Estimation of Stochastic Attribute-Value Grammars using an
Informative Sample

Miles Osborne
osborne@let.rug.nl
Rijksuniversiteit Groningen, The Netherlands*

Abstract

We argue that some of the computational complexity
associated with estimation of stochastic attribute-
value grammars can be reduced by training upon an
informative subset of the full training set. Results
using the parsed Wall Street Journal corpus show
that in some circumstances, it is possible to obtain
better estimation results using an informative sam-
ple than when training upon all the available ma-
terial. Further experimentation demonstrates that
with unlexicalised models, a Gaussian prior can re-
duce overfitting. However, when models are lexi-
calised and contain overlapping features, overfitting
does not seem to be a problem, and a Gaussian prior
makes minimal difference to performance. Our ap-
proach is applicable for situations when there are
an infeasibly large number of parses in the training
set, or else for when recovery of these parses from
a packed representation is itself computationally ex-
pensive.

1 Introduction

Abney showed that attribute-value grammars can-
not be modelled adequately using statistical tech-
niques which assume that statistical dependencies
are accidental (Abney, 1997). Instead of using a
model class that assumed independence, Abney sug-
gested using Random Fields Models (RFMs) for
attribute-value grammars. RFMs deal with the
graphical structure of a parse. Because they do not
make independence assumptions about the stochas-
tic generation process that might have produced
some parse, they are able to model correctly depen-
dencies that exist within parses.

When estimating standardly-formulated RFMs, it
is necessary to sum over all parses licensed by the
grammar. For many broad coverage natural lan-
guage grammars, this might involve summing over
an exponential number of parses. This would make
the task computationally intractable. Abney, fol-
lowing the lead of Lafferty et al, suggested a Monte

* Current address: osborne@cogsci.ed.ac.uk, University of
Edinburgh, Division of Informatics, 2 Buccleuch Place, EH8
9LW, Scotland.

Carlo simulation as a way of reducing the computa-
tional burden associated with RFM estimation (Laf-
ferty et al., 1997). However, Johnson et al consid-
ered the form of sampling used in this simulation
(Metropolis-Hastings) intractable (Johnson et al.,
1999). Instead, they proposed an alternative strat-
egy that redefined the estimation task. It was argued
that this redefinition made estimation computation-
ally simple enough that a Monte Carlo simulation
was unnecessary. They presented results obtained
using a small unlexicalised model trained on a mod-
est corpus.

Unfortunately, Johnson et al assumed it was possi-
ble to retrieve all parses licensed by a grammar when
parsing a given training set. For us, this was not
the case. In our experiments with a manually writ-
ten broad coverage Definite Clause Grammar (DCGQ)
(Briscoe and Carroll, 1996), we were only able to re-
cover all parses for Wall Street Journal sentences
that were at most 13 tokens long within acceptable
time and space bounds on computation. When we
used an incremental Minimum Description Length
(MDL) based learner to extend the coverage of our
manually written grammar (from roughly 60% to
around 90% of the parsed Wall Street Journal), the
situation became worse. Sentence ambiguity consid-
erably increased. We were then only able to recover
all parses for Wall Street Journal sentences that were
at most 6 tokens long (Osborne, 1999).

We can however, and usually in polynomial time,
recover up to 30 parses for sentences up to 30 tokens
long when we use a probabilistic unpacking mecha-
nism (Carroll and Briscoe, 1992). (Longer sentences
than 30 tokens can be parsed, but the number of
parses we can recover for them drops off rapidly).t
However, 30 is far less than the maximum number

IWe made an attempt to determine the maximum num-
ber of parses our grammar might assign to sentences. On
a 450MHz Ultra Sparc 80 with 2 Gb of real memory, with
a limit of at most 1000 parses per sentence, and allowing
no more than 100 CPU seconds per sentence, we found that
sentence ambiguity increased exponentially with respect to
sentence length. Sentences with 30 tokens had an estimated
average of 866 parses (standard deviation 290.4). Without
the limit of 1000 parses per sentence, it seems likely that this
average would increase.

of parses per sentence our grammar might assign to
Wall Street Journal sentences. Any training set we
have access to will therefore be necessarily limited
in size.

