
Introduction to the MT Plateau
We believe it is fair to say that the field of
machine translation has been on a plateau for at
least the past decade.2 Traditional, hand-built
MT systems held up very well in the ARPA
MT evaluation (White and O'Connell 1994).
These systems are relatively expensive to build
and generally require a trained staff working
for several years to produce a mature system.
This is the current commercial state of the art:
hand-building specialized lexicons and
translation rules. A completely different type of
system was competitive in this evaluation,
namely, the purely statistical CANDIDE
system built at IBM. It was generally felt that
this system had also reached a plateau in that
more data and more training was not likely to
improve the quality of the output.

Low Density Machine Translation
However, in the case of "Low Density Machine
Translation" (see Nirenburg and Raskin 1998,
Jones and Havrilla 1998) commercial market
forces are not likely to provide significant
incentives for machine translation systems for
Low Density (Non-Major) languages any time
soon. Two noteworthy efforts to break past the
data and labor bottlenecks for high-quality
machine translation development are the
following. The NSF Summer Workshop on

2 A sensible, plateau-friendly strategy may be to
accumulate translation memory to improve both the
long-term efficiency of human translators and the
quality of machine translation systems. If we
imagine that the plateau is really a kind of
logarithmic function tending ever upwards, we need
only be patient.

Statistical Machine Translation held at Johns
Hopkins University summer 1999 developed a
public-domain version intended as a platform
for further development of a CANDIDE-style
MT system. Part of the goal here is to improve
the translation by adding levels of linguistic
analysis beyond the word N-gram. An effort
addressing the labor bottleneck is the
Expedition Project at New Mexico State
University where a preliminary elicitation
environment for a computational field
linguistics system has been developed (the Boas
interface; see Nirenburg and Raskin 1998)

A Scoring Function for MT quality
Our contribution toward working beyond this
plateau is to look for a way to define a scoring
function for the quality of the English output
such that we can use it to machine-learn a good
translation grammar. The novelty of our idea
for this function is that we do not have to define
the internals of it ourselves per se. We are able
to define a successful function for two reasons.
First, there is a growing body of software
worldwide that has been designed to consume
English; all we need is for each piece of
software to provide a metric as to how English-
like its input is. Second, we can tell whether the
software had trouble with the input, either by
system-internal diagnosis or by diagnosing the
software's output. A good illustration is the
facility in current word-processing software to
put red squiggly lines underneath text it thinks
should be revised. We know from experience
that this feature is often only annoying.
Nevertheless, imagine that it is correct some
percentage of the time, and that each piece of
software we use for this purpose is correct some
percentage of the time. Our strategy is to

Toward a Scoring Function for Quality-Driven Machine Translation

Abstract
We describe how we constructed an automatic scoring function for machine translation quality;
this function makes use of arbitrarily many pieces of natural language processing software that
has been designed to process English language text. By machine-learning values of functions
available inside the software and by constructing functions that yield values based upon the
software output, we are able to achieve preliminary, positive results in machine-learning the
difference between human-produced English and machine-translation English. We suggest
how the scoring function may be used for MT system development.

Douglas A. Jones 1

Department of Defense
9800 Savage Road, Suite 6514
Fort Meade, MD 20755-6514

Gregory M. Rusk
RABA Technologies
10500 Little Patuxent Parkway
Columbia, MD 21044

1 Douglas Jones is now at National Institute of
Standards & Technology, Gaithersburg, MD 20899,
Douglas.Jones@NIST.gov

extract or create numeric values from each
piece of software that corresponds to the degree
to which the software was happy with the input.
That array of numbers is the heart of our
scoring function for Englishness -- we are
calling these numeric values "indicators" of
Englishness. We then use that array of
indicators to drive the machine translation
development. In this paper we will report on
how we have constructed a prototype of this
function; in separate work we discuss how to
insert this function into a machine-learning
regimen designed to maximize the overall
quality of the machine translation output.

