
Multi-level Similar Segment Matching Algorithm

for Translation Memories and Example-Based Machine Translation
Emmanuel PLANAS

Cyber Solutions Laboratories
2-4, Hikaridai Seika-cho Soraku-gun

Kyoto, 619-0237 Japan
planas@soy.kecl.ntt.co.jp

Osamu FURUSE
Cyber Solutions Laboratories

2-4, Hikaridai Seika-cho Soraku-gun
Kyoto, 619-0237 Japan

furuse@soy.kecl.ntt.co.jp

Abstract

We propose a dynamic programming
algorithm for calculating the similarity
between two segments of words of the same
language. The similarity is considered as a
vector whose coordinates refer to the levels
of analysis of the segments. This algorithm
is extremely efficient for retrieving the best
example in Translation Memory systems.
The calculus being constructive, it also gives
the correspondences between the words of
the two segments. This allows the extension
of Translation Memory systems towards
Example-based Machine Translation.

Introduction

In Translation Memory (TM) or Example-Based
Machine Translation (EBMT) systems, one of
the decisive tasks is to retrieve from the database,
the example that best approaches the input
sentence. In Planas (1999) we proposed a two-
step retrieval procedure, where a rapid and rough
index-based search gives a short list of example
candidates, and a refined matching selects the
best candidates from this list. This procedure
drastically improves the reusability rate of
selected examples to 97% at worst, for our
English-Japanese TM prototype; with the
classical TM strategy, this rate would constantly
decline with the number of non matched words.
It also allows a better recall rate when searching
for very similar examples.
We describe here the Multi-level Similar
Segment Matching (MSSM) algorithm on which
is based the second step of the above retrieval
procedure. This algorithm does not only give the
distance between the input and the example
source segments, but also indicates which words
would match together. It uses F different levels

of data (surface words, lemmas, parts of speech
(POS), etc.) in a combined and uniform way.
The computation of the worst case requires
F*m*(n-m+2) operations, where m and n are
respectively the lengths of the input and the
candidate (m<=n). This leads to a linear
behavior when m and n have similar lengths,
which is often the case for TM segments1.
Furthermore, because this algorithm gives the
exact matching links (along with the level of
match) between all of the words of the input and
the candidate sentence, it prepares the transfer
stage of an evolution of TM that we call Shallow
Translation. This involves substituting in the
corresponding translated candidate (stored in the
memory), the translation of the substituted
words, provided that the input and the candidate
are "similar enough".

1 Matching Principle

1.1 The TELA Structure

The purpose of this algorithm is to match two
segments of words: input I and candidate C.
These can each be any sequence of words:
phrases, sentences, or paragraphs, for example.
Let us consider input I of length m, not as a
single segment of surface words, but rather as a
group of F parallel layered segments If

(1<=f<=F)

each bearing m tokens. Such a structure is shown
in Figure 1, and we call it a TELA structure2. On
each layer f, the i-th token corresponds to one of
the paradigms of the i-th word of input I. In our
implementation, we use a shallow analyzer that
gives three paradigms (F=3) for each surface

1 We use this algorithm on a sorted list of already
similar sentences, retrieved with the help of an index.
2 The idea of this structure is already in Lafourcade’s
LEAF (1993), and is explained in Planas (1998).

C C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 Nikkei Journal reported that NTT really stayed strong Monday
C2 nikkei journal report that NTT really stay strong Monday
C3 PN noun verb conj PN adv verb adj noun

I I1 I2 I3 I4

I1 Sony stayed stronger Tuesday
I2 Sony stay strong Tuesday
I3 PN verb adj noun

Figure 1: Example of matching TELA structures

word of the segments: the surface word itself
(f=1), its lemma (f=2), and its POS tag (f=3).
Because we do not need a syntactic analyzer, the
time required for this analysis is not an handicap,
moreover such parsers are available for many
languages. Let C be a candidate segment of
length n, for matching input I of length m
(n>=m). The basic problem involves matching
the elements of the set (Cf

i)f<=F, i<=n to those of
(If

j)f<=F, j<=m. Only three layers are shown in the
following examples but other types of layers,
like semantics, or even non linguistic
information like layout features can be
considered, as in Planas (1998). Our algorithm is
written for the general case (F layers).