We therefore need an estimation strategy that
takes seriously the issue of extracting the best per-
formance from a limited size training set. A limited
size training set means one created by retrieving at
most n parses per sentence. Although we cannot re-
cover all possible parses, we do have a choice as to
which parses estimation should be based upon.

Our approach to the problem of making RFM es-
timation feasible for our highly ambiguous DCG is
to seek out an informative sample and train upon
that. We do not redefine the estimation task in a
non-standard way, nor do we use a Monte Carlo sim-
ulation.

We call a sample informative if it both leads to
the selection of a model that does not underfit or
overfit, and also is typical of future samples. Despite
one’s intuitions, an informative sample might be a
proper subset of the full training set. This means
that estimation using the informative sample might
yield better results than estimation using all of the
training set.

The rest of this paper is as follows. Firstly we
introduce RFMs. Then we show how they may be
estimated and how an informative sample might be
identified. Next, we give details of the attribute-
value grammar we use, and show how we go about
modelling it. We then present two sets of experi-
ments. The first set is small scale, and are designed
to show the existence of an informative sample. The
second set of experiments are larger in scale, and
build upon the computational savings we are able
to achieve using a probabilistic unpacking strategy.
They show how large models (two orders of magni-
tude larger than those reported by Johnson et al)
can be estimated using the parsed Wall Street Jour-
nal corpus. Overfitting is shown to take place. They
also show how this overfitting can be (partially) re-
duced by using a Gaussian prior. Finally, we end
with some comments on our work.

2 Random Field Models

Here we show how attribute-value grammars may be
modelled using RFMs. Although our commentary is
in terms of RFMs and grammars, it should be ob-
vious that RFM technology can be applied to other
estimation scenarios.

Let G be an attribute-value grammar, D the set
of sentences within the string-set defined by L(G)
and Q the union of the set of parses assigned to
each sentence in D by the grammar G. A Random
Field Model, M, consist of two components: a set of
features, F' and a set of weights, A.

Features are the basic building blocks of RFMs.

They enable the system designer to specify the key
aspects of what it takes to differentiate one parse
from another parse. Each feature is a function from
a parse to an integer. Here, the integer value as-
sociated with a feature is interpreted as the num-
ber of times a feature ‘matches’ (is ‘active’) with
a parse. Note features should not be confused with
features as found in feature-value bundles (these will
be called attributes instead). Features are usually
manually selected by the system designer.

The other component of a RFM, A, is a set of
weights. Informally, weights tell us how features are
to be used when modelling parses. For example, an
active feature with a large weight might indicate that
some parse had a high probability. Each weight JA; is
associated with a feature f;. Weights are real-valued
numbers and are automatically determined by an es-
timation process (for example using Improved Itera-
tive Scaling (Lafferty et al., 1997)). One of the nice
properties of RFMs is that the likelihood function
of a RFM is strictly concave. This means that there
are no local minima, and so we can be be sure that
scaling will result in estimation of a RFM that is
globally optimal.

The (unnormalised) total weight of a parse z,
(), is a function of the k features that are ‘active’
on a parse:

k
P(z) = eXP(Z i fi(z)) (1)

The probability of a parse, P(z | M), is simply
the result of normalising the total weight associated
with that parse:

Pz | M) = (@))
Z=> () (3)
yeQ

The interpretation of this probability depends upon
the application of the RFM. Here, we use parse prob-
abilities to reflect preferences for parses.

When using RFMs for parse selection, we sim-
ply select the parse that maximises) (z). In these
circumstances, there is no need to normalise (com-
pute Z). Also, when computing ¥ (x) for competing
parses, there is no built-in bias towards shorter (or
longer) derivations, and so no need to normalise with
respect to derivation length.?