A Reverse Turing Test
People can generally tell the difference between
human-produced English and machine
translation English, assuming all the obvious
constraints such as that the reader and writer
have command of the language. Whether or
not a machine can tell the difference depends of
course, on how good the MT system is. Can we
get a machine to tell the difference? Of course
it depends on how good the MT system is: if it
were perfect, neither we nor the machines
ought to be able to distinguish them. MT
quality being what it is, that is not a problem
for us now. An essential first step toward
QDMT is what we are calling a "Reverse
Turing Test". In the ordinary Turing Test, we
want to fool a person into thinking the machine
is a person. Here, we are turning that on its
head. We want to define a function that can tell
the difference between English that a human
being has produced versus English that the
machine has produced.3 To construct the test,
we use a bilingual parallel aligned corpus: we
take the foreign language side and send that
through the MT system; then we see if we can
define a scoring function that can distinguish
the two versions (original English and MT
English). With our current indicators and
corpus, we can machine-learn a function that
behaves as follows: if you hand it a human
sentence, it correctly classifies it as human 74%
of the time. If you hand it a machine sentence,
it correctly classifies it as a machine sentence
57% of the time. In the remainder of the paper,
we will step through the details of the
experiment; we will also discuss why we

3Obviously the end goal here is to fail this Reverse
Turing Test for a "perfect" machine translation
system. We are very far away from this, but we
would like to use this function to drive the process
toward that eventual and fortunate failure.

neither expect nor require 100% accuracy for
this function. Our boundary tests behave as
expected and are shown in the final section --
we use the same test to distinguish between
English and (a) English word salad, (b) English
alphabet soup, (c) Japanese, and (d) the identity
case of more human-produced English.

Case Study: Japanese-English
In this paper, we report on results using a small
corpus of 2,340 sentences drawn from the
Kenkyusha New Japanese-English Dictionary.
It was important in this particular experiment to
use a very clean corpus (perfectly aligned and
minimally formatted). This case study is
situated in a broader context: we have
conducted exploratory experiments on samples
from several corpora, for example the ARPA
MT Evaluation corpus, samples from European
Corpus Initiative Data corpus (ECI-1) and
others. Since we found that the scoring
function was quite sensitive to formatting
problems (for example, the presence of tables
and sentence segmentation errors cause
problems) we are examining a small corpus that
is free from these issues. The sentences are on
average relatively short (7.0 words per
sentence; 37.6 characters/sentence), this makes
our task both easier and harder. It is easier
because we have overcome the formatting
problems. It is harder because the MT system
is able to perform much better on the shorter,
cleaner sentences than it was on longer
sentences with formatting problems. Since the
output is better, it is more difficult to define a
function that can tell the difference between the
original English and the machine translation
English. On balance, this corpus is a good one
to illustrate our technique.
(1) #208

Her beauty baffled description

MT It described her beauty and the abnormal
play applied

(2) #1577

She was radiant with happiness

MT She had shone happily

(3) #1802

In terror the child seized his father's
arm.

MT Becoming fearful, the child
grasped the arm of the father tightly

Figure 1. Subjective Quality Ranking

Figure 1 shows a range of output quality. (1) is
the worst -- it is obviously MT output. For us
this output is only partially intelligible. (2) is
not so bad, but it is still not perfect English. But
(3)is nearly perfect. We want to design a
system that can tell the difference. We will
now walk through our suite of indicators; the
goal is to get the machine to see what we see in
terms of quality.

Suite of Indicators
We have defined a suite of functions that
operate at various levels of linguistic analysis:
syntactic, semantic, and phonological
(orthographic). For each of these levels, we
have integrated at least one tool for which we
construct an indicator function. The task is to
use these indicators to generate an array of
values which we can use to capture the
subjective quality we see when we read the
sentences. We will step through these indicator
functions one by one. In some cases, in order
to get numbers, we take what amounts to
debugging information from the tool (many of
the tools have very nice API's that give access
to a variety of information about how it
processed input). In other cases, we define a
function that yields an output based on the
output of the tool (for example, we defined a
function that indicated the degree to which a
parse tree was balanced; it turned out that a
balanced tree was a negative indicator of
Englishness, probably because English is right-
branching).

Syntactic Indicators
Two sources of local syntactic information are
(a) parse trees and (b) N-grams. Within the
parsers, we looked at internal processing
information as well as output structures. For
example, we measured the probability of a
parse and number of edges in the parse from the
Collins parser. The Apple Pie Parser provided
various weights which we used. The Appendix
lists all of the indicator functions that we used.
N-Gram Language Model (Cross-Perplexity)
An easy number to calculate is the cross-
perplexity of a given text, as calculated using
an N-gram language model.4

4 We used the Cambridge/CMU language modeling
toolkit, trained on the Wall Street Journal (4/1990
through 3/1992), (lm parameters: n=4, Good-Turing
smoothing)

Cross-
perplexity

(1) 2439 It described her beauty and the
abnormal play applied

(2) 2185 She had shone happily

(3) 1836 Becoming fearful, the child
grasped the arm of the father
tightly

Figure 2. Cross-Perplexity Indicator
Notice that the subjective order is mirrored by
the cross-perplexity scores in Figure 2.
Collins Parser
The task here is to write functions that process
the parse trees and return a number. We have
experimented with more elaborate functions
that indicate how balanced the parse tree is and
less complicated functions such as the level of
embedding, number of parentheses, and so on.
Interestingly, the number of parentheses in the
parse was a helpful indicator in conjunction
with other indicators.