1.2 Edit Distance based Similarity

We consider a match from C to I as an edit
distance process. This edition uses a sequence of
basic edit operations between the words of the
segments, like in Wagner & Fisher (1974) who
used four basic operations: deletion, insertion,
strict and equal substitution between the letters
of a word. This approach has also been followed
by Gale & Church (1993) for their alignment
algorithm, with six operations. Here, we only
consider deletions and equalities (i.e. equal
substitutions): F+1 basic operations in total3.
One equality corresponds to each of the F layers,
and a deletion affects all layers at once. In
Figure 1, the items in bold match each other, and
the strikethrough ones have to be deleted. The
edition of C into I involves five deletions
("Nikkei", "journal", "reported", "that", "really"),
one equality at layer 1 ("stayed"), two at layer 2

3 Lepage (1998) also uses deletions and one level of
equality for calculating his "pseudo-distance", for
getting the similarity between two strings.

("stay", "strong"), and four at layer 3 ("PN",
"verb", "adj", "noun"). At the Word level, the
similarity between the two segments is
considered to be the relative number of words of
the input segment that are matched by some
word of the candidate segment in the matching
zone (from "NTT" to "Monday" in our
example): 1/4 in Figure 1. The same similarity
can be considered at different levels. Here, the
lemma similarity is 2/4, and the POS similarity
is 4/4. We consider the total similarity as a
vector involving all layer equalities, plus
deletions: σ(C, I) = (1/4, 2/4, 4/4, 1-1/4, 1-5/9)
The fourth coordinate counts the complementary
proportion of deletions in the "matching zone" of
the candidate C. The last coordinate counts the
same proportion, relatively to the whole
candidate. We take the complement to 1 because,
the more deletions there are, the smaller the
similarity becomes.
When different Ci candidates are possible for
matching I, the greatest σ(Ci0, I), according to
common the partial order on vectors, determines
the best candidate Ci0.

1.3 Matching Strategy

1.3.1 Basics
We try to match each word Ci of candidate C, to
a word Ij of input I. Ci matches Ij if one of the
paradigms of Ci equals one of the paradigms of Ij

at the same level f, i.e. if Cf
i and If

j, are equal.
When a failure to match two words with their
paradigms Cf

i to If
j occurs at a given level f, we

try to match the words at the next upper level
f+1: Cf+1

i and If+1
j. When all of the possible

layers of the two words have been tried without
success, we try to match the next word Ci+1 to the
same Ij. If Ci does not match any word of I at any

Matching zone

level, we consider that it has to be deleted. All
words of I have to be matched by some word of
C: no insertion is allowed (see section 1.3.4).

1.3.2 Lazy match
With TM tools, if some useful candidates are
found, they usually utilize words similar to the
input words because translation memories are
applied within very similar documents, most of
the time between ancient and newer versions of
a same document. When the priority is rapidity
(rather than non-ambiguity), we can consider
that a match is reached as soon as a word of C
and a word of I match at a certain layer f. It is
not necessary to look at upper levels, for they
should match because of the expected similarity
between the input and the candidate. The
previous example illustrates this. As upper levels
are not tested, this allows a gain in the number
of iterations of the algorithm. Experiments (see
Planas (1999)) have confirmed this to be a
correct strategy for TM. That’s why, we consider
from now on dealing with such a lazy match.

1.3.3 Exhaustive match
In the most general case, ambiguity problems
prevent us from employing the lazy strategy, and
a correct match requires that whenever two items
Cf

i and If
j match at a certain level f, they should

match at upper levels. Here is an example:

C21 Sony stay ended Monday
C22 Sony stay ended Monday
C23 PN noun verb noun

I1 Sony stayed stronger Tuesday
I2 Sony stay strong Tuesday
I3 PN verb adj noun

Figure 2: Lemma ambiguity

In C2, the lemma "stay" of surface word "stay"
matches the lemma "stay" of surface word
"stayed" of I, but they do not match at the POS
level (noun and verb). The algorithm should go
to this level to find that there is no match. Once
again, however, because this algorithm has been
built for TM systems, such ambiguities hardly
occur.