2The reason there is no need to normalise with respect to
derivation length is that features can have positive or nega-
tive weights. The weight of a parse will therefore not always
monotonically increase with respect to the number of active
features.

3 RFM Estimation and Selection of
the Informative Sample

We now sketch how RFMs may be estimated and
then outline how we seek out an informative sample.

We use Improved Iterative Scaling (IIS) to esti-
mate RFMs. In outline, the IIS algorithm is as fol-
lows:

1. Start with a reference distribution R, a set of
features F' and a set of weights A. Let M be
the RFM defined using F' and A.

2. Initialise all weights to zero. This makes the

initial model uniform.

3. Compute the expectation of each feature w.r.t

R.

4. For each feature f;

(a) Find a weight \; that equates the expecta-
tion of f; w.r.t R and the expectation of f;
w.r.t M.

(b) Replace the old value of \; with X;.

5. If the model has converged to R, output M.
6. Otherwise, go to step 4

The key step here is 4a, computing the expectations
of features w.r.t the RFM. This involves calculating
the probability of a parse, which, as we saw from
equation 2, requires a summation over all parses in
Q.

We seek out an informative sample Q; (2, C Q)
as follows:

1. Pick out from 2 a sample of size n.

2. Estimate a model using that sample and evalu-
ate it.

3. If the model just estimated shows signs of over-
fitting (with respect to an unseen held-out data
set), halt and output the model.

4. Otherwise, increase n and go back to step 1.

Our approach is motivated by the following (par-
tially related) observations:

e Because we use a non-parametric model class
and select an instance of it in terms of some
sample (section 5 gives details), a stochastic
complexity argument tells us that an overly sim-
ple model (resulting from a small sample) is
likely to underfit. Likewise, an overly complex
model (resulting from a large sample) is likely
to overfit. An informative sample will therefore
relate to a model that does not under or overfit.

e On average, an informative sample will be ‘typ-
ical’ of future samples. For many real-life situ-
ations, this set is likely to be small relative to
the size of the full training set.

We incorporate the first observation through our
search mechanism. Because we start with small sam-
ples and gradually increase their size, we remain
within the domain of efficiently recoverable samples.

The second observation is (largely) incorporated
in the way we pick samples. The experimental sec-
tion of this paper goes into the relevant details.

Note our approach is heuristic: we cannot afford
to evaluate all 2/’l possible training sets. The actual
size of the informative sample ; will depend both
the upon the model class used and the maximum
sentence length we can deal with. We would ex-
pect richer, lexicalised models to exhibit overfitting
with smaller samples than would be the case with
unlexicalised models. We would expect the size of
an informative sample to increase as the maximum
sentence length increased.

There are similarities between our approach and
with estimation using MDL (Rissanen, 1989). How-
ever, our implementation does not explicitly attempt
to minimise code lengths. Also, there are similari-
ties with importance sampling approaches to RFM
estimation (such as (Chen and Rosenfeld, 1999a)).
However, such attempts do not minimise under or
overfitting.

4 The Grammar

The grammar we model with Random Fields, (called
the Tag Sequence Grammar (Briscoe and Carroll,
1996), or TSG for short) was developed with regard
to coverage, and when compiled consists of 455 Def-
inite Clause Grammar (DCG) rules. It does not
parse sequences of words directly, but instead as-
signs derivations to sequences of part-of-speech tags
(using the CLAWS2 tagset. The grammar is rela-
tively shallow, (for example, it does not fully anal-
yse unbounded dependencies) but it does make an
attempt to deal with common constructions, such as
dates or names, commonly found in corpora, but of
little theoretical interest. Furthermore, it integrates
into the syntax a text grammar, grouping utterances
into units that reduce the overall ambiguity.

5 Modelling the Grammar

Modelling the TSG with respect to the parsed Wall
Street Journal consists of two steps: creation of a
feature set and definition of the reference distribu-
tion.