Indicators of Semantic Cohesiveness
For the semantic indicators, we want some
indication as to how much the words in a text
are related to each other by virtue of their
meaning. Which words belong together,
regardless of exactly how they are used in the
sentence? Two resources we have begun to
integrate for this purpose are WordNet and the
Trigger Toolkit (measuring mutual
information). The overall experimental design
is roughly the same in both cases. Our method
was to remove stop words, lemmatize the text,
and then take a measurement of pairwise
semantic cohesiveness of the lemmatized
words5. For WordNet, we are counting how
many ways two words are related by the
hyponymy relation (future indicators will be
more sophisticated). For the Trigger Toolkit,
we weighted the connections (by mutual
information).

Orthographic
We had two motivations for an orthographic
level: one was methodological (we wanted to
look at each of the traditional levels of
linguistic analysis). The other was driven by
our experience in looking at the MT output.
Some MT systems leave untranslated words

5The following parameters were used to build and
calculate mutual information using the Trigger
Toolkit: (1) All uppercase letters were converted to
lowercase (2) All numbers were converted to a
"NUMBER" token (3) Punctuation stripped (4)
Stopwords removed (5) Words lemmatized.

alone, or transliterate them, or insert a dummy
symbol, such as "X". These clues were
adequate to give us appropriate hints as to
whether the text was produced by human or by
machine. But some of our tools missed these
clues because of how they were designed.
Robust parsers often treat unknown words as
nouns; so if we get an untranslated term or an
"X", the parser simply treats it as a noun. Five
X's in a row might be a noun phrase followed
by a verb.6 Smoothed N-gram models of words
usually treat any string of letters as a possible
word.

MT
output

Word N-
gram
Cross Per-
plexity

Num.
Edges

Apple
Pie
Parser
Score

Sumof
mutual
infor-
mation

Char
N-gram
cross
per-
plexity

worst
(1)

2439 152 247 0 8.1

mid
(2)

2185 271 139 0 16.3

best
(3)

1836 1654 302 1.7E-4 9.3

Figure 3. Subjective and Objective Rankings
Because the parsers and N-gram models were
designed to be very robust, they are not
necessarily sensitive to these obvious clues. In
order to get at these hints, we built a character-
based N-gram model of English. Although
these indicators were not very informative on
their own for distinguishing human from
machine English, they boosted performance in
conjunction with the syntactic and semantic
indicators.

Combined Indicators
Let's come back to the three sentences from
Figure 1: we want to capture our subjective
ranking of the sentences with appropriate
indicator values. In other words, we want the
machine to be able to see differences which a
human might see.
For these three examples, some scores correlate
well with our subjective ranking of Englishness
(e.g. cross-perplexity, Edges). However, the
other scores on their own only partially
correlate. The expectation is that an indicator
on its own will not be sufficient to score the
Englishness. It is the combined effect of all
indicators which ultimately decides the

6We found that we could often guess the "default"
behavior that a parser used and we have begun to
design indicators that can tell when a parser has
defaulted to these.

Englishness. Now we have enough raw data to
begin machine-learning a way to distinguish
these kinds of sentences.

Simple Machine Learning Regimen
We have started out with very simple memory-
based machine learning techniques. Since we
are defining a range of functions, we wanted to
keep things relatively simple for debugging and
didactic purposes.

KNN
One of the simplest methods we can use for
classification is to collect values of the N
indicators for a set of training cases and for the
test cases, to find the K nearest training cases
(using Euclidean distance in N-dimensional
space). For K, we used 5 for our general
experiments (but see below for some
variations). For a concrete example in two
dimensions, imagine that we use the cross-
perplexity of an N-gram language model for the
Y-axis and the probability of a parse from the
Collins parser for the X-axis. Human sentences
tended to have better (lower) cross-perplexity
numbers and better (higher) parse probabilities.
If the 5 nearest neighbors to a data point were
(h,h,h,h,m) four human sentences and one
machine our KNN function guesses that it is a
human sentence.
Figure 4 lists some of the parameters we used
for KNN. The values for cross perplexity
ranged from around 100 to 10,000 and the
Collins parse probability (log) ranged from
around -1000 to 0. These values were
normalized to range from 0-1.
All columns were scaled between 0 and 1.
- Value for K in KNN was set to 5.
- Value for L in KNN was set to 0 (L is the
 minimum number of positive neighbors
 required for a confident classification
 i.e. L=5 means all neighbors must be of
 one class)
- Distance calculation is Euclidean
- We used 10-fold cross-validation and
 calculated the average classification
 accuracy for the overall score.

