
Customizable Descriptions of Object-Oriented Models

B e n o i t L a v o i e

CoGenTex , Inc.

840 H anshaw R o a d

I thaca , NY 14850, USA

b e n o i t O c o g e n t e x , com

O w e n R a m b o w

CoGenTex , Inc.

840 Hanshaw R o a d

I thaca , NY 14850, USA

owen~cogentex, com

E h u d R e i t e r
D e p a r t m e n t of C o m p u t e r Science

Univers i ty of Aberdeen

Aberdeen AB9 2UE, Scot land
e r e i t e r ~ c s d , abdn . a c . uk

1 I n t r o d u c t i o n : O b j e c t M o d e l s

With the emergence of object-oriented technology
and user-centered software engineering paradigms,
the requirements analysis phase has changed in two
important ways: it has become an iterative activity,
and it has become more closely linked to the design
phase of software engineering (Davis, 1993). A re-
quirements analyst builds a formal object-oriented
(OO) domain model. A user (domain expert) vali-
dates the domain model. The domain model under-
goes subsequent evolution (modification or adjust-
ment) by a (perhaps different) analyst. Finally, the
domain model is passed to the designer (system ana-
lyst), who refines the model into a OO design model
used as the basis for implementation. Thus, we can
see that the OO models form the basis of many im-
portant flows of information in OO software engi-
neering methodologies. How can this information
best be communicated?

It is widely believed that graphical representations
are easy to learn and use, both for modeling and for
communication among the engineers and domain ex-
perts who tqgether develop the OO domain model.
This belief is reflected by the large number of graph-
ical OO modeling tools currently in research labs
and on the market. However, this belief is not accu-
rate, as some recent empirical studies show. For ex-
ample, Kim (1990) simulated a modeling task with
experienced analysts and a validation task with so-
phisticated users not familiar with the particular
graphical language. Both user groups showed se-
mantic error rates between 25% and 70% for the
separately scored areas of entities, attributes, and
relations. Relations were particularly troublesome
to both analysts and users. Petre (1995) compares
diagrams with textual representations of nested con-
ditional structures (which can be compared to OO
modeling in the complexity of the "paths" through
the system). She finds that "the intrinsic difficulty of

the graphics mode was the strongest effect observed"
(p.35). We therefore conclude that graphics, in or-
der to assure maximum communicative efficiency,
needs to be complemented by an alternate view of
the data. We claim that the alternate view should
be provided by an explanation tool that represents
the data in the form of a fluent English text. This
paper presents such a tool, the MODELEXPLAINER,
or MODEx for short, and focuses on the customiz-
ability of the system.1

Automatically generating natural-language descrip-
tions of software models and specifications is not
a new idea. The first such system was Swartout's
GIST Paraphraser (Swartout, 1982). More recent
projects include the paraphraser in ARIES (Johnson
et al., 1992); the GEMA data-flow diagram describer
(Scott and de Souza, 1989); and Gulla's paraphraser
for the PPP system (Gulla, 1993). MoDEx certainly
belongs in the tradition of these specification para-
phrasers, but the combination of features that we
will describe in the next section (and in particular
the customizability) is, to our knowledge, unique.

2 F e a t u r e s o f M o D E x

MODEx was developed in conjunction with Ander-
sen Consulting, a large systems consulting company,
and the Software Engineering Laboratory at the
Electronic Systems Division of Raytheon, a large
Government contractor. Our design is based on ini-
tial interviews with software engineers working on a
project at Raytheon, and was modified in response
to feedback during iterative prototyping when these
software engineers were using our system.

• MoDEx output integrates tables, text generated
automatically, and text entered freely by the user.
Automatically generated text includes paragraphs
describing the relations between classes, and para-

l(Lavoie et al., 1996) focuses on an earlier version of
MoDEx which did not yet include customization.

253

graphs describing examples. The human-anthored
text can capture information not deducible from the
model (such as high-level descriptions of purpose as-
sociated with the classes).

• MoDEx lets the user customize the text plans at
run-time, so that the text can reflect individual user
or organizational preferences regarding the content
and/or layout of the output.