1.3.4 Insertion
If some items in I are not matched by any item
of C, the match involves an insertion.

Case of Translation Memories
If the candidate sentences are to be used by a
human translator, s/he will be able to insert the
missing word at the right place. Accordingly, a
match with insertion can be used for pure TM.
Case of Shallow Translation (EBMT)
In the EBMT system we are targeting, we plan
to use the matching sub-string of C for
adaptation to I without syntactic rules.
Accordingly, we consider that we do not know
where to insert the non matching item: in this
case, we force the algorithm to stop if an
insertion is needed for matching C and I. From
now on, we will follow this position.

1.3.5 Trace
We want the output of the algorithm as a list of
triplets (Cf

i I
f
j op)1<=i<=n called a “trace”, where Cfi

corresponds to If
j through the "op" operation. We

note op="f" an equality at level f, and op="0" a
deletion. For Example 1, the trace should be:
(1 0 0) (2 0 0) (3 0 0) (4 0 0) (5 1 3) (6 0 0) (7 2
1) (8 3 2) (9 4 3)

2 Adapting Wagner & Fischer, and
Sellers algorithms

2.1 Algorithm Principle

The Wagner & Fischer (W&F) dynamic
programming algorithm in Figure 3 gives the
edit distance between C and I:

For j=0 to m
d[j, 0]=j //initiating the columns

For i=1 to n
d[0, i]=i //initiating the rows

For i=1 to n
For j=1 to m

If(I[j]=C[i]) {d=d[i-1, j-1]}//equality
Else {d=d[i-1, j-1]+1} // subst.
d[j,i]=min(d[i-1, j]+1, d[i, j-1]+1, d)

End For
End For
Print d[n, m]

Figure 3: The Wagner & Fisher algorithm

The distance is obtained in m*n operations, by
building an [m+1, n+1] array (see Figure 6). In
addition, W&F (1974) proposed a backtracking
procedure, shown in Figure 4, that scans back
this array to give a “trace” of the match between

C and I (i.e. it prints the position of the matching
words), in (m+n) operations. The trace is then
obtained in (mn+m+n) operations in total. This
algorithm was previously used in Planas (1998)
at each layer of a TELA structure to give a trace
by layer. The data from the traces of the
different layers were combined afterwards for
the purposes of TM and EBMT. However, this
procedure is not optimal for at least two reasons.
First, the layers are compared in an independent
way, leading to a waste of time in the case of
TM, because the lazy match phenomenon is not
used. Second, the combination of the results was
processed after the algorithm, and this required a
supplementary process. One can imagine that
processing the whole data in the flow of the
instructions of the algorithm is more efficient.

i= i0; j = m;
while (i > 0) and (j > 0)
//del// if (d[i, j]= d[i-1, j]+ 1) {i = i -1}
//ins// else if (d[i, j]= d[i, j-1]+ 1) {j = j -1}

else //equality or substitution
print (i, j)
i = i - 1; j = j - 1

end if
end while

Figure 4: W&F backtracking algorithm

2.2 Two operation based minimization

If we look back at the W&F algorithm, shown in
Figure 3, the part in bold represents the code
involved in the calculus of the next local
distance d[i, j]. It testes which of the four basic
edit operations (deletion, insertion, equal or
strict substitution) gives the lowest partial
distance. Nevertheless, we have shown in
section 1.3.4 that only deletions and equalities

do interest us. We therefore reduce the test in the
algorithm to that shown in Figure 5. Furthermore,
we initiate the columns of the array with infinite
values (huge values in practice) to show that
initial insertions are not possible, and the rows to
"0", to count the deletions relatively to input I.
See Sellers (1980) for a due explanation.

If(I[j]=C[i]) {d=d[i-1, j-1]} //equal: no cost
Else {d=inf} //big integer, in theory infinite
d[j,i] = min (d[i-1, j]+1, d) //deletion or equal ?