Figure 4. KNN Parameters
To get an indication of how much guessing
figured into the classification, we varied L from
3 to 5, keeping K at 5. We found that we get the
same overall shape for the classification, with
fewer guesses made. Of course the penalty for
not guessing as much is that more cases are left
unclassified. When we reduced guessing by
setting L to 4, we correctly classified 47% of
the human sentences as human and incorrectly
classified 9% of the human sentences as

machine (the remaining 44% were not
classified). By setting L to 5 (eliminating
guessing) these numbers dropped to 18% and
2% respectively. When we varied K (for
example, trying K of 101) we found that we can
increase the performance of the human
classifier to nearly 90%. Performance of KNN
tended to top out at around 74% with the
parameters in Figure 4.

Indicator Monotonicity
There is no guarantee that classification will
perform better with more dimensions in KNN.
However, we found that we generally got a
monotonically increasing performance in
classification when we added indicator
functions. A helpful analogy might be to
consider the blind men and the elephant. In our
case, "English" is the elephant, and each of our
indicator functions is one blind man grasping at
the elephant. One is grasping at semantics, one
at syntax, and so on. Figure 5 shows how
classification improves with more indicators
(the back of the elephant, so to speak).

Benchmarks
To calibrate the indicator functions we have
used to classify text into human- or machine-
produced, we tested our method with some
boundary cases, shown in Figure 6. The most
extreme case was to learn the difference

between Japanese text (in native character
encoding) and English.

Truth is:

human machine

Machine
Guesses:

Japanese 99.6 99.6

Alphabet Soup 99.4 99.2

Word Salad 95.4 91.1

MT Output 74.0 56.1

Identity Case 52.3 49.4

Figure 6. Baselines
In other words, we have come up with a very
computationally expensive method for
Language Identification. Next less extreme was
what we called "Alphabet Soup"; we took
English sentences from the English side of the
Kenkyusha corpus: for each alphabetic
character, we substituted a randomly-selected
alphabetic character, preserving case and
punctuation.7 For "Word Salad", we took the
English sentences from the Kenkyusha corpus
and scrambled their order. MT Output is the
case we discussed in detail above. The Identity
Case is to divide the English sentences from the
corpus into two piles and then try to tell them
apart. As Figure 6 shows, the pathological
baseline cases all work out very well: our
machine can almost always tell that Japanese,
Alphabet Soup, and Word Salad are not

English. Nor can it distinguish between
two arbitrarily divided piles of human
English.

Other Classification Algorithms
We have performed some initial
experiments with Support Vector
Machines (SVM) as a classification
method. SVM attempts to divide up an n-
dimensional space using a set of support
vectors defining a hyperplane. The basic
approach of the SVM algorithm is
different from KNN in that it actually
deduces a classification model from the
training data. KNN is a memory-based
learning algorithm wherein the model is
essentially a replica of the training
examples.
The initial trials using SVM are yielding
classification accuracies of correctly
classifying 83% of the human sentences
and 64% of the machine sentences (single

7We found that it was often easy to crash some
of the software when we fed it arbitrary binary
data, so we used "Alphabet Soup" instead of
arbitrary binary data.

 Top: Truth is human; machine guesses human
 Bottom: Truth is MT; machine guesses MT
 Figure 5

random sample of 10% withheld -- no n-fold
cross-validation). These accuracies represent
improvements of 11% for human test sentences
and 14% for the machine test sentences.
Further tests on this and other classification
methods will be investigated to maximize
performance in terms of accuracy and
execution time.

