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Abstract

Sumo is a formalism for universal segmentation
of text. Its purpose is to provide a framework
for the creation of segmentation applications. It
is called “universal” as the formalism itself is
independent of the language of the documents
to process and independent of the levels of seg-
mentation (e.g. words, sentences, paragraphs,
morphemes...) considered by the target applica-
tion. This framework relies on a layered struc-
ture representing the possible segmentations of
the document. This structure and the tools to
manipulate it are described, followed by detailed
examples highlighting some features of Sumo.

Introduction

Tokenization, or word segmentation, is a fun-
damental task of almost all NLP systems. In
languages that use word separators in their writ-
ing, tokenization seems easy: every sequence of
characters between two whitespaces or punctu-
ation marks is a word. This works reasonably
well, but exceptions are handled in a cumber-
some way. On the other hand, there are lan-
guages that do not use word separators. A much
more complicated processing is needed, closer
to morphological analysis or part-of-speech tag-
ging. Tokenizers designed for those languages
are generally very tied to a given system and
language.

However, the gap becomes smaller when we
look at sentence segmentation: a simplistic ap-
proach would not be sufficient because of the
ambiguity of punctuation signs. And if we
consider the segmentation of a document into
higher-level units such as paragraphs, sections,
and so on, we can notice that language becomes
less relevant.

These observations lead to the definition of
our formalism for segmentation (not just tok-

enization) that considers the process indepen-
dently from the language. By describing a seg-
mentation system formally, a clean distinction
can be made between the processing itself and
the linguistic data it uses. This entails the abil-
ity to develop a truly multilingual system by us-
ing a common segmentation engine for the vari-
ous languages of the system; conversely, one can
imagine evaluating several segmentation meth-
ods by using the same set of data with different
strategies.

Sumo is the name of the proposed formal-
ism, evolving from initial work by (Quint, 1999;
Quint, 2000). Some theoretical works from the
literature also support this approach: (Guo,
1997) shows that some segmentation techniques
can be generalized to any language, regardless of
their writing system. The sentence segmenter of
(Palmer and Hearst, 1997) and the issues raised
by (Habert et al., 1998) prove that even in En-
glish or French, segmentation is not so trivial.
Lastly, (Ait-Mokhtar, 1997) handles all kinds of
presyntactic processing in one step, arguing that
there are strong interactions between segmenta-
tion and morphology.

1 The Framework for Segmentation
1.1 Overview

The framework revolves around the document
representation chosen for Sumo, which is a
layered structure, each layer being a view of
the document at a given level of segmentation.
These layers are introduced by the author of the
segmentation application as needed and are not
imposed by Sumo. The example in section 3.1
uses a two-layer structure (figure 4) correspond-
ing to two levels of segmentation, characters and
words. To extend this to a sentence segmenter,
a third level for sentences is added.

These levels of segmentation can have a lin-



guistic or structural level, but “artificial” levels
can be introduced as well when needed. It is also
interesting to note that several layers can belong
to the same level. In the example of section 3.3,
the result structure can have an indefinite num-
ber of levels, and all levels are of the same kind.

We call item the segmentation unit of a doc-
ument at a given segmentation level (e.g. items
of the word level are words). The document is
then represented at every segmentation level in
terms of its items; because segmentation is usu-
ally ambiguous, item graphs are used to factorize
all the possible segmentations. Ambiguity issues
are further addressed in section 2.3.

The main processing paradigms of Sumo are
wdentification and transformation. With identifi-
cation, new item graphs are built by identifying
items from a source graph using a segmentation
resource. These graphs are then modified by
transformation processes. Section 2 gives the
details about both identification and transfor-
mation.

1.2 Item Graphs

The item graphs are directed acyclic graphs;
they are similar to the word graphs of (Amtrup
et al., 1996) or the string graphs of (Colmer-
auer, 1970). They are actually represented by
means of finite-state automata (see section 2.1).
In order to facilitate their manipulation, two ad-
ditional properties are enforced: these automata
always have a single start-state and finite-state,
and no dangling arcs (this is verified by pruning
the automata after modifications). The exam-
ples of section 3 show various item graphs.