Figure 5: Matching with deletions and equalities

An example of the successive scores calculated
with this algorithm are shown in Figure 6. The
total distance (equal to 1) between C and I
appears in the lowest right cell.
The fact that only two operations are used
eradicates the ambiguity that appears in
selecting the next cell in the W&F algorithm
backtracking procedure with four operations. In
our algorithm, either there is an equality (cost 0),
or a deletion (cost 1). The possibility of having
the same cost 1 for insertions, deletions, or strict
substitutions has been eliminated.

2.3 Introducing one equality per level

As mentioned previously, we need to match
items at different layers. We introduce here two
new points to deal with this:

� In order to keep the score for each equality
deletion, d[i,j] is a vector instead of a
number: d[i,j]=[score1,...,scoreF, score--].

� In this vector, score1 through scoreF store
the number of equalities for each layer f,
and score-- records the number of deletions,
as in W&F (underlined in the arrays).

Ij I1
1 I1

2 I1
3 I1

4 I1
5

First press the red button

C1
i 0 inf inf inf inf inf

C1
1 First 0 0 inf inf inf inf

C1
2 press 0 1 0 inf inf inf

C1
3 only 0 2 1 inf inf inf

C1
4 the 0 3 2 1 inf inf

C1
5 red 0 4 3 2 1 inf

C1
6 button 0 5 4 3 2 1

Figure 6: Successive scores produced by the adapted W&F algorithm

D[i-1, j-1] D[i-1, j]

deletion

 Ci �ε equality

 Ci = Ij

D[i, j]

 If
j 0 I1 I2 I3 I4

I1 word Sony stays strong Tuesday
I2 lem Sony stay strong Tuesday

Cfi C1 C2 C3/I3 POS PN verb adj PN
0 word lem POS 0000 000inf 000inf 000inf 000inf

C1 Sony Sony PN 0000 1000 000inf 000inf 000inf

C2 reported say verb 0000 1001 1010 000inf 000inf

C3 that that conj 0000 1002 1011 000inf 000inf

C4 NTT NTT PN 0000 0010 1012 000inf 000inf

C5 stayed stay Verb 0000 0011 0110 000inf 000inf

C6 stronger strong Adj 0000 0012 0111 0210 000inf

C7 Tuesday Tuesday PN 0000 0010 0112 0211 1210
C8 morning morning noun 0000 0011 0113 0212 1211

Figure 7: Introducing a vector of deletion and layer equalities scores

Figure 7 shows an example of different score
vectors involved in a match. To calculate the
successive d[i,j], we use the algorithm of Figure
5 adapted for F levels in Figure 8.

If(If[j]=Cf[i])
de=[d1[i-1,j-1], …,dF[i-1,j-1]+1,d--[i-1,j-1]]

Else
de=[0,…,0,inf]

End If
dd=[d1[i-1,j], …,df[i-1,j], .. ,dF[i-1,j], d--[i-1,j]+1]
d[j,i] = max (de, dd) // equality or deletion

Figure 8: Adapting the algorithm to F levels

We first try to get the maximum number of
equalities and then the minimum of deletions.
Each time we find a new match in the first
column, we start a new path (see I1 matching
with C1, C4 and C7 in Figure 7). If one of the

vectors of the last column of the array is such
that: SUM1<=f<=F (scoref) = m, there is a matching
substring of C in which there is a matching word
for each of the words of I: this constitutes a
solution. In our example, cell (7, 4), with score
1210 shows that there is a sub chain of the
candidate that matches the input with 1, 2, and 1
matches at the word, lemma, and POS levels and
0 deletions. Cell (8, 4) indicates a similar match,
but with 1 deletion ("morning"). The best path
then ends at cell (7,4). Starting from this cell, we
can retrieve the full solution using the W&F
backtrack algorithm adapted to F levels.
This approach allows us to choose as compact a
string as possible. When there are several
possible paths, like in Figure 9, the algorithm is
able to choose the best matching sub-string. If
we are looking for a similarity involving first

