similar words. The process
iterates, replacing similar pairs of words
in the definitions until no new clusters are
found.

Introduction

Clustering methods to identify semantically
similar words are usually divided in relation-
based and distribution-based approaches
[Hirawaka, Xu and Haase 1996]. Relation-based
clustering methods rely on the relations in a
semantic network or ontology to judge the
similarity between two concepts, either by
measuring the shortest length that connects two

concepts in the hierarchical net [Agirre and
Rigau 1996], or by comparing the information
content shared by the members under the same
cluster [Morris and Hirst 1991, Resnik 1997].
However, even although these ontologies
describe a huge number of members for a
cluster, few words of a category may be
interchangeable in the same context and then
used as members of the same cluster. This
means that not all words in a category are
necessary.
Conversely, distribution-based clustering
methods depend on pure statistical analysis of
the lexical occurrences in running texts. A major
drawback is that distribution-based methods
require us to process a large amount of data in
order to get more reliable results. Moreover, the
use of large corpora is not always practical, due
to economic, time or capabilities factors. Gao
[1997] states that the problem for statistical
alignment algorithms, such as those based on the
facts described by Gale and Church [1991], is
the low frequency of words that occur in parallel
corpora. The consequences for lacking large
corpora include results based on low-frequency
words, which are quite unrepresentative for
clustering.
From a methodological point of view, there is, in
addition to the above two approaches, a little
known approach called the analogy-based
approach. This employs an inferential process
and is used in computational linguistics and
artificial intelligence as an alternative to current
rule-based linguistic models.

1 Analogy-based clustering

Jones [1996] suggests corpus alignment as a
feasible analogy-based approach. In order to
align two sentences in the same language,
Waterman [1996] uses a technique for
measuring the similarity between lexical strings,
named edit distance. This matches the words of

two sentences in linear order and determines
their correspondence. For example, given the
following two definitions for alkalimeter:
• An apparatus for determining the

concentration of alkalis in solution [CED]
• An instrument for ascertaining the amount

of alkali in a solution [OED2]
Alignment may identify which words in these
definitions are equivalents of each other. A
quick observation of the sentences lets us
identify three pairs of words: (apparatus,
instrument), (determining, ascertaining) and
(concentration, amount).
The appeal of using definitions as corpora for
alignment is founded on two reasons. Firstly,
dictionaries contain all necessary information as
a knowledge base for extracting keywords
[Boguraev and Pustejovsky 1996]. Secondly, it
is much easier to find the sentences for aligning,
since definitions are distinguished by entry
headword.
Taking into account Waterman´s studies, we
propose an analogy-based method to identify
automatically semantic clusters. The difference
in words used between two or more
lexicographic definitions enables us to infer
paradigms by merging the dictionary definitions
into a single database and then using our own
alignment technique.

2 Clustering algorithm

The overall structure of the clustering algorithm
is shown in figure 1, and its description is given
below.

2.1 Processing definitions

Our algorithms are used in an overall system
called “onomasiological search system” (OSS),
whose aim is to allow the user to find terms by
giving a description of a concept. Lexicographic
and terminological definitions constitute the
main lexical resources. Our algorithms cluster
words that are used in the same context, thus
operate on pairs of definitions for a same entry
word, drawn from two different dictionaries. If
dictionary I does not have an entry word that
exists in dictionary J, then this entry word is
omitted from consideration. In order to balance
the number of strings when an entry word in the
dictionary I has two or more senses, the entry
word in dictionary J is repeated as many times
as necessary to equal the number of senses of
dictionary I. We thus derive two files I and J
containing an equal number of strings S

1
 and S

2
,

respectively. Each string consists of an entry
term followed by its definition, the definition
giving only one sense of the entry term. For each
string S

1
 there is a string S

2
.

Our experiments focus on 314 terms for
measuring instruments extracted with their
definitions from CED [1994] and OED2 [1994],
resulting in 387 strings from each dictionary.

match S1 and S2 calculate Levenshtein
distance

align S1 and S2

S1 and S2

find lcc

identify bindings replace strings

cluster bindings clusters

lcc ≥ 5

end

no

Figure 1 Clustering algorithm

definitions

processing

stemmer stoplist

The strings consist of the entry term and the
definition, so that etymology, part of speech,
inflected forms of the entry term, examples and
other information were deleted. Subject-field
labels, such as ‘astronomy’ and ‘meteorology’,
were preserved, either in full or slightly
abbreviated, as they are helpful to resolve which
sense of a word to choose, and usually constitute
a fundamental property of the concept.
It should be noted that none of the 387 strings
suffered any additional transformation, apart
from a few cases in order to complete a
definition when it had been broken in two parts
by the dictionary editor, such as when a core
meaning appears just once at the beginning of
several subsequent senses. Although some
abbreviations (‘U.S.A.’), initials of proper
names (‘C.T.R. Wilson’) and possessives (‘sun's
rays’) will come out as two or more words after
deleting punctuation marks and therefore can
alter the efficiency of the algorithm, they were
preserved to observe their effect.