Next Steps
There are two general areas we are continuing
to work on: (a) to increase the scope and
reliability of our indicators and (b) to insert the
scoring function into a machine-learning
regimen for producing translation grammars. In
the first area, we have begun to explore the
degree to which we might recapitulate the
ARPA MT Evaluation. The data from these
evaluations are freely available.8 Of course if
all we did was recapitulate the data in some
non-explanatory way, we would be doing
something analogous to using the Chicago
Bears to predict the stock market. The real
work here is to map the objective scoring
function numbers back to reliable subjective
evaluation of the machine-produced texts. A
crucial task for us here is to get a deeper
understanding of how each of the pieces of
software behaves with various types of input
text. We are currently at a quite preliminary
stage in terms of the number of indicators we
are using and the degree to which each is fine-
tuned to our purpose. For machine-learning a
translation grammar, we have begun to explore
using our scoring function to drive the
construction of a prototype Low Density
machine translation grammar compatible with a
previous system built by hand. We have found
that the scoring function is sensitive to the word
order difference between the target English
translation and the glosses for the source
language. We would like to re-create a
compatible knowledge base of the English half
of the translation grammar using only the
glosses as input. Such a technique would
reduce the labor requirements in constructing a
translation knowledge base.

Reverse Turing Scores for Machine
Learning Grammars
To illustrate how we can use the Reverse
Turing scores to machine learn a grammar, let
us consider a simple case of learning lexical
features for a unification-based phrase structure
grammar of the sort discussed in Jones &

8From ursula.georgetown.edu/mt_web.

Havrilla 1998. The working assumption there is
that an adequate translation grammar can be
created that conforms to the constraint that the
only reordering that is allowed is the
permutation of nodes in a binary-branching tree
(as in Wu 1995, among others). How might we
learn that postpositions and verbs generally
trigger inversion? Consider the following
example as shown in Figure 7 from Jones &
Havrilla 1998; let us use +T to indicate that the
lexical item triggers inversion; -T means that it
does not. Let the initial state of the lexicon
mark all lexical items as "-T".
S Shobhaa kamre-men baiThii hai

POS N N O V V

F -T -T +T +T +T

Shobha the_room-in sitting is

Figure 7. Shobha is sitting in the room.

Our machine learning process marks lexical
items as "+T" when the Reverse Turing
classification score for the bilingual corpus
improves.

Conclusion
We are capitalizing on two historical accidents:
(1) that English is a major world language and
(2) that we want to translate into English. In
addition to a variety of modern, standard NLP
techniques and ideas, we have drawn from two
unlikely sources of intellectual capital: (1)
philosophy of language and (2) the current
ubiquity of language engineering software.
What we have taken from (1) is that we have
assumed that there is such a thing as "English".
That might not seem like much of an
assumption, but we are treading near some very
thorny problems in the philosophy of language.
We can no more point to English than we can
point to the perfect triangle. And like the blind
men grasping at the elephant, how we
characterize it depends on how we are exploring
it. What is important is the helpful aggregate of
numeric values that we use for the scoring.
What does this mean for machine translation?
We want to "Begin with the End in Mind"; in
other words, we want the machine translation
system to create output that scores well on our
indicators of Englishness. The rest would be
details, so to speak.

Acknowledgments
This project was funded in part by the
Advanced Research and Development Activity.
We would like to thank our colleagues at DoD
for very helpful discussions and insights.

Appendix
List of current Indicators
 1. Word N-Gram (CMU/Cambridge Language Tk)
 2. Number of edges in parse (Collins Parser)
 3. Log probability (Collins Parser)
 4. Execution time (Collins Parser)
 5. Paren count (Collins Parser)
 6. Mean leaf node size of parse tree (Collins Parser)
 7. Mean NN sequence length (Collins Parser)
 8. Overall score (Apple Pie Parser)
 9. Word level score (Apple Pie Parser)
10. Node count (Apple Pie Parser)
11. User execution time (Apple Pie Parser)
12. CD node count (Apple Pie Parser)
13. Mean CD sequence length (Apple Pie Parser)
14. Mean leading spaces in outline tree (from Collins Parse)
15. Tree balance ratio (from Collins Parse)
16. Tree depth (from Collins Parse)
17. Average minimum hypernym path length in WordNet
18. Average number hypernym paths in WordNet
19. Path found ratio in WordNet
20. Percent words with sense in WordNet
21. Sum of count of relations (Trigger Toolkit)
22. Mean of count of relations (Trigger Toolkit)
23. Sum of mutual information (Trigger Toolkit)
24. Mean of mutual information (Trigger Toolkit)
25. Pairs with mutual information (Trigger Toolkit)
26. Weighted pair sum of mutual information (Trigger Toolkit)
27. Number of target paired words (Trigger Toolkit
27. . N-Gram Cross-perplexity (Cambridge/CMU Lang Tk.)