 If
j 0 I1 I2 I3 I4

I1 word Sony stays strong Tuesday
I2 lem Sony stay strong Tuesday

Cfi C1 C2 C3/I3 POS PN verb adj PN
0 word lem POS 0000 000inf 000inf 000inf 000inf

C1 Sony Sony PN 0000 1000 000inf 000inf 000inf

C2 stayed say verb 0000 1001 1100 000inf 000inf

C3 stronger strong adj 0000 1002 1101 1200 000inf

C4 Tuesday Tuesday PN 0000 1000 1102 1201 2200
C5 and and conj 0000 1001 1103 1202 2201
C6 NTT NTT PN 0000 0010 1104 1203 2202
C7 stayed stay Verb 0000 0011 0110 1204 2203
C8 stronger strong Adj 0000 0012 0111 0210 2204
C9 Tuesday Tuesday PN 0000 0010 0112 0211 1210
C10 morning morning noun 0000 0011 0113 0212 1211

Figure 9: Selecting the best concurrent sub segment

surface word matches, then lemmas and parts of
speech, then cell (4,4) of score 2200 will be
chosen. This strategy can be adapted to
particular needs: it suffices to change the order
of the scores in the vectors.

3 Optimizing

3.1 Triangularization of the array

In this algorithm, for each Ij, there must be at
least one possible matching Ci. Hence, in a valid
path, there are at least m matches. As a match
between Ci and Ij occurs when "stepping across a
diagonal", the (m-1) first diagonals (from the
lower left corner of the array) can not give birth
to a valid path. Therefore, we do not calculate
d[i,j] across these small diagonals.
Symmetrically, the small diagonals after the last
full one (in the upper right corner) cannot give
birth to a valid path. We then also eliminate
these (m-1) last diagonals. This gives a reduced
matrix as shown in the new example in Figure
10. The computed cells are then situated in a
parallelogram of dimensions (n-m+1) and m.
The results is: only m(n-m+1) cells have to be
computed. Instead of initiating the first row 0 to
"inf", we initiate the cells of the diagonal just
before the last full top diagonal (between cell
(0,1) and cell (3,4) in Figure 10) to "000inf" to
be sure that no insertion is possible.

3.2. Complexity

The worst time complexity of this algorithm is
F-proportional to the number of cells in the

computed array, which is m*(n-m+1). With the
"lazy" strategy, all F levels are often not visited.
As the number of cells computed by the W&F
algorithm is m*n, our algorithm is always more
rapid. The backtracking algorithm takes m+n
operations in the W&F algorithm, as well as in
our algorithm, leading to m(n-m+2)+n
operations in the MSSM algorithm, and
m(n+1)+n operations in the W&F algorithm.
The general complexity is then sub-quadratic.
When the lengths of both segments to be
compared are similar (like it often happens in
TMs), the complexity tends towards linearity.
The two graphics in Figure 11 show two
interesting particular cases (m=n and m running
from 1 to n=10), comparing W&F and our
algorithm. For strings of similar lengths, the
longer they are, the more the MSSM algorithm
becomes interesting. When n is fixed, the
MSSM algorithm is more interesting for extreme
values of the length of I: small and similar to n.

Conclusions

The first contribution of this algorithm is to
provide TM and EBMT systems with a precise
and quick way to compare segments of words
with a similarity vector. This leads to an almost
complete eradication of noise for the matter of
retrieving similar sentences in TM systems (97%
"reusability" in our prototype). The second is to
offer an unambiguous word to word matching
through the "trace". This last point opens the
way to the Shallow Translation paradigm.