2.2 Aligning definitions

In order to compare two strings of words, we use
the Levenshtein distance [Levenshtein 1966], a
similar method to the edit distance. This method
measures the edit transformations that change
one string into other. The Levenshtein distance
arranges the strings in a matrix, with the words
of S

1
 heading the columns and those of S

2

heading the rows. A null word is inserted at the
beginning of each string S

1
 and S

2
, in position

i= 0, j=0. The matrix is filled with the costs of
insertion, deletion and substitution using the
following formula :









+
+
+

=

−−

−

−

),(),(

)(),(

)(),(

 min)b,D(a

11

1

1

ji

jisubji

iinsji

jinsji

baDbaD

aDbaD

bDbaD

Where the cost of insertion, D
ins

(), is 1, and the
cost of substitution, D

sub
(), is 0 or 1, according to

whether a
i
 and b

j
 differ or not.

Our experimental results have shown that the
application of the Levenshtein distance using
stem forms gives better matches than using full
forms. Therefore, we shall fill the matrix with
the cost for the stem forms, although the strings
preserve the full forms both for the following
steps and in the output table. We used the

stemming algorithm of Porter [1980], which
removes endings from words.
Building on the Levenshtein distance, Wagner
and Fisher [1974] propose a dynamic
programming method to align the elements of
two strings. Their procedure to return the
ordered pairs of the alignment starts with the last
cell of the matrix with cost[n][m] and works
back until either i or j equals 0, according to
which of its neighbours a cell was derived from.
If it is derived either from the previous
horizontal or vertical cell ([i-1][j] or [i][j-1]
respectively) then the difference in cost is just 1,
otherwise it is derived from the diagonal.

2.3 Extracting triplets

The alignment gives us a list of triplets formed
by (ff

i,
, ff

j
, cost[i][j]), in decreasing order

according to cost[i][j], where ff
i
, and ff

j
 are full

forms from the strings S
1
 and S

2
, respectively.

There are three possible pairings of words:
“Equal couple” is defined as the pair (ff

i
, ff

j
) of

full forms such that the corresponding stem
forms are equal (sf

i
 = sf

j
).

“Matched couple” is a pair (ff
i
, ff

j
) such that sf

i

≠ sf
j
. This couple represents a potential pair of

similar words.
“Null couple” is a pair (ff

i
, ff

j
) such that sf

i
 or sf

j

is missing.
With respect to the Levenshtein distance, the
equal couple means these words do not need any
change to make both equal, while for the
matched couple we shall replace one word with
the other progressively, and for the null couple
we must either insert one word into the given
string or delete it from the given string.
The purpose of clustering is to match different
pairs of words (matched couples), thus neither
pairs of equal words (equal couples) nor pairs
with a null word (null couples) are relevant.

2.4 Measuring similarity

As a measure of the similarity between a
matched couple, we quantify the surrounding
equal couples above and below it. This concept
is similar to the “longest common subsequence”
of two strings suggested by Wagner and Fisher
[1974], which is defined as the common
subsequence of two strings having maximal
length, although in our case both strings differ
by the single matched couple. By analogy, we
use longest collocation couple, henceforth

abbreviated lcc, since we refer to couples instead
of a single string. Besides, the word
“collocation” is more representative for a pair of
words and their neighbourhood, being the core
of two longest common subsequences. We
define longest collocation couple as the maximal
sequence of pairs of words formed by equal
couples surrounding a matched couple.
Given the alignment of the strings S