Our feature set is created by parsing sentences in
the training set (Qr), and using each parse to in-
stantiate templates. Each template defines a family
of features. At present, the templates we use are
somewhat ad-hoc. However, they are motivated by
the observations that linguistically-stipulated units
(DCG rules) are informative, and that many DCG
applications in preferred parses can be predicted us-
ing lexical information.

AP/al:unimpeded

A1l/appl:unimpeded

PP /pl:by

P1/pnl:by

unimpeded

by NI1/n:traffic

traffic

Figure 1: TSG Parse Fragment

The first template creates features that count
the number of times a DCG instantiationis present
within a parse.®> For example, suppose we parsed
the Wall Street Journal AP:

1 unimpeded by traffic

A parse tree generated by TSG might be as shown
in figure 1. Here, to save on space, we have labelled
each interior node in the parse tree with TSG rule
names, and not attribute-value bundles. Further-
more, we have annotated each node with the head
word of the phrase in question. Within our gram-
mar, heads are (usually) explicitly marked. This
means we do not have to make any guesses when
identifying the head of a local tree. With head in-
formation, we are able to lexicalise models. We have
suppressed tagging information.

For example, a feature defined using this template
might count the number of times the we saw:

AP/al

Al/appl

in a parse. Such features record some of the context
of the rule application, in that rule applications that
differ in terms of how attributes are bound will be
modelled by different features.

Our second template creates features that are par-
tially lexicalised. For each local tree (of depth one)
that has a PP daughter, we create a feature that
counts the number of times that local tree, decorated
with the head-word of the PP, was seen in a parse.
An example of such a lexicalised feature would be:

Al/appl

PP/pl:by

3Note, all our features suppress any terminals that appear
in a local tree. Lexical information is included when we decide
to lexicalise features.

These features are designed to model PP attach-
ments that can be resolved using the head of the
PP.

The third and final template creates features that
are again partially lexicalised. This time, we create
local trees of depth one that are decorated with the
head word. For example, here is one such feature:

AP /al:unimpeded

Al/appl

Note the second and third templates result in fea-
tures that overlap with features resulting from ap-
plications of the first template.

We create the reference distribution R (an associ-
ation of probabilities with TSG parses of sentences,
such that the probabilities reflect parse preferences)
using the following process:

1. Extract some sample Q7 (using the approach
mentioned in section 3).

2. For each sentence in the sample, for each parse
of that sentence, compute the ‘distance’ be-
tween the TSG parse and the WSJ reference
parse. In our approach, distance is calculated
in terms of a weighted sum of crossing rates, re-
call and precision. Minimising it maximises our
definition of parse plausibility.* However, there
is nothing inherently crucial about this decision.
Any other objective function (that can be rep-
resented as an exponential distribution) could
be used instead.

3. Normalise the distances, such that for some sen-
tence, the sum of the distances of all recov-
ered TSG parses for that sentence is a constant
across all sentences. Normalising in this man-
ner ensures that each sentence is equiprobable
(remember that RFM probabilities are in terms
of parse preferences, and not probability of oc-
currence in some corpus).

4. Map the normalised distances into probabili-
ties. If d(p) is the normalised distance of TSG
parse p, then associate with parse p the refer-
ence probability given by the maximum likeli-
hood estimator:

d(p)
2o, Uz)

Our approach therefore gives partial credit (a non-
zero reference probability) to all parses in ;. R is
therefore not as discontinuous as the equivalent dis-
tribution used by Johnson et al. We therefore do not
need to use simulated annealing or other numerically
intensive techniques to estimate models.

(4)

4Qur distance metric is the same one used by Hektoen
(Hektoen, 1997)

6 Experiments

Here we present two sets of experiments. The first
set demonstrate the existence of an informative sam-
ple. It also shows some of the characteristics of three
sampling strategies. The second set of experiments
is larger in scale, and show RFMs (both lexicalised
and unlexicalised) estimated using sentences up to
30 tokens long. Also, the effects of a Gaussian prior
are demonstrated as a way of (partially) dealing with
overfitting.