An item is an arc in the automaton. An arc
is a complex structure containing a label (gen-
erally the surface form of the item), named at-
tributes and relations. Attributes are used to
hold information on the item, like part of speech
tags (see section 3.2). These attributes can also
be viewed as annotations in the same sense as
the annotation graphs of (Bird et al., 2000).

1.3 Relations

Relations are links between levels. Items from
a given graph are linked to items of the graph
from which they were identified. We call the
first graph the lower graph and the graph that
was the source for the identification the upper
graph. Relations exist between a path in the
upper graph and either a path or a subgraph in

the lower graph.

Figure 1 illustrates the first kind of relation,
called path relation. This example in French is a
relation between the two characters of the word
“du” which is really a contraction of “de le”.

Figure 1: A path relation

Figure 2 illustrates the other kind of relation
called subgraph relation. In this example the
sentence “ABCDEFG.” (we can imagine that A
through G are Chinese characters) is related to
several possible segmentations.

AB cD E
A BC DE FG .
N BCDEF G 7
ABCDEFG

Figure 2: A graph relation

The interested reader may refer to (Planas,
1998) for a comparable structure (multiple lay-
ers of a document and relations) used in trans-
lation memory.

2 Processing a Document

2.1 Description of a Document

The core of the document representation is the
item graph, which is represented by a finite-
state automaton. Since regular expressions de-
fine finite-state automata, they can be used to
describe an item graph. However, our expres-
sions are extended because the items are more
complex than simple symbols; new operators are
introduced:

e attributes are introduced by an @ sign;
e path relations are delimited by { and };

e the information concerning a given item are
parenthesized using [ and J.



As an exemple, the relation of figure 1 is de-
scribed by the following expression:

[de le {dul]

2.2 Identification

Identification is the process of identifying new
items from a source graph. Using the source
graph and a segmentation resource, new items
are built to form a new graph. A segmentation
resource, or simply resource, describes the vo-
cabulary of the language, by defining a mapping
between the source and the target level of seg-
mentation. A resource is represented by a finite-
state transducer in Sumo; identification is per-
formed by applying the transducer to the source
automaton to produce the target automaton,
like in regular finite-state calculus.

Resources can be compiled by regular expres-
sions or indentification rules. In the former case,
one can use the usual operations of finite-state
calculus to compile the resource: union, inter-
section, composition, etc.! A benefit of the use
of Sumo structures to represent resources is that
new resources can be built easily from the doc-
ument that is being processed. (Quint, 1999)
shows how to extract proper nouns from a text
in order to extend the lexicon used by the seg-
menter to provide more acurate results.

In the latter case, rules are specified as shown
in section 3.3. The left hand side of a rule de-
scribes a subpath in the source graph, while the
right hand side describes the associated subpath
in the target graph. A path relation is created
between the two sequences of items. In an iden-
tification rule, one can introduce variables (for
callback), and even calls to transformation func-
tions (see next section). Naturally, these possi-
bilities cannot be expressed by a strict finite-
state structure, even with our extended formal-
ism; hence, calculus with the resulting struc-
tures is limited.

A special kind of identification is the auto-
matic segmentation that takes place at the entry
point of the process. A character graph can be
created automatically by segmenting an input
text document, knowing its encoding. This text
document can be in raw form or XML format.
Another possibility for input is to use a graph

'The semantics of these operations is broadened to
accomodate the more complex nature of the items.

of items that was created previously, either by
Sumo, or converted to the format recognized by
Sumo.

2.3 Transformation

Ambiguity is a central issue when talking about
segmentation. The absence or ambiguity of
word separators can lead to multiple segmen-
tations, and more than one of them can have a
meaning. As (Sproat et al., 1996) testify, several
native Chinese speakers do not always agree on
one unique tokenization for a given sentence.