1
 and S

2

consisting of a list of triplets formed by (ff
i,
, ff

j
,

cost[i][j]), in decreasing order according to
cost[i][j], where ff

i
, and ff

j
 are, respectively, full

forms from S
1
 and S

2
, the lcc is the longest

consecutive sequence of triplets (ff
i,
, ff

j
,

cost[i][j]) formed by one matched couple, such
that it meets 3 conditions:
• The cost difference between the first triplet

and the last triplet is 1.
• There is no null couple.
• The matched couple is neither the first nor

the last triplet.
By these conditions, only the matched couple
becomes the core of a lcc: we constrain a
matched couple to be between two or more
equal couples, and eliminate the possibility that
the matched couple appears at the beginning or
end of a phrase.
As a result, we get a new triplet (ff

i
, ff

j
, lcc

ij
),

where (ff
i
, ff

j
) is the matched couple and lcc

ij
 is

the length of the longest collocation couple. As
an example, for the definitions of “dynameter”
in table 1, there is only one matched couple,
“determining-measuring”, whose lcc is 9 (the
extent of the lcc is indicated by arrows).

ff i ff j cost[i][j]
telescopes telescope 2
-- a 2
of of 1 Å
power power 1
magnifying magnifying 1
the the 1
determining measuring 1
for for 0
instrument instrument 0
an An 0

lc
c

=
 9

dynameter dynameter 0 Å

Table 1 Triplets for “dynameter”

Ranking all triplets found by lcc in decreasing
order, we observe that the greater the value of
lcc, the greater the similarity between the words
of the matched couple.

2.5 Removing function words

So far, function words and other noise words
will also be clustered by our algorithms. In
general, such words interfere in the
identification of clusters and can give more
wrong than good results. We use a stoplist to
automatically identify any pair of words where a
non-relevant word appears and exclude it, on the
grounds that they are not very useful words for
clustering. Thus, when the program comes
across a matched pair of different words in a
context and if that matched pair contains a word
from the stoplist, then the pair is rejected.
Essentially, this is the same thing as using a
tagger and looking at the tags as well as the
words, since one would not want to choose a
noun pairing with a determiner or a relative.
By inspection, we observe that, after stoplist
discrimination, the best potential clusters are
found at higher values of lcc. Our experimental
results show us that a length of lcc equal to 5 is a
reliable threshold. Although there are also good
matches for values equal to 4 and 3, the majority
of these are duplicates of higher values.

2.6 Clustering

We introduce the term binding to represent a
candidate cluster, i.e. two words that may be
used in the same context without changing the
meaning of a definition. A binding is a matched
couple (ff

1
, ff

2
) formed by the full forms ff

1
 and

ff
2
, after stoplist discrimination, drawn from the

strings S
1
 and S

2
, respectively, in such a way that

the stem forms are equivalent, in a determined
context, according to a determined threshold.
The threshold associated with a binding is the
length of the lcc, and we consider only bindings
of matched couples where lcc ≥ 5.
Each binding can be considered as an initial
cluster. Clusters represent sets of words that are
used with the same meaning in particular
contexts. In a consecutive sequence of bindings,
it may happen that a stem form occurs in two or
more different bindings. In this case, one can
cluster all bindings with a common stem form
according to the transitive property.
In order to cluster bindings, we use an algorithm
consisting of three loops. First, it assigns a
cluster number to each binding, so those
bindings with a common word have the same
cluster number. Secondly, it clusters bindings
with the same cluster number, but removes

duplicate stem forms in the same cluster.
Thirdly, it checks if it is possible to merge new
clusters with those of previous cycles. This
process will typically result in a set of
overlapping clusters, reflecting the natural state
where concepts may belong to more than one
conceptual class.

2.7 Cycling

As bindings represent pairs of words such that
the stem forms can be substituted in a particular
context without changing the meaning, sf

1
 = sf

2,

we can replace any of the full forms ff i with the
full forms ff j according to each binding, so that
the corresponding definition preserves the same
meaning. After substituting bindings, we
observe that several pairs of words will now
typically present a high lcc score, even those
pairs of words which initially did not yield
matches with any word. It is then advantageous
to replace thus the bindings in the definitions
and to repeat the entire process until no new
clusters are found. The first cycle runs from the
reading of definitions up to merging of clusters.
All subsequent cycles will start by replacing
retained bindings in the definitions, thus each
subsequent cycle works with new data.

3 Experimental results

The current clustering algorithm was developed
by analysing definitions on the following basis:
• Language dictionaries. The use of language

dictionaries has been preferred because there
are enough to extract data from. As they are
in machine-readable form, it is possible to
copy definitions, avoiding likely mistakes
while typewriting.

• Corpus on 314 “measuring instruments”.
This domain has the advantage that it is easy
to search for the terms that correspond to it,
as they usually end in “-meter”, “-scope” or
“-graph”. As a consequence of applying the
clustering program to the 387 strings, it is
evident that the majority of clusters were
related to “measure” and “instrument”.