6.1 Testing the Various Sampling
Strategies

In order to see how various sizes of sample related to
estimation accuracy and whether we could achieve
similar levels of performance without recovering all
possible parses, we ran the following experiments.

We used a model consisting of features that were
defined using all three templates. We also threw
away all features that occurred less than two times in
the training set. We randomly split the Wall Street
Journal into disjoint training, held-out and testing
sets. All sentences in the training and held-out sets
were at most 14 tokens long. Sentences in the test-
ing set were at most 30 tokens long. There were
6626 sentences in the training set, 98 sentences in
the held-out set and 441 sentences in the testing set.
Sentences in the held-out set had on average 12.6
parses, whilst sentences in the testing-set had on av-
erage 60.6 parses per sentence.

The held-out set was used to decide which model
performed best. Actual performance of the models
should be judged with respect to the testing set.

Evaluation was in terms of exact match: for each
sentence in the test set, we awarded ourselves a
point if the RFM ranked highest the same parse that
was ranked highest using the reference probabilities.
When evaluating with respect to the held-out set,
we recovered all parses for sentences in the held-out
set. When evaluating with respect to the testing-set,
we recovered at most 100 parses per sentence.

For each run, we ran IIS for the same number
of iterations (20). In each case, we evaluated the
RFM after each other iteration and recorded the best
classification performance. This step was designed
to avoid overfitting distorting our results.

Figure 2 shows the results we obtained with pos-
sible ways of picking ‘typical’ samples. The first
column shows the maximum number of parses per
sentences that we retrieved in each sample.

The second column shows the size of the sample
(in parses).

The other columns give classification accuracy re-
sults (a percentage) with respect to the testing set.
In parentheses, we give performance with respect to
the held-out set.

The column marked Rand shows the performance

Max parses Size Rand SCFG Ref

1 6626 | 25.2 (51.7) 23.3 (50.0) 23.4 (50.0)
2 12331 | 37.9 (63.0) 40.4 (60.3) 40.4 (60.0)
3 17026 | 43.2 (65.5) 43.7 (63.8) 43.7 (63.8)
5 24878 | 43.7 (70.2) 45.8 (69.5) 45.8 (69.5)
10 39581 | 47.4 (72.0) 47.0 (70.0) 46.9 (70.0)
100 119694 | 45.0 (68.7) 45.0 (68.0) 45.0 (68.0)
1000 246686 | 44.4 (67.4) 43.0 (67.0) 43.0 (67.0)
00 267400 | 43.0 (66.0) 43.0 (66.0) 43.0 (66.0)

Figure 2: Results with various sampling strategies

of runs that used a sample that contained parses
which were randomly and uniformly selected out of
the set of all possible parses. The classification ac-
curacy results for this sampler are averaged over 10
runs.

The column marked SCFG shows the results ob-
tained when using a sample that contained parses
that were retrieved using the probabilistic unpacking
strategy. This did not involve retrieving all possible
parses for each sentence in the training set. Since
there is no random component, the results are from a
single run. Here, parses were ranked using a stochas-
tic context free backbone approximation of TSG. Pa-
rameters were estimated using simple counting.

Finally, the column marked Ref shows the re-
sults obtained when using a sample that contained
the overall n-best parses per sentence, as defined in
terms of the reference distribution.

As a baseline, a model containing randomly as-
signed weights produced a classification accuracy of
45% on the held-out sentences. These results were
averaged over 10 runs.

As can be seen, increasing the sample size pro-
duces better results (for each sampling strategy).
Around a sample size of 40k parses, overfitting starts
to manifest, and performance bottoms-out. One of
these is therefore our informative sample. Note that
the best sample (40k parses) is less than 20% of the
total possible training set.

The difference between the various samplers is
marginal, with a slight preference for Rand. How-
ever the fact that SCFG sampling seems to do almost
as well as Rand sampling, and furthermore does not
require unpacking all parses, makes it the sampling
strategy of choice.