Tools
TiMBL: Tilburg Memory Based Learner 2.0. ILK

Research Group. http://ilk.kub.nl/software.html.
PCKIMMO 2.0. Summer Institute of Linguistics.
MXTERMINATOR. Adwait Ratnaparkhi.
WEKA 3.0. University of Waikato.

ftp://ftp.cs.waikato.ac.nz/pub/ml/weka-3-0.jar
Collins Parser 98.
Brill Tagger 1.14
R Statistical Package 0.65.0. http://cran.r-

project.org/
Apple Pie Parser 5.8. New York University.

http://cs.nyu.edu/cs/projects/proteus/app
WordNet 1.6. ftp://ftp.cogsci.princeton.edu/~wn/
Trigger Toolkit 1.0. CMU.

http://www.cs.cmu.edu/~aberger/software.
References
Afifi, A.A., Virginia Clark. 1996. Computer-Aided

Multivariate Analysis, 3rd ed.. New York, NY:
Chapman and Hall.

Brill, Eric. 1995. Transformation-Based Error-
Driven Learning and Natural Language
Processing: A Case Study in Part Of Speech
Tagging. (ACL).

Chambers, John M., William S. Cleveland, Beat
Kleiner, and Paul A. Tukey. 1983. Graphical
Methods for Data Analysis. Boston, MA: Duxbury
Press.

Clarkson, Philip, Ronald Rosenfeld. 1997.
Statistical Language Modeling Using the CMU-
Cambridge Toolkit. Eurospeech97. Rhodes,
Greece

Collins, Michael. 1997. Three Generative,
Lexicalised Models for Statistical Parsing.
Proceedings of the 35th Annual Meeting of the
ACL/EACL), Madrid.

Daelemans, Walter, Jakub Zavrel and Ko van der
Sloot. 1998. TiMBL: Tilburg Memory Based
Learner, version 2.0, Reference Guide. Available
from http://ilk.kub.nl/software.html.

Everitt, Brian S. and Graham Dunn. 1992. Applied
Multivariate Data Analysis. New York, NY:
Oxford University Press.

Fellbaum, Christiane (ed.). 1998. WordNet: An
Electronic Lexical Database. Cambridge, MA: The
MIT Press.

Flury, Bernhard and Hans Riedwyl. 1988.
Multivariate Statistics. New York, NY: Chapman
and Hall.

Hornik, Kurt. 1999. "The R FAQ". Available at
http://www.ci.tuwien.ac.at/~hornik/R/.

Jones, Doug and Rick Havrilla. 1998. Twisted Pair
Grammar: Support for Rapid Development of
Machine Translation for Low Density Languages.
AMTA-98. Langhorn, PA.

Knight, Kevin, Ishwar Chandler, Matthew Haines,
Vasileios, Hatzivassigloglou, Eduard Hovy,
Masayo Ida, Steve Luk, Richard, Whitney, and
Kenji Yamada. 1994. Integrating Knowledge
Bases and Statistics in MT (AMTA-94)

Manning, Christopher D. and Hinrich Schutze. 1999.
Foundations of Statistical Natural Language
Processing. Cambridge, MA: The MIT Press.

Masuda, Koh (ed). 1974. Kenkyusha's New
Japanese-English Dictionary, 4th Ed. Tokyo:
Kenkyusha.

Michalski, Ryszard S., Ivan Bratko, and Miroslav
Kubat (eds.). 1998. Machine Learning and Data
Mining. John Wiley & Son.

Mitchell, Tom M. 1997. Machine Learning. Boston,
MA: McGraw-Hill.

Nirenburg, S. and V. Raskin. 1998. Universal
Grammar and Lexis for Quick Ramp-Up of MT
Systems. Proceedings of ACL/COLING `98.
Montréal: University of Montreal (in press).

Reynar, Jeffrey C. and Adwait Ratnaparkhi. 1997. A
Maximum Entropy Approach to Identifying
Sentence Boundaries. ANLP-97. Washington,
D.C.

Rosenfeld, Ronald. 1996. A Maximum Entropy
Approach to Adaptive Statistical Language
Modeling. Computer, Speech and Language.

Witten, Ian H. and Eibe Frank. 1999. Data Mining:
Practical Machine Learning Tools and Techniques
with Java Implementations. Morgan Kaufmann.

White, J. and T.A. O'Connell. 1994. The ARPA MT
Evaluation Methodologies: Evolution, Lessons,
and Future Approaches. Proceedings of AMTA-
94

Wu, Dekai and Xuanyin Xia. 1995. Large-Scale
Automatic Extraction of an English-Chinese
Translation Lexicon. Machine Tranlsation. 9:3, 1-
28.