• MoDEx uses an interactive hypertext interface
(based on standard HTML-based WWW technol-
ogy) to allow users to browse through the model.

• Input to MoDEx is based on the ODL standard de-
veloped by the Object Database Management Group
(Cattell, 1994). This allows for integration with
most existing commercial off the shelf OO model-
ing tools. Some previous systems have paraphrased
complex modeling languages that are not widely
used outside the research community (GIST, PPP).

• MODEX does not have access to knowledge about
the domain of the OO model (beyond the OO model
itself) and is therefore portable to new domains.

3 A M o D E x S c e n a r i o

Suppose that a university has hired a consulting
company to build an information system for its ad-
ministration. Figure 1 shows a sample object model
for the university domain (adapted from (Cattell,
1994, p.56), using the notation for cardinality of
Martin and Odell (1992)) that could be designed by
a requirements analyst.

Figure 1: The University OoO Diagram

Once the object model is specified, the analyst must
validate her model with a university administrator
(and maybe other university personnel, such as data-
entry clerks); as domain expert, the university ad-
ministrator may find semantic errors undetected by
the analyst. However, he is unfamiliar with the
"crow's foot" notation used in Figure 1. Instead,
he uses MoDEx to generate fluent English descrip-
tions of the model, which uses the domain terms
from the model. Figure 2 shows an example of a
description generated by MoDEx for the university
model. Suppose that in browsing through the model

254

using the hypertext interface, the university admin-
istrator notices that the model allows a section to
belong to zero courses, which is in fact not the case
at his university. He points out the error to the an-
alyst, who can change the model.

Suppose now that the administrator finds the texts
useful but insufficient. To change the content of the
output texts, he can go to the Text Plan Configu-
ration window for the text he has been looking at,
shown in Figure 3. He can add to the text plan spec-
ification one or more constituents (paragraphs) from
the list of pre-built constituents (shown in the lower
right corner of Figure 3). After saving his modifi-
cations, he can return to browsing the model and
obtain texts with his new specifications.

Fi le Ed i t V i e w Go Bookmarks Options
Directory ~ i n d o w He lp

[List of Classes] [List of Models] [Reload Models]
[Configuration] ~ [About ModeIF.xolame,]

Description of the Class" Section'

General Observations:

A Section must be taught by exactly one F$ofesso, and
may ~clong to zezo oz more Cqu~e s. It must be tak¢o
by one ca more Students and may have at most one
TA.

Examples:

For example, Sectl is a Section and is taught by the
professor Jolm Brown. It belongs to two Courses,
Math165 and Math201, and is take~ by two Students.
Frank Belfo~d and Sue Jones. It has the TA Sally Blake.

Figure 2: Description Used for Validation
. ,-.,m~ = I;|?

i [J lc Edll ~ew Go Bookmarks ~ J a n s Dlr©c~r/ ~qndow
Help

Text Plsm Conflgm'aflon

T a t Plmv V -'~'4'~"-(2~ ¢

. . , :L ~ . . c r = , . o n o= ¢ = ¢ . = . , c ~ s]

0 z ~ . ~ ~ . : ~===~==)

i - - = - ~ ' ~ ~omponent
I . - - [~ o s e

~ b u t e s
3peretions
:telafions-Teble
:~elQ~ons-Te)d
-:xemples-Long
:xemples-Shod

~ ~ ~ ~'~ " Rle-Reference

Figure 3: Text Plan Configuration Interface

Once the model has been validated by the univer-

File Edit View Go Bookmarks Options
Directory Window _Help

[List o f C lasses] [List of Model.~] [Reload Models]
[Co:ffi~otation] [H ~ [About ModelEx~01amer] [Q3_~]
~==:==~=È~=~È=ÈÈÈ~==::~==~==~:~:~====~==È=~::::::::::::::::::::::::::::~=~====~

Business Class: "Section'

P u r p o s e / R o l e :

Course u n i t a s tudent can take.