SCFG sampling is biased in the sense that the
sample produced using it will tend to concentrate
around those parses that are all close to the best
parses. Rand sampling is unbiased, and, apart
from the practical problems of having to recover all
parses, might in some circumstances be better than
SCFG sampling. At the time of writing this paper,
it was unclear whether we could combine SCFG with
Rand sampling -sample parses from the full distribu-

tion without unpacking all parses. We suspect that
for probabilistic unpacking to be efficient, it must
rely upon some non-uniform distribution. Unpack-
ing randomly and uniformly would probably result
in a large loss in computational efficiency.

6.2 Larger Scale Evaluation

Here we show results using a larger sample and test-
ing set. We also show the effects of lexicalisation,
overfitting, and overfitting avoidance using a Gaus-
sian prior. Strictly speaking this section could have
been omitted from the paper. However, if one views
estimation using an informative sample as overfit-
ting avoidance, then estimation using a Gaussian
prior can be seen as another, complementary take
on the problem.

The experimental setup was as follows. We ran-
domly split the Wall Street Journal corpus into a
training set and a testing set. Both sets contained
sentences that were at most 30 tokens long. When
creating the set of parses used to estimate RFMs, we
used the SCFG approach, and retained the top 25
parses per sentence. Within the training set (arising
from 16,200 sentences), there were 405,020 parses.
The testing set consisted of 466 sentences, with an
average of 60.6 parses per sentence.

When evaluating, we retrieved at most 100 parses
per sentence in the testing set and scored them using
our reference distribution. As before, we awarded
ourselves a point if the most probable testing parse
(in terms of the RMF) coincided with the most prob-
able parse (in terms of the reference distribution). In
all cases, we ran IIS for 100 iterations.

For the first experiment, we used just the first
template (features that related to DCG instantia-
tions) to create model 1; the second experiment used
the first and second templates (additional features
relating to PP attachment) to create model 2. The
final experiment used all three templates (additional
features that were head-lexicalised) to create model
3.

The three models contained 39,230, 65,568 and
278,127 features respectively,

As a baseline, a model containing randomly as-
signed weights achieved a 22% classification accu-
racy. These results were averaged over 10 runs. Fig-
ure 3 shows the classification accuracy using models
1,2 and 3.

As can be seen, the larger scale experimental
results were better than those achieved using the
smaller samples (mentioned in section 6.1). The rea-
son for this was because we used longer sentences.
The informative sample derivable from such a train-
ing set was likely to be larger (more representative of

Accuracy

42 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Iterations

Figure 3: Classification Accuracy for Three Models
Estimated using Basic IIS

56 T T T T T T

I modelll

model2 -------
54

52

50

Accuracy

48

46

44 |

42 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Iterations

Figure 4: Classification Accuracy for Three Models
Estimated using a Gaussian Prior and IIS

the population) than the informative sample deriv-
abled from a training set using shorter, less syntac-
tically complex sentences. With the unlexicalised
model, we see clear signs of overfitting. Model 2
overfits even more so. For reasons that are unclear,
we see that the larger model 3 does not appear to
exhibit overfitting.

We next used the Gaussian Prior method of
Chen and Rosenfeld to reduce overfitting (Chen
and Rosenfeld, 1999b). This involved integrating
a Gaussian prior (with a zero mean) into IIS and
searching for the model that maximised the prod-
uct of the likelihood and prior probabilities. For the
experiments reported here, we used a single vari-
ance over the entire model (better results might be
achievable if multiple variances were used, perhaps
with one variance per template type). The actual
value of the variance was found by trial-and-error.
However, optimisation using a held-out set is easy
to achieve.

We repeated the large-scale experiment, but this
time using a Gaussian prior. Figure 4 shows the
classification accuracy of the models when using a
Gaussian Prior.

When we used a Gaussian prior, we found that all
models showed signs of improvement (allbeit with
varying degrees): performance either increased, or
else did not decrease with respect to the number
of iterations. Still, model 2 continued to underper-
form. Model 3 seemed most resistent to the prior.
It therefore appears that a Gaussian prior is most
useful for unlexicalised models, and that for mod-
els built from complex, overlapping features, other
forms of smoothing must be used instead.

