
CommandTalk: A Spoken-Language Interface
for Batt lef ie ld S imulat ions

R . C . M o o r e , J . D o w d i n g , H . B r a t t , J . M . G a w r o n , Y . G o r f u , a n d A . C h e y e r

SRI I n t e r n a t i o n a l

333 R a v e n s w o o d Ave.

Menlo Park , CA 94025

{bmoore, dowding, harry, gawron, gorfu, cheyer}@ai.sri.com

A b s t r a c t

CommandTalk is a spoken-language inter-
face to battlefield simulations that allows
the use of ordinary spoken English to cre-
ate forces and control measures, assign
missions to forces, modify missions dur-
ing execution, and control simulation sys-
tem functions. CommandTalk combines a
number of separate components integrated
through the use of the Open Agent Ar-
chitecture, including the Nuance speech
recognition system, the Gemini natural-
language parsing and interpretation sys-
tem, a contextual-interpretation modhle, a
"push-to-talk" agent, the ModSAF battle-
field simulator, and "Start-It" (a graph-
ical processing-spawning agent). Com-
mandTalk is installed at a number of Gov-
ernment and contractor sites, including
NRaD and the Marine Corps Air Ground
Combat Center. It is currently being
extended to provide exercise-time control
of all simulated U.S. forces in DARPA's
STOW 97 demonstration.

1 O v e r v i e w

CommandTalk is a spoken-language interface to syn-
thetic forces in entity-based battlefield simulations.
The principal goal of CommandTalk is to let com-
manders interact with simulated forces by voice in a
manner as similar as possible to the way they way
they would command actual forces. CommandTalk
currently interfaces to the ModSAF battlefield sim-
ulator and allows the use of ordinary English com-
mands to

• Create forces and control measures (points and
lines)

• Assign missions to forces

• Modify missions during execution

• Control ModSAF system functions, such as the
map display

As an example, the following sequence of com-
mands can be used to initialize a simple simulation
in ModSAF and begin its execution:

Create an M1 platoon designated Charlie 4
5.

Put Checkpoint 1 at 937 965.

Create a point called Checkpoint 2 at 930
960.

Objective Alpha is 92 96.

Charlie 4 5, at my command, advance in a
column to Checkpoint 1.

Next, proceed to Checkpoint 2.

Then assault Objective Alpha.

Charlie 4 5, move out.

With the simulation under way, the user can exer-
cise direct control over the simulated forces by giving
commands such as the following for immediate exe-
cution:

Charlie 4 5, speed up.

Change formation to echelon right.

Get in a line.

Withdraw to Checkpoint 2.

Examples of voice commands for controlling Mod-
SAF system functions include the following:

Show contour lines.

Center on M1 platoon.

Zoom in closer.

Pan west 500 meters.

Center north of Checkpoint 2.

CommandTalk was initially developed for Leath-
erNet, a simulation and training system for the Ma-
rine Corps developed under direction of the Naval
Command, Control and Ocean Surveillance Cen-
ter, RDT&E Division (NRaD). In addition to Com-
mandTalk, LeatherNet includes

• MCSF, a version of ModSAF customized for the
Marine Corps

• CommandVu, a synthetic, data-enhanced envi-
ronment with 3-D representation of MCSF be-
haviors and display of commander decision aids

• Terrain Evaluation Module (TEM), a system for
line-of-sight and weapons coverage analysis

LeatherNet is intended to be used both as a train-
ing system for the Marine Corps and as the Marine
Corps component of DARPA's Synthetic Theater of
War (STOW) program. LeatherNet is currently in-
stalled at the Marine Corps Air Ground Combat
Center (MCAGCC), at Twentynine Palms, Califor-
nia.

A single CommandTalk interacts directly with
only one ModSAF process. ModSAF, however, cre-
ates distributed simulations that can include mul-
tiple graphical user interface (GUI) processes and
multiple simulator processes, plus other applica-
tions such as CommandVu, communicating over a
network through Distributed Interactive Simulation
(DIS) and Persistent Object (PO) protocols. This
architecture lets CommandTalk interact indirectly
with all these components. Thus, a user can control
a simulation using CommandTalk while viewing it
in 3-D via CommandVu, without having to be aware
of the ModSAF processes that mediate between the
spoken commands and their results as seen in the
3-D display.