Ed11. Pu~o.~e

Attributes:

ii Am~u~ JiDeser~ t~n . iiTY~e i

i i n~ber iSecUo n T'--"T""'7""" identifier ~#1NTF~3 ~]~'~
::

Edit Attdbutee

Relat ionships:

A Section must be taught by exactly one Ptofee~ot and
may belong to zero or more Cotuses. It must b e taken
by one or more Stud~nt.~ and may have at most one TAD

server which receives requests via a standard Web
CGI interface and returns HTML-format ted docu-
ments which can be displayed by any standard Web
browser. The documents generated by MoDEx are
always generated dynamically in response to a re-
quest, and are composed of human-authored text,
generated text and /or generated tables. The main
requests are the following:

ModEx m

Request

i

Figure 4: Description Used for Documentation

sity administrator, the analyst needs to document it,
including annotations about the purpose and ratio-
nale of classes and attributes. To document it, she
configures an output text type whose content and
structure is compatible with her company's stan-
dard for OO documentation. An example of a de-
scription obtained in modifying the text plan of Fig-
ure 3 is shown in Figure 4. (This description follows
a format close to Andersen Consulting's standard
for documentation.) This description is composed
of different types of information: text generated
automatically (section Relationships), text entered
manually by the analyst because the information re-
quired is not retrievable from the CASE tool object
model (section Purpose), and tables composed both
of information generated automatically and informa-
tion entered manually (section Attributes). The ana-
lyst then saves the text plan under a new name to use
it subsequently for documentation purposes. Note
that while the generated documentation is in hyper-
text format and can be browsed interactively (as in
the I-DOC system of Johnson and Erdem (1995)), it
can of course also be printed for traditional paper-
based documentation and/or exported to desktop
publishing environments.

4 H o w M O D E X W o r k s

As mentioned above, MODEx has been developed
as a WWW application; this gives the system a
platform-independent hypertext interface. Figure 5
shows the MoDEx architecture. MoDEx runs as a

Figure 5: MODEx Server Architecture

• Text Plan Editing. This generates an HTML doc-
ument such as that shown in Figure 3 which allows
a user to load/edi t /save a text plan macro-structure
specification. A representation corresponding to
the text plan of Figure 3 is shown in Figure 6.
Once edited, this representation can be stored per-
manently in the library of text plans and can be
used to generate descriptions. In this representa-
tion, User Text indicates free text entered for a title,
while Relations- Text and Examples-Short are schema
names referring to two of the eight predefined text
functions found in a C + + class library supplied with
MoDEx.

alidation-Class)

Ti~e,

User Text

Ti~e Schema ~itle Schema
i I I I

User Text Relations-Text User Text Examples-Short

Figure 6: Macro-Stucture for Text Plan of Figure 3

• Object Model Loading. This loads an object model
specification and generates a document displaying
the list of classes found in the model.

• Description Generation. This returns a description
such as that shown in Figures 2 or 4. To generate a
description, the text planner creates a text structure
corresponding to the text plan configuration selected
by the user. This text structure is a constituency
tree where the internal nodes define the text orga-
nization, while the bot tom nodes define its content.
The text content can be specified as syntactic repre-

255

sentations, as table specification and/or as human-
authored text for the titles and the object model an-
notations. The text structure is transformed by the
sentence planner which can aggregate the syntactic
representations (cf. conjunctions and in description
on Figure 2) or introduce cue words between con-
stituents (cf. expression For example on Figure 2).
The resulting text structure is then passed to the
text realizer which uses REALPRO (Lavoie and Ram-
bow, 1997), a sentence realizer, to realize each indi-
vidual syntactic representation in the text structure.
Finally, a formatter takes the final text structure to
produce an HTML document.

• Object Model Annotation Editing. This allows the
user to edit human-authored annotations of the ob-
ject model. This editing can be done via links la-
belled Edit ... which appear in Figure 4. These
human-authored texts are used by some of the pre-
defined text functions to generate the descriptions.