• Alignment of two strings. We have shown
that two sources of data (pairs of definition)
are sufficient for clustering to yield good
results.

• No manipulation of data. After identification
of the term and the definitions, these were
truncated to 200 characters and punctuation

marks were removed. No words in
definitions were replaced or moved, to “tidy
up” the data, before being submitted to the
main process.

• Stemming algorithm. The stemmer
algorithm presents both overstemming and
understemming, but nevertheless the
clustering program yields good results.

• Stoplist discrimination. The stoplist has
been used as a tagger, i.e. as a filter to avoid
matching words with different parts of
speech.

• Bindings for lcc ≥ 5. The best clusters have
been observed for bindings with lcc ≥ 5, and
the results presented are good.

Table 2 presents some cluster results after two
cycles of the clustering procedure starting from
the Levenshtein distance. In addition to these
clusters, 14 other clusters of two or three
elements were obtained.

1. apparatus instrument telescope
2. analyse ascertaining determining estimating

location measuring recording takins testing
3. amount concentration intensity percentage

proportion rate salinity strength

Table 2 Cluster results for “measuring
instruments”

The procedure then stops, as no more matched
words with lcc ≥ 5 have been found for our data.
The following sections analyse variations of
these considerations.

3.1 Using multiple resources

General language dictionaries present the
advantage of using well-established
lexicographic criteria to normalise definitions.
These criteria, as for example the use of
analytical definitions by genus and differentia,
have been nowadays implemented by
terminological or specialised dictionaries, with
the addition of a richer vocabulary and the
identification of properties that are not always
considered relevant in other resources.
Unfortunately, these are more oriented to a
specific domain, so that it is sometimes
necessary to search in two or more resources to
compile the data.
We used many online lexical resources, some of
them available on the Internet. This allowed us
to easily use different databases to extract

semantic clusters. As an example, for the term
"barometer" we selected from the Internet 17
sources from general language dictionaries,
terminologies and specialised dictionaries, in
addition to OED2 and CED.
Table 3 demonstrates the use of our clustering
program for the 19 definitions of "barometer",
considering a lcc ≥ 5, stoplist discrimination,
and a previous modification of the original
strings as indicated in the paragraph below.

1. air atmospheric
2. device instrument
3. determining measures shows

Table 3 Clusters for “barometer”

From this table, we see there are only 3 clusters,
but comparing these with the strings we can
observe that these clusters are complete with low
recall and high precision. No more clusters can
be extracted from the strings, there are no more
relevant words in the strings that still can be
clustered, and there are no unnecessary words in
any of these clusters.

3.2 Modifications of the strings

In order not to manipulate the strings to retrieve
biased clusters, definitions were not modified
beyond the pre-processing described. In fact,
entry words were chosen randomly, but always
in the domain of measuring instruments.
Although good precision is observable in the
clusters, there are still some relevant words in
the strings that are semantically similar to some
of those of the clusters. For example, the word
‘device’ is frequently used instead of
‘instrument’, but because of the definition of lcc,
the matched couple (device instrument) rarely
can be a binding for clustering, as the preceding
determiner of each word is different. The former
use ‘a’, while the latter use ‘an’ and
unfortunately the stemmer did not stem ‘an’ to
‘a’, thus (an a) do not form an equal couple.
However, before stoplist discrimination was
introduced, the matched couples (any an) and
(any a) present a lcc ≥ 5, so that by our
clustering algorithm they should belong to the
same cluster and then one can replace one with
the other in the strings. By running the program
without stoplist discrimination, one can observe
two clusters related to function words:

Cluster 1: a an any the

Cluster 2: for that which
According to these premises, table 4 shows
clusters by first replacing all the strings
according to these clusters of function words.
The italicised words are the new words added to
the list for the clustering algorithm presented in
table 2, where most of the words added are
correctly used as equivalent words.