Thanks to the use of item graphs, Sumo can
handle ambiguity efficiently. Why try to fully
disambiguate a tokenization when there is no
agreement on a single best solution? Moreover,
segmentation is usually just a basic step of pro-
cessing in an NLP system, and some decisions
may need more information than what a seg-
menter is able to provide. An uninformed choice
at this stage can affect the next stages in a neg-
ative way. Transformations are a way to mod-
ify the item graphs so that the “good” paths
(segmentations) can be kept and the “bad” ones
discarded. We can also of course provide full
disambiguation (see section 3.1 for instance) by
means of transformations.

In Sumo transformations are handled by
transformation functions that manipulate the
objects of the formalism: graphs, nodes, items,
paths (a special kind of graph), etc. These func-
tions are written using an imperative language
illustrated in section 3.1. A transformation can
either be applied directly to a graph or attached
to a graph relation. In the latter case, the orig-
inal graph is not modified, and its transformed
counterpart is only accessible through the rela-
tion.

Transformation functions allow to control the
flow of the process, using looping and condition-
als. An important implication is that a same
resource can be applied iteratively; as shown by
(Roche, 1994) this feature allows to implement
segmentation models much more powerful than
simple regular languages (see section 3.3 for an
example). Another consequence is that a Sumo
application consists of one big transformation
function returning the completed Sumo struc-
ture as a result.



3 Examples of Use
3.1 Maximum tokenization

Some classic heuristics for tokenization are
classified by (Guo, 1997) under the collective
moniker of maximum tokenization. This section
describes how to implement a “maximum tok-
enizer” that tokenizes raw text documents in a
given language and character encoding (e.g. En-
glish in ASCII, French in Iso-Latin-1, Chinese in
Bigh or GB).

3.1.1

Our tokenizer is built with two levels: the in-
put level is the character level, automatically
segmented using the encoding information. The
token level is built from these characters, first by
an exhaustive identification of the tokens, then
by reducing the number of paths to the one con-
sidered the best by the Maximum Tokenization
heuristic.

The system works in three steps, with com-
plete code shown in figure 3. First, the charac-
ter level is created by automatic segmentation
(lines 1-5, input level being the special graph
that is automatically created from a raw file
through stdin). The second step is to create the
word graph by identifying words from character
using a dictionary. A resource called ABCdic is
created from a transducer file (lines 6-8), then
the graph words is created by identifying items
from the source level characters using the re-
source ABCdic (lines 9-12). The third step is the
disambiguation of the word level by applying a
Maximum Tokenization heuristic (line 13).

Common set-up

1 characters: input level {

2  encoding: <ASCII, UTF-8, Bigh...>
3 type: raw;

4 from: stdin;

5%

6 ABCdic: resource {

7 file: ‘‘ABCdic.sumo’’;

8}

9 words: graph <- identify {

10 source:
11 resource:
12 %}

13 words <- ft(words.start-node);

characters;
ABCdic;

Figure 3: Maximum Tokenizer in Sumo

Figure 4 illustrates the situation for the in-
put string “ABCDEFG” where A through G are

characters and A, AB, B, BC, BCDEF, C, CD,
D, DE, E, F, FG and G are words found in the
resource ABCdic. The situation shown is after
line 12 and before line 13.

F G

TV
mm

BCDEF

©

Figure 4: Exhaustive tokenization of the string

ABCDEFG

We will see in the next three subsections the
different heuristics and their implementations in
Sumo.

3.1.2 Forward Maximum Tokenization

Forward Maximum Tokenization consists of
scanning the string from left to right and select-
ing the token of maximum length any time an
ambiguity occurs. On the example of figure 4,
the result tokenization of the input string would
be AB/CD/E/FG.

Figure 5 shows a function called £t that builds
a path recursively by traversing the token graph,
appending the longest item to the path at each
node. ft takes a node as input and returns a
path (line 1). If the node is final, the empty
path is returned (lines 2-3), otherwise the array
of items of the nodes (n.items) is searched and
the longest item stored in longest (lines 4-10).
The returned path consists of this longest item
prepended to the longest path starting from the
destination node of this item (line 11).