7 Comments

We argued that RFM estimation for broad-coverage
attribute-valued grammars could be made compu-
tationally tractable by training upon an informa-
tive sample. Our small-scale experiments suggested
that using those parses that could be efficiently un-
packed (SCFG sampling) was almost as effective as
sampling from all possible parses (Rand sampling).
Also, we saw that models should not be both built
and also estimated using all possible parses. Better
results can be obtained when models are built and
trained using an informative sample.

Given the relationship between sample size and
model complexity, we see that when there is a dan-
ger of overfitting, one should build models on the ba-
sis of an informative set. However, this leaves open
the possibility of training such a model upon a su-
perset, of the informative set. Although we have not
tested this scenario, we believe that this would lead
to better results than those achieved here.

The larger scale experiments showed that RFMs
can be estimated using relatively long sentences.
They also showed that a simple Gaussian prior could
reduce the effects of overfitting. However, they also
showed that excessive overfitting probably required
an alternative smoothing approach.

The smaller and larger experiments can be both
viewed as (complementary) ways of dealing with
overfitting. ~We conjecture that of the two ap-
proaches, the informative sample approach is prefer-
able as it deals with overfitting directly: overfitting
results from fitting to complex a model with too lit-
tle data.

Our ongoing research will concentrate upon
stronger ways of dealing with overfitting in lexi-
calised RFMs. One line we are pursuing is to com-
bine a compression-based prior with an exponential
model. This blends MDL with Maximum Entropy.

We are also looking at alternative template sets.
For example, we would probably benefit from using
templates that capture more of the syntactic context
of a rule instantiation.

Acknowledgments

We would like to thank Rob Malouf, Donnla Nic
Gearailt and the anonymous reviewers for com-
ments. This work was supported by the TMR
Project Learning Computational Grammars.

References

Steven P. Abney. 1997. Stochastic Attribute-
Value Grammars. Computational Linguistics,
23(4):597-618, December.

Miles Osborne 1999. DCG Induction using MDL
and Parsed Corpora. In James Cussens, editor,
Learning Language in Logic, pages 63—71, Bled,
Slovenia, June.

Ted Briscoe and John Carroll. 1996. Automatic
Extraction of Subcategorization from Corpora.
In Proceedings of the 5" Conference on Applied
NLP, pages 356-363, Washington, DC.

John Carroll and Ted Briscoe. 1992. Probabilis-
tic Normalisation and Unpacking of Packed Parse
Forests for Unification-based Grammars. In Pro-
ceedings of the AAAI Fall Symposium on Prob-
abilistic Approaches to Natural Language, pages
33-38, Cambridge, MA.

Stanley Chen and Ronald Rosenfeld. 1999a. Effi-
cient Sampling and Feature Selection in Whole
Sentence Maximum Entropy Language Models. In
ICASSP’99.

Stanley F. Chen and Ronald Rosenfeld. 1999b.
A Gaussian Prior for Smoothing Maximum En-
tropy Models. Technical Report CMU-CS-99-108,
Carnegie Mellon University.

Eirik Hektoen. 1997. Probabilistic Parse Selection
Based on Semantic Cooccurrences. In Proceed-
ings of the 5th International Worskhop on Parsing
Technologies, Cambridge, Massachusetts, pages
113-122.

Mark Johnson, Stuart Geman, Stephen Cannon,
Zhiyi Chi, and Stephan Riezler. 1999. Estimators
for Stochastic “Unification-based” Grammars. In
37" Annual Meeting of the ACL.

J. Lafferty, S. Della Pietra, and V. Della Pietra.
1997. Inducing Features of Random Fields. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 19(4):380-393, April.

Jorma Rissanen. 1989. Stochastic Complezity in
Statistical Inquiry. Series in Computer Science -
Volume 15. World Scientific.