1. apparatus device instrument meter telescope
2. analyse ascertaining astronomical counting

detecting determining estimating indicates
location making measuring provides recording
takins testing

Table 4 Clusters after replacing clusters of
function words

4 Conclusion

We presented an innovative clustering algorithm
expressly created to identify automatically
overlapping and non-hierarchic clusters. This is
an analogy-based method, as one can acquire
knowledge of an unfamiliar linguistic object by
extracting the right amount of linguistic
knowledge from examples of similar objects.
The difference in words used between two or
more lexicographic definitions enabled us to
infer paradigms by merging the dictionary
definitions into a single database and then using
our own alignment technique.
An advantage of our clustering method over
other statistical or analogy-based methods is that
it is not over-dependent on the availability or
amount of data from which clusters are extracted
or on the use of an ontology. Alignment
algorithms based on Levenshtein distance are
not statistical by nature, so that they do not
require large amounts of data and can return
clusters even when alignment between words is
very rare. The major advantage, however, is that
our method complies with the need to identify
pairs of words that can be replaced one for
another without affecting the meaning of a
concept. It achieves this by aligning definitions
that express the same concept with different
words. The final clusters were evaluated by our
overall system, OSS, via hypothetical queries
with a paradigm expansion based on the clusters.
No further evaluation was available beyond
direct observation, since the accuracy of
semantic clusters from other lexical resources is

arguable, and we would have to evaluate then
first and then define which of them is the best as
a point of comparison. Although our technique
is intended for use within OSS, the results
yielded are of relevance to those interested in
sense disambiguation, in classification and in
other areas where clusters of similar words are
exploited.
The clustering algorithm here proposed gives us
reliable clusters using a stemmer algorithm,
stoplist discrimination, lcc ≥ 5 and no
manipulation of the strings. A better
performance of the program would be achieved
by using equivalence of function words, and a
tagger for part of speech recognition. The former
was demonstrated and lets us retrieve words that
usually are not matched as they do not have a
high lcc value. The latter lets us exclude
matching words with different categories. This
however requires further research.
We can think of some other further
manipulations the strings can undergo to
improve the retrieval of similar words. For
example, reducing to a single word form two or
more abbreviations of a proper name (‘T.S.
Eliot’) or of an acronym (‘U.S.A.’). A major
manipulation of strings that undoubtedly can
improve the retrieval of clusters is trying to
normalise the syntactic elements of the strings.
Therefore, possessives can be transformed to
noun phrases. For example, ‘direction of the
wind’ can be replaced by ‘wind direction’ or
‘carpenter’s square ‘ to ‘carpenter square’.
Similarly, as suggested by Waterman [1996],
one can try to align the same part of speech
categories after using a tagger, so that bindings
of different categories are rejected.

References

Agirre, E., and Rigau, G. 1996. “Word Sense
Disambiguation using Conceptual Density”. Proc.
COLING-96. The 16th International Conference on
Computational Linguistics, Copenhagen, 16-22.

Boguraev, V. and Pustejovsky, J. 1996. “Issues in
text-based lexicon acquisition”. Corpus processing
for lexical acquisition. B. Boguraev and J.
Pustejovsky (eds.). Cambridge: The MIT Press.

[CED2] 1994. Collins English dictionary. Glasgow:
Harper Collins Publishers.

Gale, W.A. and Church, K.W. 1991. “A program for
aligning sentences in bilingual corpora”. Proc. of
29th Annual Conference of the ACL, 177-184.

Gao, Z.M. 1997. Automatic extraction of translation
equivalents from a parallel Chinese-English
corpus. PhD Thesis, UMIST.

Hirakawa, H., Xu, Z., and Haase, K. 1996. “Inherited
Feature-based Similarity Measure Based on Large
Semantic Hierarchy and Large Text Corpus”. Proc.
COLING-96. The 16th International Conference on
Computational Linguistics. Copenhagen: Center
for Sprogteknologi.

Jones, D. 1996. Analogical Natural Language
Processing. London: UCL Press.

Levenshtein, V.I. 1966. “Binary codes capable of
correcting deletions, insertions, and reversals”.
Cybernetics and Control Theory 10 (8), 707-710.

Morris, J., and Hirst, G. 1991. “Lexical Cohesion
Computed by Thesaural Relations as an Indicator
of the Structure of Text”. Computational
Linguistics 17(1), 21-48.

[OED2] 1994. Oxford English dictionary. Oxford:
Oxford University Press and Rotterdam: Software
B.V.

Porter, M.F. 1980. “An algorithm for suffix
stripping”. Program 14(3), 130-137.

Resnik, P. 1997. “Disambiguating noun groupings
with respect to WordNet senses”. Proceedings of
the 3rd Workshop on Very Large Corpora, MIT.

Wagner, R.A., and Fisher, M.J. 1974. “The String-to-
String Correction Problem”. Journal of the
Association for Computing Machinery 21(1), 168-
173.

Waterman, S.A. 1996. "Distinguished Usage". In
Corpus Processing for Lexical Acquisition. B.
Boguraev and J. Pustejovsky (eds.) Cambridge:
The MIT Press.