3.1.3 Backward Maximum Tokenization

Backward Maximum Tokenization is the same
as Forward Maximum Tokenization except that
the string is scanned from right to left, instead
of left to right. On the example of figure 4,
the tokenization of the input string would yield
A/BC/DE/FG under Backward Maximum To-
kenization.

A function bt can be written. It is very sim-
ilar to ft, except that it works backward by
looking at incoming arcs of the considered node.
bt is called on the final state of the graph and



1 function ft (n: node) -> path {

2 if final(m) {

3 return ();

4 ¥ else {

5 longest: item <- n.items[1];

6 foreach it in n.items[2..] {

7 if it.length > longest.length {
8 longest <- it;

9 b

10 b

11 return (longest # ft(longest.dest));
12 %

13 }

Figure 5: The ft function

stops when at the initial node. Another imple-
mentation of this function is to apply £t on the
reversed graph and then reversing the path ob-
tained.

3.1.4 Shortest Tokenization

Shortest Tokenization is concerned with mini-
mizing the overall number of tokens in the text.
On the example of figure 4, the tokenization of
the input string would yield A/BCDEF/G un-
der shortest tokenization.

Figure 6 shows a function called st that finds
the shortest path in the graph. This function
is adapted from an algorithm for single-source
shortest paths discovery in a DAG given by
(Cormen et al., 1990). It calls another func-
tion, t_sort, returning a list of the nodes of the
graph in topological order. The initializations
are done in lines 2-6, the core of the algorithm is
in the loop of lines 7-14 that computes the short-
est path to every node, storing for each node its
“predecessor”. Lines 15-20 then build the path,
which is returned in line 21.

3.1.5 Combination of Maximum
Tokenization techniques

One of the features of Sumo is to allow the com-
parison of different segmentation strategies us-
ing the same set of data. As we have just seen,
the three strategies described above can indeed
be compared efficiently by modifying only part
of the third step of the processing. Letting the
system run three times on the same set of input
documents can then give three different sets of
results to be compared by the author of the sys-
tem (against each other and against a reference
tokenization, for instance).

1 function st (g:graph) -> path {

2 d: list <- (); // distances

3  p: list <- (); // predecessors

4 foreach n in (g.nodes) {

5 d[n] = integer.max; // ‘‘infinite’’
6

7 foreach n: node in t_sort(g.nodes) {
8 foreach it in n.items {

9 if (d[it.dest] > d[n] + 1) then {
10 d[it.dest] = d[n] + 1;

11 plit.dest] = n;

12 b

13 b

14 3

16 n <- g.end; // end state
16  sp: path <- (n); // path
17  while (n !'= g.start) {

18 n = plnl;

19 sp = (n # sp);
20 %

21 return sp;

22 }

Figure 6: the st function

And yet a different set-up for our “maximum
tokenizer” would be to select not just the op-
timal path according to one of the heuristics,
but the paths selected by the three of them, as
shown in figure 7. Combining the three paths
into a graph is performed by changing line 13 in
figure 3 to:

words <- ft(words.start-node)

bt (words.end-node)
st (words.start-node) ;

AB (@5 E
A BC DE FG
BCDEF G

Figure 7: Three maximum tokenizations

3.2 Statistical Tokenization and Part of
Speech Tagging
This example shows a more complicated tok-
enization system, using the same sort of set-up
as the one from section 3.1, with a disambigua-
tion process using statistics (namely, a bigram
model). Our reference for this model is the
Chasen Japanese tokenizer and part of speech



tagger documented in (Matsumoto et al., 1999).
This example is a high-level description of how
to implement a similar system with Sumo.

The set-up for this example adds a new level
to the previous example: the “bigram level.”
The word level is still built by identification us-
ing dictionaries, then the bigram level is built
by computing a connectivity cost between each
pair of tokens. This is the level that will be
used for disambiguation or selection of the best
solutions.