5 Outlook

MoDEx is implemented in C + + on both UNIX
and PC platforms. It has been integrated with
two object-oriented modeling environments, the
ADM (Advanced Development Model) of the KBSA
(Knowledge-Based Software Assistant) (Benner,
1996), and with Ptech, a commercial off-the-shelf
object modeling tool. M o D E x has been fielded at a
software engineering lab at Raytheon, Inc.

The evaluation of M o D E x is based on anecdotal
user feedback obtained during iterative prototyping.
This feedback showed us tha t the preferences regard-
ing the content of a description can vary depending
on the organization (or type of user). The control
that MoDEx gives over the text macro-structure is
one step toward satisfying different types of text re-
quirements. We are currently extending M o D E x in
order to give the user a bet ter control over the text
micro-structure, by replacing the set of predefined
C + + text functions with customizable ASCII spec-
ifications. This feature should make MODEx more
easely portable among different types of users. In
addition, we intend to port MODEX to at least two
new OO modeling environments in the near future.

Acknowledgments

The first version of MoDEx for ADM was supported by
USAF Rome Laboratory under contract F30602-92-C-
0015. General enhancements to the linguistic machin-
ery were supported by SBIR F30602-92-C-0124, awarded
by USAF Rome Laboratory. Current work on MODEx
is supported by the TRP-ROAD cooperative agreement
F30602-95-2-0005 with the sponsorship of DARPA and
Rome Laboratory. We are thankful to K. Benner, M.

DeBellis, J. Silver and S. Sparks of Andersen Consult-
ing, and to F. Ahmed and B. Bussiere of Raytheon Inc.,
for their comments and suggestions made during the de-
velopment of MoDEx. We also thank T. Caldwell, R.
Kittredge, T. Korelsky, D. McCullough, A. Nasr and M.
White for their comments and criticism of MoDEx.

References

Benner, K. (1996). Addressing complexity, coordina-
tion, and automation in software development with the
KBSA/ADM. In Proceedings of the Eleventh Knowledge-
Based Software Engineering Conference (KBSE-96),
Syracuse, NY.

Cattell, R. G. G., editor (1994). The Object Database
Standard: ODMG-93. Morgan Kaufman Publishers, San
Mateo, CA.

Davis, A. M. (1993). Software Requirements. Prentice-
Hall, Inc., Upper Saddle River, N J, revision edition.

Gulla, J. (1993). Explanation Generation in Information
Systems Engineering. PhD thesis, Norwegian Institute
of Technology.

Johnson, W. L. and Erdem, A. (1995). Interactive ex-
planation of software systems. In Proceedings of the
Tenth Knowledge-Based Software Engineering Confer-
ence (KBSE-95), pages 155-164, Boston, Mass.

Johnson, W. L., Feather, M. S., and Harris, D. R.
(1992). Representation and presentation of requirements
knowledge. IEEE Transactions on Software Engineer-
ing, pages 853-869.

Kim, Y.-G. (1990). Effects of Conceptual Data Modeling
Formalisms on User Validation and Analyst Modeling
of Information Requirements. PhD thesis, University of
Minnesota.

Lavoie, B., Rainbow, O. and Reiter, E. (1996). The
MODELEXPLAINER. In Demonstration Notes of Interna-
tional Natural Language Generation Workshop (INLG-
96), Hermonceux Castle, Sussex, UK.

Lavoie, B. and Rainbow, O. (1997). A Fast and Portable
Realizer for Text Generation Systems. In Proceedings of
the Fifth Conference on Applied Natural Language Pro-
cessing (A N L P- 97) , Washinghton,DC..

Martin, J. and Odell, J. (1992). Object-Oriented Analy-
sis and Design. Prentice Hall, Englewood Cliffs, NJ.

Petre, M. (1995). Why looking isn't always seeing:
Readership skills and graphical programming. Commu-
nications of the ACM, 38(6):33-42.

Scott, D. and de Souza, C. (1989). Conciliatory planning
for extended descriptive texts. Technical Report 2822,
Philips Research Laboratory, Redhill, UK.

Swartout, B. (1982). GIST English generator. In Pro-
ceedings of the National Conference on Artificial Intelli-
gence. AAAI.

256