2 A r c h i t e c t u r e

CommandTalk combines a number of separate com-
ponents, developed independently, some of which are
implemented in C and others in Prolog. These com-
ponents are integrated through the use of the Open
Agent Architecture (OAA) (Cohen et al., 1994).
OAA makes use of a facilitator agent that plans and
coordinates interactions among agents during dis-
tributed computation. Other processes are encapsu-
lated as agents that register with the facilitator the
types of messages they can respond to. An agent
posts a message in an Interagent Communication
Language (ICL) to the facilitator, which dispatches
the message to the agents that have registered their
ability to handle messages of that type. This medi-
ated communication makes it possible to "hot-swap"

2

or restart individual agents without restarting the
whole system. The ICL communications mechanism
is built on top of TCP/IP, so an OAA-based system
can be distributed across both local- and wide-area
networks based on Internet technology. OAA also
provides an agent library to simplify turning inde-
pendent components into agents. The agent library
supplies common functionality to agents in multiple
languages for multiple platforms, managing network
communication, ICL parsing, trigger and monitor
handling, and distributed message primitives.

CommandTalk is implemented as a set of agents
communicating as described above. The principal
agents used in CommandTalk are

• Speech recognition

• Natural language

• Contextual interpretation

• Push to talk

• ModSAF

• Start-It

2.1 Speech Recogn i t i on

The speech recognition (SR) agent consists of a thin
agent layer on top of the Nuance (formerly Corona)
speech recognition system. Nuance is a commercial
speech recognition product based on technology de-
veloped by SRI International. The recognizer listens
on the audio port of the computer on which it is run-
ning, and produces its best hypothesis as to what
string of words was spoken. The SR agent accepts
messages that tell it to start and stop listening and
to change grammars, and generates messages that it
has stopped listening and messages containing the
hypothesized word string.

The Nuance recognizer is customized in two ways
for use in CommandTalk. First, we have replaced
the narrow-band (8-bit, 8-kHz sampled) acoustic
models included with the Nuance recognizer and de-
signed for telephone applications, with wide-band
(16-bit, 16-kHz sampled) acoustic models that take
advantage of the higher-quality audio available on
computer workstations. Second, any practical ap-
plication of speech recognition technology requires a
vocabulary and grammar tailored to the particular
application, since for high accuracy the recognizer
must be restricted as to what sequences of words it
will consider. To produce the recognition vocabulary
and grammar for CommandTalk, we have imple-
mented an algorithm that extracts these from the vo-
cabulary and grammar specifications for the natural-
language component of CommandTalk. This eases

development by automatically keeping the language
that can be recognized and the language that can be
parsed in sync; that is, it guarantees that every word
string that can be parsed by the natural-language
component is a potential recognition hypothesis, and
vice versa. This module that generates the recog-
nition grammar for CommandTalk is described in
Section 3.

2.2 N a t u r a l L a n g u a g e

The natural-language (NL) agent consists of a thin
agent layer on top of Gemini (Dowding et al., 1993,
1994), a natural-language parsing and semantic in-
terpretat ion system based on unification grammar.
"Unification grammar" means that grammatical cat-
egories incorporate features that can be assigned
values; so that when grammatical category expres-
sions are matched in the course of parsing or se-
mantic interpretation, the information contained in
the features is combined, and if the feature values
are incompatible the match fails. Gemini applies
a set of syntactic and semantic grammar rules to
a word string using a bot tom-up parser to gener-
ate a logical form, a structured representation of the
context-independent meaning of the string. The NL
agent accepts messages containing word strings to
be parsed and interpreted, and generates messages
containing logical forms or, if no meaning represen-
tation can be found, error messages to be displayed
to the user.

Gemini is a research system that has been devel-
oped over several years, and includes an extensive
grammar of general English. For CommandTalk,
however, we have developed an application-specific
grammar, which gives us a number of advantages.
First, because it does not include rules for En-
glish expressions not relevant to the application, the
grammar runs faster and finds few grammatical am-
biguities. Second, because the semantic rules are
tailored to the application, the logical forms they
generate require less subsequent processing to pro-
duce commands to the application system. Finally,
by restricting the form of the CommandTalk gram-
mar, we are able to automatically extract the gram-
mar that guides the speech recognizer.

The Nuance recognizer, like all other practical rec-
ognizers, requires a grammar that defines a finite-
state language model. The Gemini grammar formal-
ism, on the other hand, is able to define grammars of
much greater computational complexity. For Com-
mandTalk, extraction of the recognition grammar is
made possible by restricting the Gemini syntactic
rules to a finite-state backbone with finitely valued
features. It should be noted that , although we are

3

not using the full power of the Gemini grammar for-
malism, we still gain considerable benefit from Gem-
ini because the feature constraints let us write the
grammar much more compactly, Gemini's morphol-
ogy component simplifies maintaining the vocabu-
lary, and Gemini's unification-based semantic rules
let us specify the translation from word strings into
logical forms easily and systematically.

2.3 C o n t e x t u a l I n t e r p r e t a t i o n

The contextual-interpretation (CI) agent accepts a
logical form from the NL agent, and produces one
or more commands to ModSAF. Since a logical form
encodes only information that is directly expressed
in the utterance, the CI agent often must apply
contextual information to produce a complete inter-
pretation. Sources of this information can include
linguistic context, situational context, and defaults.
Since ModSAF itself is the source of situational in-
formation about the simulation, the interaction be-
tween the CI agent and ModSAF is not a simple
one-direction pipeline. Often, there will be a series
of queries to ModSAF about the current state of the
simulation before the ModSAF command or com-
mands that represent the final interpretation of an
utterance are produced.

Some of the problems which must be solved by the
CI agent are

• Noun phrase resolution

• Predicate resolution

• Temporal resolution

• Vagueness resolution

2.3 .1 N o u n P h r a s e R e s o l u t i o n

A noun phrase denoting an object in the simula-
tion must be resolved to the unique ModSAF identi-
fier for that object. "M1 platoon," "tank platoon,"
or "Charlie 4 5" could all refer to the same entity in
the simulation. To keep the CI informed about the
objects in the simulation and their properties, the
ModSAF agent notifies the CI agent whenever an
object is created, modified, or destroyed. Since the
CI agent is immediately notified whenever the user
creates an object through the ModSAF GUI, the
CI can note the salience of such objects, and make
them available for pronominal reference (just as ob-
jects created by speech are), leading to smoother
interoperation between speech and the GUI.

2.3 .2 P r e d i c a t e r e s o l u t i o n

While users employ generic verbs like move, at-
tack, and assault to give verbal commands, the cor-
responding ModSAF tasks often differ depending on

the units involved. The ModSAF movement task
for a tank platoon is different from the one for an
infantry platoon or the one for a t ank company. Sim-
ilarly, the paramete r value indicating a column for-
mat ion for tanks is different from the one indicating
a column formation for infantry, and the parame-
ter tha t controls the speed of vehicles has a differ-
ent name than the one tha t controls the speed of
infantry. All these differences need to be taken into
account when generating the ModSAF command for
something like "Advance in a column to Checkpoint
1 at 10 kph," depending on what type of unit is be-
ing given the command.

2 .3 .3 T e m p o r a l resolut ion
The CI agent needs to determine when a com-

mand is given to a unit should be carried out. The
command may be par t of a mission to be carried
out later, or it may be an order to be carried out
immediately. If the latter, it may be a permanent
change to the current mission, or merely a tempo-
rary interruption of the current task in the mission,
which should be resumed when the interrupting task
is completed. The CI agent decides these questions
based on a combination of phrasing and context.
Sometimes, explicit indicators may be given as to
when the command is to be carried out, such as a
specific time, or after a given duration of t ime has
elapsed, or on the commander ' s order.

2.3.4 Vagueness resolut ion
Sometimes a verbal command does not include all

the information required by the simulation. The CI
agent a t t empts to fill in this missing information by
using a combination of linguistic and situational con-
text, plus defaults. For instance, if no unit is explic-
itly addressed by a command, it is assumed tha t
the addressee is the unit to whom the last verbal
command was given. The ModSAF "occupy posi-
tion" and "at tack by fire" tasks require tha t a line
be given as a bat t le position, but users often give
just a point location for the position of the unit. In
such cases, the CI agent calls ModSAF to construct
a line through the point, and uses tha t line for the
bat t le position.

2.4 P u s h to T a l k

The push-to-talk (PTT) agent manages the interac-
tions with the user. I t provides a long narrow win-
dow running across the top of the sc reen- - the only
visible indication tha t a ModSAF is CommandTalk-
enabled. This window contains a microphone icon
tha t indicates the s tate of CommandTalk (ready, lis-
tening, or busy), an area for the most recent rec-
ognized string to be printed, and an area for text

4

messages from the system to appear (confirmation
messages and error messages).

This agent provides two mechanisms for the user
to initiate a spoken command. A push-to-talk but-
ton at tached to the serial port of the computer can
be pushed down to signal the computer to s tar t lis-
tening and released to indicate tha t the ut terance
is finished (push-and-hold-to-talk). The second op-
tion is to click on the microphone icon with the left
mouse but ton to signal the computer to s tar t listen-
ing (click-to-talk). With click-to-talk, the system
listens for speech until a sufficiently long pause is
detected. The length of t ime to wait is a paramete r
tha t can be set in the recognizer. The push-and-
hold method generally seems more satisfactory for a
number of reasons: Push-and-hold leads to faster re-
sponse because the system does not have to wait to
hear whether the user is done speaking, click-to-talk
tends to cut off users who pause in the middle of an
ut terance to figure out what to say next, and push-
and-hold seems natural to mil i tary users because it
works like a tactical field radio.

The P T T agent issues messages to the SR agent
to s tar t and stop listening. It accepts messages from
the SR agent containing the words tha t were recog-
nized, messages tha t the user has s topped speaking
(for click-to-talk), and messages, from any agent,
tha t contain confirmation or error messages to be
displayed to the user.

2.5 M o d S A F

The ModSAF agent consists of a thin layer on top
of ModSAF. I t sends messages tha t keep the CI
agent informed of the current s tate of the simulation
and executes commands tha t it receives from the CI
agent. Generally, these commands access functions
tha t are also available using the GUI, but not always.
For example, it is possible with CommandTalk to tell
ModSAF to center its map display on a point tha t is
not currently visible. This cannot be done with the
GUI, because there is no way to select a point tha t is
not currently displayed on the map. The set of mes-
sages tha t the ModSAF agent responds to is defined
by the ModSAF Agent Layer Language (MALL).

2.6 Start-It

Star t - I t is a graphical processing-spawning agent
tha t helps control the large number of processes
tha t make up the CommandTalk system. I t pro-
vides a mouse-and-menu interface to configure and
s tar t other processes. While it is part icularly use-
ful for s tar t ing agent processes, it can also be used
to s tar t nonagent processes such as additional Mod-
SAF simulators and interfaces, CommandVu, and

the LeatherNet sound server.
include the following:

Features of Star t - I t

• It makes it easy to assign processes to machines
distributed over a network.

• I t reports process status (not running, initializ-
ing, running, or dead).

• I t makes it easy to set command line arguments
and maintain consistent command line argu-
ments across processes.

• The Star t - I t configuration is data-driven, so it
is easy to add processes and command line ar-
guments, or change default values.

• An automat ic restar t feature keeps agents run-
ning in case of machine failure or process death.

3 Gemin i - to -Nuance Grammar
Compiler

The SR agent requires a g rammar to tell the rec-
ognizer what sequences of words are possible in a
particular application, and the NL agent requires a
g rammar to specify the translation of word strings
into logical forms. For optimal performance, these
two grammars should, as nearly as possible, ac-
cept exactly the same word sequences. In gen-
eral, we would like the recognizer to accept all word
sequences that can be interpreted, and any over-
generation by the recognition g rammar increases the
likelihood of recognition errors without providing
any additional functionality. In order to keep these
two grammars synchronized, we have implemented
a compiler that derives the recognition g r ammar au-
tomatical ly from the NL grammar .

To derive a recognition g rammar with coverage
equivalent to the NL grammar , we must restrict the
form of the NL grammar . Like virtually all practical
speech recognizers, the Nuance recognizer requires a
finite-state grammar , while the Gemini parser ac-
cepts g rammars tha t have a context-free backbone,
plus unification-based feature constraints tha t give
Gemini g rammars the power of an arbi t rary Turing
machine. To make it possible to derive an equiv-
alent finite-state grammar , we restrict the Gemini
g rammars used as input to our Gemini- to-Nuance
compiler as follows:

• All features in the Gemini g rammar tha t are
compiled into the recognition g rammar must al-
low only a finite number of values. This means
tha t no feature values are structures tha t can
grow arbitrari ly large.

5

• The Gemini g r ammar must not contain any in-
direct recursion. Tha t is, no rule subsets are al-
lowed with pat terns such as A --+ B C , C --+ AD.

• Immediate ly recursive rules are allowed, but
only if the recursive category is leftmost or
r ightmost in the list of daughters, so that there
is no form of center embedding. Tha t is, A --+
A B and A -~ C A are allowed (even simultane-
ously), but not A --+ C A B .

There are many possible formats for specifying a
finite-state grammar , and the one used by the Nu-
ance recognition system specifies a single definition
for each atomic nonterminal symbol as a regular ex-
pression over vocabulary words and other nontermi-
nals, such tha t there is no direct or indirect recursion
in the set of definitions. To transform a restricted
Gemini g rammar into this format, we first trans-
form the Gemini rules over categories with feature
constraints into rules over atomic symbols, and we
then transform these rules into a set of definitions in
terms of regular expressions.

3.1 Generating Atomic Categories

Given the restriction tha t all features must allow
only a finite number of values, it would be trivial to
t ransform all unification rules into rules over atomic
categories by generating all possible full feature in-
stantiations of every rule, and making up an atomic
name for each combination of category and feature
values tha t occur in these fully-instantiated rules.
This would, however, increase the total number of
rules to a size tha t would be too large to deal with.
We therefore instantiate the rules in a more careful
way tha t avoids unnecessarily instantiat ing features
and prunes out useless rules.

The set of atomic categories is defined by consid-
ering, for each daughter category of each rule, all
instantiations of just the subset of features on the
daughter that are constrained by the rule. Thus,
if there is a rule that does not constrain a feature
on a particular daughter category, an atomic cate-
gory will be created for tha t daughter tha t is under-
specified for the value of tha t feature. A prime ex-
ample of this in the CommandTalk g rammar is the
rule

coordinate_hums : [] -+
digit:f] digit:f] digit:f] digit:f]

which says that a set of coordinate numbers can be a
sequence of four digits. In the CommandTalk gram-
mar the digit category has features (singular vs. plu-
ral, zero vs. nonzero, etc.) tha t would generate at

least 60 combinations if all instantiat ions were con-
sidered. So, if we naively generated all possible com-
plete instantiations of this rule, we would get at least
604 rules. Even worse, we need other rules to per-
mit up to eight digits to form a set of coordinate
numbers, which would give rise to 60 s rules. Since
the original rule, however, puts no constraints on
any of the features of the digit category, by gener-
ating an atomic category that is under-specified for
all features, we only need a single rule in the derived
grammar.

From the set of atomic categories defined in this
way, we generate all rules consistent with the origi-
nal Gemini rules, except that for daughters that have
unconstrained features, we use only the correspond-
ing under-specified categories. We then iteratively
remove all rules that cannot participate in a com-
plete parse of an utterance, either because they con-
tain daughter categories that cannot be expanded
into any sequence of words, given the particular lex-
icon we have, or because they have a mother cate-
gory that cannot be reached from the top category
of the grammar.

3.2 Compiling Rules to Regular
Expressions

Once we have transformed the Gemini unification
grammar into an equivalent grammar over atomic
nonterminals, we then rewrite the grammar as a set
of definitions of the nonterminals as regular expres-
sions. For the nonterminals that have no recursive
rules, we simply collect all the rules with the same
left-hand side and create a single rule by forming the
disjunction of all the right-hand sides. For example,
if the only rules for the nonterminal A are

A -* B C
A - * D E

then the regular expression defining A would be
[(BC)(DE)]. In the Nuance regular expression no-
tation, "()" indicates a sequence and "[]" indicates
a set of disjunctive alternatives.

For nonterminals with recursive rules, we elimi-
nate the recursion by introducing regular expressions
using the Kleene star operator. For each recursive
nonterminal A, we divide the rules defining A into
right-recursive, left-recursive, and nonrecursive sub-
sets. For the right-recursive subset, we form the dis-
junction of the expressions that occur to the left of
A. That is, for the rules

A -* B A
A - * C A

we generate [BC]. Call this expression LEFT-A. For
the left-recursive subset, we form the disjunction of

the expressions that occur to the right of A, which
we may call RIGHT-A. Finally, we form the disjunc-
tion of all the right-hand sides of the nonrecursive
rules, which we may call NON-REC-A. The com-
plete regular expression defining A is then

(*LEFT-A NON-REC-A *RIGHT-A)

In the Nuance regular expression notation, the
Kleene star operator "*" precedes the i terated ex-
pression, rather than following it as in most nota-
tions for regular expressions. Thus, . X means that
a sequence of zero or more instances of Z may occur.

As an example, suppose the rules defining the non-
terminal A are

A -* B A
A -* C D A
A - * E
A -* FG
A -* A H

The corresponding regular expression defining A
would be

(*[B(CD)] [E(FG)] *H)

This completes the transformation of a Gemini
grammar with finitely-valued categories and a finite-
state backbone into a Nuance regular expression
grammar. However, as one final optimization, we
look for special cases where we can use the "Kleene
plus" operator, which indicates one or more in-
stances of an expression in sequence, and which is
handled more efficiently by the Nuance recognizer
than equivalent expressions using Kleene star. We
simply look for sequences" of the form (*X X) or
(X *X), and replace them with + X .

4 D e v e l o p m e n t H i s t o r y

Work on CommandTalk began with SRI's initial
receipt of MCSF on February 16, 1995. The
first demonstrat ion of spoken commands to simu-
lated forces in MCSF was given three weeks later
on March 7; an initial version the CommandTalk
prototype was installed at the Marine Corps Air
Ground Combat Center (MCAGCC) on May 1; and
a demonstrat ion of CommandTalk was given to Gen-
eral Palm, the Commanding Officer of MCAGCC,
on May 16.

Enhanced versions of the system were demon-
strated at DARPA's Software and Intelligent Sys-
tems Symposium in August 1995, and evaluated in
the STOW ED-1 milestone test in October 1995. In
the evaluation of ED-1 performance, CommandTalk

6

was given the highest grade of any Marine Corps por-
tion of the exercise. In addition to these milestones,
CommandTalk has been included in demonstrations
of LeatherNet to numerous VIPs including General
C. C. Krulak, Commandant of the Marine Corps;
General J. H. Binford Peay, Commander in Chief US
Central Command; Secretary of the Navy J. H. Dal-
ton; and Secretary of Defense William Perry.

CommandTalk is currently being extended to pro-
vide exercise-time control of all simulated U.S. forces
in DARPA's STOW 97 Advanced Concept Technol-
ogy Demonstration.

5 Availability

CommandTalk executables for Sun SPARC/SunOS
and SGI MIPS/IRIX platforms are available at
no cost to US Government users under Restricted
Rights. Contractors may obtain CommandTalk in
executable form exclusively for use on US Gov-
ernment projects under license from SRI. Dis-
tribution of CommandTalk for Government pur-
poses is handled by NRaD (POC: Brenda Gill-
crist, bwgill@nosc.mil). Other inquiries about Com-
mandTalk, including licensing, should be directed to
SRI (POC: Robert Moore, bmoore@ai.sri.com).

6 Acknowledgements

This work was supported by the Defense Advanced
Research Projects Agency under Contract N66001-
94-C-6046 with the Naval Command, Control, and
Ocean Surveillance Center. Approved for Public Re-
lease - Distribution Unlimited

References

Cohen, P. R., A. J. Cheyer, M. Wang, and S. C. Baeg
(1994) "An Open Agent Architecture," in Work-
ing Notes, AAAI Spring Symposium Series, Soft-
ware Agents, Stanford, California, pp. 1-8.

Dowding, J., J. M. Gawron, D. Appelt, J. Bear,
L. Cherny, R. Moore, and D. Moran (1993) "Gem-
ini: A Natural Language System for Spoken-
Language Understanding," in Proceedings 31st
Annual Meeting of the Association for Computa-
tional Linguistics, Columbus, Ohio, pp. 54-61.

Dowding, J., R. Moore, F. Andry, and D. Moran
(1994) "Interleaving Syntax and Semantics in an
Efficient Bottom-Up Parser," in Proceedings 32nd
Annual Meeting of the Association for Compu-
tational Linguistics, Las Cruces, New Mexico,
pp. 110-116.