3.2.1

All possible segmentations are derived from the
character level to create the word level. The
resource used for this is a dictionary of the lan-
guage that maps the surface form of the words
(in terms of their characters) to their base form,
part of speech, and a cost (Chasen also adds
pronunciation, conjugation type, and semantic
information). All this information is stored in
the item as attributes, the base form being used
as the label for the item. Figure 8 shows the
identification of the word “cats” which is identi-
fied as “cat”, with category “noun” (i.e. @CAT=N)
and with some cost k (6C0OST=k).

Exhaustive Segmentation

[ a t )

o cat @AT=N @OST=k o

Figure 8: Identification of the word “cats”

3.2.2 Statistical Disambiguation

The disambiguation method relies on a bigram
model: each pair of successive items has a “con-
nectivity cost”. In the bigram level, the “cost”
attribute of an item W will be the connectiv-
ity cost of W and a following item X. Note that
if a same W can be followed by several items
X, Y, etc. with different connectivity costs for
each pair, then W will be replicated with a dif-
ferent “cost” attribute. Figure 9 shows a word
W followed by either X or Y, with two different
connectivity costs k& and &’.

The implementation of this technique in Sumo
is straightforward. Assume there is a function
f that, given two items, computes their connec-
tivity cost (depending on both of their category,
individual cost, etc.) and returns the first item

W @ost =k X.

:W@ost =k’ Y...

Figure 9: Connectivity costs for W

with its modified cost. We write the following
rule and apply it to the word graph to create
the bigram graph:

_ [$wi = . @1 _ [$uw2 = . @.]
-> eval(f($wi, $2))

This rule can be read as: for any word $wl
with any attribute (“.” matches any label, “@.”
any set of attributes) followed by any word $u2
with any attribute (“_” being a context separa-
tor), create the item returned by the function
f($wl, $w2).

Disambiguation is then be performed by se-
lecting the path with optimal cost in this graph;
but we can also select all paths with a cost cor-
responding to a certain threshold or the n best
paths, etc. Note also that this model is easily ex-
tensible to any kind of n-grams. A new function
f($w1l, ..., $wn) must be provided to com-
pute the connectivity costs of this sequence of
items, and the above rule must be modified to
take a larger context into account.

3.3 A Formal Example

This last example is more formal and serves
as an illustration of some powerful features of
Sumo. (Colmerauer, 1970) has a similar exam-
ple implemented using Q systems. In both cases
the goal is to transform an input string of the
form a"b™c",n > 0 into a single item S (as-
suming that the input alphabet does not contain
S), meaning that the input string is a word of
this language.

The set-up here is once again to start with a
lower level automatically created from the input,
then to build intermediate levels until a final
level containing only the item S is produced (at
which point the input is recognized), or until the
process can no longer carry on (at which point
the input is rejected).

The building of intermediary levels is handled
by the identification rule below:

# S7 a [$A=a*] b [$B=b*] c [$c=cx*] #
-> S $A $B $C



What this rule does is identify a string of the
form STaa*bb*cc”, storing all a’s but the first
one in the variable $4, all &’s but the first one in
$B and all ¢’s but the first one in $C. The first
triplet abe (with a possible S in front) is then
absorbed by S, and the remaining a’s, b’s and
c’s are rewritten after S.

Figure 10 illustrates the first application of
this rule to the input sequence aabbce, creating
the first intermediate level; subsequent applica-
tions of this rule will yield the only item S.

Figure 10: First application of the rule

Conclusion

We have described the main features of Sumo, a
dedicated formalism for segmentation of text. A
document is represented by item graphs at dif-
ferent levels of segmentation, which allows mul-
tiple segmentations of the same document at
the same time. Three detailed examples illus-
trated the features of Sumo discussed here. For
the sake of simplicity some aspects could not
be evoked in this paper, they include: manage-
ment of the segmentation resources, efficiency
of the systems written in Sumo, larger applica-
tions, evaluation of segmentation systems.

Sumo is currently being prototyped by the au-
thor.
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