 If
j 0 I1 I2 I3 I4

I1 word Sony stays strong Tuesday
I2 lem Sony stay strong Tuesday

Cfi C1 C2 C3/I3 POS PN verb adj PN
0 word lem POS 0000 000inf

C1 Sony Sony PN 0000 1000 000inf

C2 reported say verb 0000 1001 1010 000inf

C3 that that conj 0000 1002 1011 000inf 000inf

C4 NTT NTT PN 0000 0010 1012 000inf 000inf

C5 stayed stay Verb 0000 0011 0110 000inf 000inf

C6 stronger strong Adj 0000 0111 0210 000inf

C7 Tuesday Tuesday P noun 0000 0211 1210
C8 morning morning noun 0000 1211

Figure 10: Eliminating left and right small diagonals

Figure 11: Comparing the Wagner & Fisher and
MSSM algorithms

For more information about the use of this
algorithm, please refer to Planas (1999). These
two contributions bring in the main difference
with relative research4 concentrating on
similarity only, represented by a sole integer.
The TELA structure, that allows the parallel use
of different layers of analysis (linguistic
paradigms, but possibly non linguistic
information) is essential to this work because it
provides the algorithm with the supplementary
information classical systems lack.
The fact that the shallow parser (lemmas, POS)
is ambiguous or not does not affect significantly
the performance of the algorithm. If the same
parser is used for both example and input
segments, parallel errors compensate each other.
Of course, these errors do have an influence for
EBMT: the non ambiguity is then a must.
A first evaluation of the MSSM speed gives 0.5
to 2 milliseconds for comparing only5 two
randomly chosen English or Japanese sentences
over 3 levels (word, lemmas, POS). The

4 Cranias et al. (1997), Thompson & Brew (1994), or
in a more specific way, Lepage (1998)
5 Without the shallow analysis

implementation has been done with a DELL
Optiplex GX1 233 Mhz, Window NT, Java 118.
This algorithm can be improved in different
ways. For speed, we can introduce a similarity
threshold so as not to evaluate the last cells of
the columns of the computed array as soon as the
threshold is overtaken. For adaptability, being
able to deal with a different number of tokens
according to each layer will allow us to deal
nicely with compound words.
In short, if the basis of this matching algorithm
is the W&F algorithm, other algorithms can be
adapted similarly to deal with multi-level data.

Acknowledgements

Thanks to Takayuki Adachi, Francis Bond,
Timothy Balwin, and Christian Boitet for their
useful remarks and fruitful discussions.

References

Cranias, L., Papageorgiou, H., & Piperidis, S. (1997)
Example retrieval from a Translation Memory.
Natural Language Engineering 3(4), Cambridge
University Press, pp. 255-277.

Gale, W.A. & Church, K.W. (1993) A program for
Aligning Sentences in Bilingual Corpora. Compu-
tational Linguistics, ACL, Vol. 19, No. 1.

Lafourcade M. (1993) LEAF, ou comment garder
l'Originalité de l'ambiguité. Actualité Scientifique -
Troisièmes Journées Scientifiques Traductique-TA-
TAO, Montréal, Canada, AUPELF-UREF, Vol. 1/1,
pp. 165-185.

Lepage Y. (1998) Solving analogies on words: an
algorithm. Coling-ACL'98, Vol. I, pp. 728-734.

Sellers, P.H. (1980) The theory and computation of
evolutionary distances: pattern recognition. Jour-
nal of Algorithms, Vol. 127, pp. 359-373.

Thompson Henry S. & Brew Chris (1996) Automatic
Evaluation of Computer Generated text: Final
Report on the TextEval Project. Human
Communication Research Center, University of
Edinburg.

Wagner, A. R. & Fischer M. (1974) The String-to-
String Correction Problem. Journal of the ACM,
Vol. 21, #1, pp. 168-173.

Planas, E. (1998) TELA: Structures and Algorithms
for Memory-Based Machine Translation. Ph.D.
thesis, University Joseph Fourier, Grenoble.

Planas, E. & Furuse O. (1999) Formalizing
Translation Memories. Machine Translation
Summit VII, Singapore, pp. 331-339

���������	
��

�
����

�

��

��

��

��

���

���

���

� � � � � � � � � ��

	��

��
�
�
�
�
��
�
�

��

����

��

�
��

����
�
��

���������	
��

�
����

�

��

��

��

��

���

���

���

� � � � � � � � � ��

�
�	����

��
�
�
�
�
��
�
� ��

����

��

�
�

����
�
�

�
�

