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Abstract 
A computat ional  model for the acquisition 
of knowledge from encyclopedic texts is de- 
scribed. The model has been implemented 
in a program, called SNOWY, that  reads 
unedited texts from The World Book En- 
cyclopedia, and acquires new concepts and 
conceptual relations about topics dealing 
with the dietary habits of animals, their 
classifications and habitats.  The program 
is also able to answer an ample set of ques- 
tions about  the knowledge that  it has ac- 
quired. This paper describes the essential 
components of this model, namely seman- 
tic interpretation, inferences and represen- 
tation, and ends with an evaluation of the 
performance of the program, a sample of 
the questions that  it is able to answer, and 
its relation to other programs of similar na- 
ture. 

1 Introduction 

We present an approach to the acquisition of knowl- 
edge from encyclopedic texts. The goal of this re- 
search is to build a knowledge base about a given 
topic by reading an encyclopedic article. Expert  sys- 
tems could use this database to tap in for pieces 
of knowledge, or a user could directly query the 
database for specific answers. Then, two possible 
applications could be derived from our research: (a) 
the automat ic  construction of databases from ency- 
clopedic texts for problem-solvers and (b) querying 
an encyclopedia in natural  language. The idea is to 
build a database from an encyclopedic text on the 
fly. Then, if a user asks the question, say, Which 
bears eat seals? the system would reply by saying 
something like "I don' t  know. But, wait a minute, I 
am going to read this article and let you know." In 
the process of reading the article, the system builds 
a small knowledge base about bears and calls the 
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question-answering system to answer any question 
posed by an expert system or a human. The long- 
term goal of our research is to read an entire ar- 
ticle on, say bears, and to build a knowledge base 
about bears. Since this goal requires dealing with 
an extraordinary number of research issues, we have 
concentrated on a series of topics about  animals, in- 
cluding diet, habitat ,  and classification. A skimmer 
scans the article for sentences relevant to a given 
topic and passes these sentences to the understand- 
ing system, called SNOWY, for complete parsing, in- 
terpretation, concept formation, concept recognition 
and integration in long-term memory (LTM). But, 
if, in the process of learning about  the dietary habits 
of, say beetles, the program is told that  they culti- 
vate fungi, and the program is able to interpret that  
sentence, that  knowledge will also be integrated in 
LTM. Consequently, our approach to understanding 
expository texts is a bot tom-up approach in which 
final knowledge representation structures are built 
from the logical form of the sentences, without inter- 
vening scriptal or frame knowledge about the topic. 
Hence, our system does not start  with a frame con- 
taining the main slots to be filled for a topic, say 
"diet," as in recent MUC projects (Sundheim, 1992), 
but rather it will build everything relevant to diet 
from the output  of the interpretation phase. Then, 
when we are talking about  the topic, it will not make 
any difference if the sentences refer to what the an- 
imals eat, or what eats them. Every aspect dealing 
with the general idea of ingest can be analyzed and 
properly integrated into memory. Our corpora for 
testing our ideas has been The World Book Ency- 
clopedia (World Book, 1987), which is one or two 
levels less complex than the Collier's Encyclopedia, 
which, in turn, is less complex than the Encyclopae- 
dia Britannica. 

2 Interpretation 

In order for the integration component to integrate 
a concept in LTM, a successful parse and interpreta- 
tion needs to be produced for a sentence or at least 
for one of its clauses. The input to the interpre- 
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(ACTION (INGEST 
(is-a (relathm)) (is-a (action)) 
(subj (thing (actor))) (obj (thing (theme))) (subj (animate (acte0)) 
(adverb (prep 
(time (at-time)) (with (Itm-ctgy 
(nesati~ (negation)) ( frequef:cy (frequeocy)) (uteri[ (ingt~mem (s~ron~))) 
..... (human (accompany (strong))) 

(prep (physical-thing 
(in (Itm-ctgy (physical-thlng (at-loc (weak))) (c~ther~ (weak)))))) 

(time-unit (at-time (strong))))) 
(obj (J~ysical -thing (theme))} 

(at ( l tm~gy (physical-thing (at-loc (strong))) 
(time-unit (at-time (strong))))) (DRINK 

(during (Itm-ctgy (physical-thing (at-time (strong))))) (is-a (inge.~t)) 
(with (ltm-ctgy (animate.body-part (instrument (strong)))) (obj (liquid (theme)))) 

(state (state (strong))))) 

Figure 1: Organization of the Verbal Concepts 

(REPS ((VRS (G233))) 
SUBJ ((PARSER ((DFART THE) (VERB CROWNED) (NOUN EAGLE))) 

(REE (DEFINITE)) (PLURAL NIL) 

(INTERP (CROWNED-EAGLE (Q (ALL)))) (SEMANTIC-ROLE (ACTOR))) 
PREP ((PARSE (OF ((PN AFRICA)))) (INTERP (AFRICA (Q (CONSTANT)))) 

(ATTACH-TO (CROWNED-EAGLE (LOCATION-R (AFRICA))))) 
VERB ((MAIN-VERB EAT EATS) (TENSE PRES)(NUM SING) (PRIM (IY4GEST))) 
OBJ ((PARSE ((NOUN MONKEYS))) (PLURAL T)) (INTERP (MONKEY (Q (?)))) 

(SEMANTIC-ROLE (THEME)))) 

output for Structure G233: 
(SUBJ ((PARSE ((DFART THE) (VERB CROWNED) (NOUN EAGLE))) 

(REP (DEFINITE)) (PLURAL NIL) 
(INTERP (CROWNED-EAGLE (Q (ALL)))) (SEMANTIC-ROLE (ACTOR))) 

VERB ((MAIN-VERB LIVE LIVES) (TEMSE PRES) (NUM SING) (PRIM (I]*4HABIT))) 
PREP ((PARSE (IN ((DFART THE) (NOUN RAIN) (NOUN FOREST)))) 

(REF (DEFI~TITE)) (PLURAL NIL) 
(INTERP (RAIN-FOREST)) (SEMANTIC-ROLE (AT-LOC)) 

(ATtACH-TO (VERB (STRONGLY)))) 

tation phase is built by a top-down, lexical-driven 
parser(Gomez, 1989), which parses the sentences di- 
rectly into syntactic cases. Prepositional phrases 
are left unattached inside the structure built by the 
parser. It is up to the interpreter to attach them, 
identify their meaning and the thematic roles that  
they may stand for. The parser is a deterministic 
machine, containing mechanisms for minimizing the 
need for backing up. The average amount  of time 
in parsing a sentence from the encyclopedia is about 
one second. The parser has presently a lexicon of 
about 35,000 words. The rate of success of produc- 
ing a full and correct parse of a sentence is, as of 
this writing, 76.8% for this Encyclopedia (see below 
for a detailed discussion of test results and machine 
used). The parser begins the parsing of a sentence 
on a syntactic basis until the meaning of the verb 
is recognized. The rules that determine the mean- 
ing of the verbs, called VM rules, are classified as 
subj-rules, verb-rules, obj-rules, io-rules, pred-rules, 
prep-rules, and end-of-clause-rules. These rules are 
activated when the verb, a syntactic case or a prepo- 
sitional phrase has been parsed, or when the end of 
the clause has been reached, respectively. In most 
cases, the antecedents of these rules contain selec- 
tional restrictions which determine whether the in- 
terpretation of the syntactic constituent is a sub- 
class of some concept in SNOWY's LTM ontology. 
If during an examination of LTM the selectional re- 
striction is passed, the consequent(s) of the VM rule 
establish the proper meaning or verbal concept for 
the verb. If no rules fire, the parser inserts the syn- 
tactic case or prepositional phrase in the structure 
being built and continues parsing. These rules, of 
which there are just  over 300, incorporate a con- 
siderable degree of ambiguity procrastination (Rich, 
1987). For instance, rather than writing an obj-rule 
for determining the meaning of "take" saying: I f  
LTM(obj) is-a medicament then meaning-of take is 
ingest, which will immediately jump to determine 
the meaning of "take" in Peter took an aspirin when 
the obj is parsed, it is better to write that  rule as an 
end-of-clause rule. This will avoid making the wrong 
assumption about the meaning of the verb in Peter 
took an aspirin to Mary. 

Figure 2: Output  of the parser and interpreter for 
the sentence The crowned eagle of Africa lives in the 
rain forests and eats monkeys. 

When the verbal concept has been identified, the 
syntactic cases and prepositional phrases already 
identified by the parser and any subsequent con- 
stituents are interpreted by matching them against 
the representation of the verbal concept. Verbal con- 
cepts are not reduced to a small set of primitives; on 
the contrary they are organized into a classification 
hierarchy containing the most general actions near 
the root node and the most specific at the bot tom. 
Figure 1 contains simplified examples of the root 
node action, the subconcept ingest, and one sub- 
concept of ingest, drink. The entry subj in the node 
ingest means that  the actor of ingest is an animate, 
and that this is indicated syntactically by the case 
subj. The entries for the preposition "with" mean 
that  if the object of the PP  is a utensil, then the 
case expressed by the preposition is the instrument 
case; if the object of the preposition is a human, 
then the case is the accompany case, etc. The en- 
tries strong and weak indicate whether the verbal 
concept claims that preposition strongly or weakly, 
respectively. This information is used by the inter- 
preter to attach PPs. The drink node has only one 
entry for the case theme. The others are inherited 
from the nodes, ingest and action. If the context 
to be understood requires a more detailed under- 
standing of how animals drink, distinct from how hu- 
mans drink, then the concept drink may be split into 
the concepts human-drink and animal-drink. Con- 
sequently, the specification of the hierarchy depends 
on the domain knowledge to be acquired. The algo- 
r i thm that  matches syntactic eases or prepositional 
phrases to the representation of the verbal concept 
searches the hierarchy in a bot tom-up fashion. The 
search ends with success or failure, if the LTM entry 
in the verbal concept is true or false, respectively. 
Hence, entries in subconcepts override the same en- 
tries in superconcepts. The node action provides an 
excellent way to handle situations not contemplated 
in subconcepts by defaulting them to those in the 
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action root node. 
Figure 2 depicts the output of the interpreter. 

The slot subject contains the output of the parser 
marked by the slot PARSE, the interpretation of 
the noun phrase marked by INTERP, and the the- 
matic role marked by SEMANTIC-ROLE. The entry 
Q within the INTERP slot indicates the quantifier 
for that case. The entries for the slot PREP, contain, 
in addition to the PARSE slot, the slot ATTACH- 
TO indicating which concept in the parse structure 
to attach that  constituent to, and the meaning of 
the preposition indicated, in this case, by the sub- 
slot LOCATION-R. The quantifier for "monkey" is 
a question mark, because its value is not indicated 
in the text. In (Gomez et al., 1992), the reader may 
find a detailed discussion of the interpretation issues 
presented in this session. 

3 Infe rences  

If the knowledge about dietary habits of animals 
were indicated in the texts by using "eat" and its 
cognates, the task of acquiring this knowledge would 
be rather simple. But, the fact is that an encyclo- 
pedia article may refer to the dietary habits in a 
variety of manners. Figure 3 contains a hierarchy 
about the diet topic. The verbs that trigger these 
verbal concepts are indicated by writing [verb]. The 
verb "dig out" triggers the action dig-r. Those ver- 
bal concepts from which an ingest relation is inferred 
are indicated by writing an asterisk by its side. The 
representation of dig-r is: 

(dlg-r ( i s - a  ( a c t i o n ) )  
(subj (animal  (actor)) (machine  (actor))) 
(ob j  ( p h y s i c a l - t h i n g  ( t h e m e ) ) )  
(addit ion-roles  ( f i r e - o n e  

((and (if% is-a actor a n i m a l )  
(ife'/o i s -a  them e  an in~a t¢) )  

(add (((actor (actot))  (pr ( ingest) )  
( t h e m e  ( t h e m e ) ) ) ) ) ) ) ) )  

The representation of dig-r is similar to the previ- 
ous verbal concepts, except for the entry that says 
addition-rule. This is an inference rule saying that if 
the actor of this action is an animal and the theme 
is an animate, then add to LTM the relation say- 
ing that the actor ingests the theme. This rule per- 
mits the acquisition of the fact that bears eat squir- 
rels and mice from the sentence A grizzly has long, 
curved claws that it uses chiefly to dig out ground 
squirrels and mice. Similar inference rules are stored 
in the other actions marked with an asterisk. Then, 
if the system reads the sentence Bears are fond of 
honey, it will infer that they eat honey. The infer- 
ence rules are also inherited from the nodes repre- 
senting the actions in the hierarchy. Hence, if the 
verbal concept animal-fish, shown in Figure 3, was 
suggested for the sentence Owls have been known 
to fish in shallow creeks, we would inherit an addi- 
tion rule from the verbal concept animal-hunt which 
would then infer an ingest relation. 

- action 

*transport *animal-hum huraan-htmt harm *dig-r ingest 
[~k~p] A [,l~k] ~oot] ~ / ~  ] ~ g ~ ]  [,wallow[ 

/ \ [search / ~ .  *cause- *destroy *damage ]dig-up[ [consume] 
to-ule [devour] / \ !",~']. / \'D~lll tenasel / x,  [nibble] 

body-part ]chew] 
]gulp-down] 

[skin] {gobble-up] 

animal-steal animal-captm'e-aulmal {gotgc] 
[steal] [trap] I [catch] [feed-on] 

I 
]live-on[ ]take.away] [seize] ]capture] ]em] 

[take] [ingest] l ~ h ]  *expedence-af fection- for 
animal-fish ]ate fond-of[ [take-in] 

[fish] ]like] ]keep-down[ 
]love[ 
[prefer] 

- -  Solid Lines - 1S-A links 

Figure 3: Conceptual Verbs Organizing the Topic 

The hierarchy is also helpful in avoiding incorrect 
inferences. Sentences discussing humans hunting an- 
imals do not automatically imply ingest relations, 
especiMly when an explicit purpose is given which is 
not ingest-related. For example in People hunt some 
kinds of seals for their soft fur, it is unlikely that 
the people mentioned will eat those seals. There- 
fore, we have separate verbal concepts for hunt re- 
lations where humans are the actors, whose infer- 
ence rules do not suggest ingest relations, except in 
cases like Eskimos hunt polar bears for food. Fur- 
thermore, addition rules typically have constraints 
within their antecedents to prevent inappropriate in- 
ferences, i.e., we would not want to infer an ingest 
relation when processing the sentence Tigers search 
for warm places to sleep during the day, and a con- 
straint on the theme of "search for" to be at least 
animate rejects the inference. 

4 Interpreting Noun  Phrases  and 
Restrict ive  Modifiers 

Detecting classification relations in the text becomes 
a must, not only if questions of the type Which owls 
eat fish?, or Which eagles eat hyraxes? are to be 
answered, but also for the acquisition of the knowl- 
edge in sentences like The prey of polar bears con- 
sists of seals, or The diet of bears consists of nuts, 
berries and small rodents. In order to achieve this, 
complex noun groups and restrictive modifiers are 
represented by the noun group interpreter as clas- 
sification hierarchies. One of the senses of "diet" is 
represented as: X l  (cf (is-a (food) R1)), where R1 is 
the relation ingest with actor = animal, and theme 
= food. Then, "the diet of bears" is represented as 
the concept X2 (cf (is-a (food) R2)), where R2 is 
the relation ingest with actor = bear, and theme = 
food. The slot cf contains the necessary and suffi- 
cient conditions that define the concept X2. Then, 
the meaning of X2 is: 

V(z) (X2(z )  ~ Food(z) A R2(z)) 
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The same interpretation is given to restrictive rel- 
ative clauses. The phrase "eagles that  live in the rain 
forests" is represented as X3 (cf (is-a (eagle) R3)), 
where R3 is the relation "live in the rain forests." 
Once these structures are built by the interpreter, a 
classifier that  is a component of the integration al- 
gorithm integrates these concepts in the proper po- 
sition in LTM. The interpretation of complex nouns 
proceeds by at tempting to determine the meaning 
of pairs of items in the complex noun, utilizing a 
scheme that  combines the items in the complex noun 
from left to right. For example, in the interpretation 
of "big red wine bottle" an a t tempt  is made to find 
a meaning for the terms "big red, . . . .  big wine," "big 
bottle," "red wine," "red bottle" and "wine bottle." 
If one i tem in the complex noun can be paired (i.e., 
a meaning can be found) with more than one other 
item in the complex noun, then the algorithm re- 
turns more than one interpretation for the complex 
noun, and disambiguation routines are activated. In 
our example, a meaning is found for "big bottle," 
"red wine," "red bottle," and "wine bottle," from 
which the algorithm returns the two possible inter- 
pretations: 

(bottle (s ize (big))  (color  (red)) (pertain-to (wine)))  
(bottle (s ize (big))  (pertain-to (wine  (color (red)))))  

Finding the meaning of terms of the form "i teml 
item2" reduces to finding a relation that  connects 
the concepts corresponding to "i teml" and "item2" 
in LTM. Consequently, this algorithm as well as the 
algorithm that  finds the meaning of PPs and syn- 
tactic cases depends on a a priori set of concepts 
that  constitutes the basic ontology of SNOWY. As 
SNOWY reads, it adds new concepts to this ontol- 
ogy as explained below. Its initial ontology consists 
of 1243 concepts. 

In order to find a semantic relation between two 
pair of items in a NP, the items or any of their su- 
perconcepts must belong to the a priori ontology. If 
the noun group interpreter does not find a seman- 
tic relation between two items, the algorithm will 
hyphenate them. This has been the case for "rain 
forest," and "crowned eagle" (see Figure 2). "Rain- 
forest" is constructed in LTM as a subconcept of 
"forest." But, no semantic relation will be built 
between "rain" and "forest." However, if the pair 
of items is "sea mammal,"  the algorithm builds X3 
(cf(is-a(mammal) live-in(sea))), because "mammal" 
and "sea" are categorized in LTM as subconcepts of 
"animate" and "habitat," respectively. The algo- 
r i thm will produce the same representation for "sea 
mammal" and "mammals that  live in the sea," ex- 
cept for the names of the concepts, which are dummy 
names with no meaning. The recognizer algorithm 
is able to tell that  the two concepts are the same 
concept by examining the content of the cfslot, and 
activating a classifier that  analyzes the subsumption 
relations between a pair of concepts. In (Gomez and 

Segami, 1989), the reader may find a detailed dis- 
cussion of the recognizer algorithm. Note that  the 
algorithm will produce the concept X4 (cf(is-a(lion) 
live-in(sea))) if the noun group "sea lion" is not in 
quotation marks or capitalized. 

5 Final Knowledge  Representa t ion  
Structures  

The input of the interpreter is passed to the for- 
mation phase that  builds the final knowledge rep- 
resentation structures. These are in turn integrated 
into LTM upon activating a recognizer algorithm and 
an integration algorithm both of which make exten- 
sive use of a classifier similar to the one reported 
in (Schmolze and Lipkis, 1983). The construction of 
the final knowledge representation structures is done 
as follows. The interpretation phase, if successful, 
has built a relation, and a set of thematic  roles for 
each sentence. Let us call the thematic roles of the 
relation the entities for that  relation. All the n en- 
tities of a n-ary relation are represented as objects 
in our language, and links are created pointing to 
the representation of the relation, which is repre- 
sented as a separate structure, called an a-structure. 
Figure 4 depicts the representation produced from 
the interpretation of the sentence The crowned ea- 
gle of Africa lives in the rain forests and eats mon- 
keys. Five objects have been created; CROWNED- 
EAGLE, AFRICA, RAIN-FOREST, MONKEY and 
@X235, which stands for the concept "crowned ea- 
gle of Africa." The relation @A237 represents the 
ingest relation between the object @X235 and the 
object MONKEY. The object MONKEY points to 
this structure by the entry under MONKEY that  
says ingest~oby (@x235 (Smote (@a237)))), and the 
object @X235 also points to this structure by the 
slot (ingest (monkey ($more (@a237)))). The scope 
of the quantifiers is from left to right. Then, the 
meaning of structure @A239 (assuming that  the 
question mark in the quantifier slot of MONKEY 
stands for "some" as the question-answering as- 
sumes) is V(x)(@X235(x) ~ 3 y ( M O N K E Y ( y )  A 
INGEST(x ,y) ) ) .  An a-structure can be linked to 
other a-structures by slots expressing causality, time, 
etc., as becomes necessary in the representation of 
Birds migrate south when it freezes. 

6 Resul ts  

Table 1 below provides statistics revealing how well 
the system performed during testing. The sys- 
tem was initially trained on ten articles: bears, 
beavers, beetles, elephants, frogs, penguins, rac- 
coons, seals, snakes, and tigers. Then, two more 
articles about sharks and eagles were analyzed to as- 
sess our progress. Test texts were chosen randomly 
by a student selecting a letter of the alphabet and 
then finding texts about animals within those vol- 
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CROWNED*EAGLE 

(is-a (eagle)) 

RAIN-FOREST 

(is-a (feces0) 

(related-to (@a239)) 

@X235 

(cf (is-a (crowned-caBle)) (@a235)) 

(location-r (afi'ie a ($rncte (@a237)))) 

(ingest (monkey ($mofe (@a237)))) 

(inhabit ($null ($mcfe (@a239)))) 

@A235 

(instance-of (description)) 

(args (@x235) (africa)) 

(pr (location-r)) 

(descr-subj (@r,235 (q (all)))) 

(descr-obj (africa (q (constant)))) 

AFRICA 

(location-of (@x235 (Smote (@a236)))) 

MONKEY 

(ingest%by (@x235 (Smote (@a237)))) 

@A237 

(args (@x235) (monkey)) 
(pr (ingest)) 
(actor (@x235 (q (zll)))) 

(theme (monkey (q (?))D 

(instance-of (action)) 

@A239 

(args (@x235) (raln-fc~est)) 

(1~ (inhabit)) 

(actor (@x235 (q (all)))) 

(at-lot (rain-forest (q (7)))) 

(instance-of (action)) 

Figure 4: Formation Structures 

umes of the encyclopedia. The letter "B" and the 
letter "M" were chosen. The texts were then se- 
lected from those volumes. In December of 1993, an 
article about  birds was chosen. No component of the 
system (lexicon, parser, interpreter, etc.) was pre- 
prepared with information about this article. The 
lexicon of the parser consisted of 10,000 words. This 
text was the largest article that  the system had ana- 
lyzed, contMning approximately 1330 sentences and 
16,000 words. None of the designers of the system 
read this article prior to the test. And even if they 
had read it, it would have been of very little use be- 
cause the system has reached such complexity that  
it is not easy to assess how it is going to perform in 
an article of 1330 sentences. 

The first row of Table 1 indicates that  145 
sentences were selected from the bird text by a 
keyword/pat tern-based skimmer. Of these 145 sen- 
tences, 91 were relevant to the dietary habits do- 
main. A total  of 23 relevant sentences were missed, 
primarily due to keywords or patterns not contem- 
plated. An example of sentence that  is relevant 
but  was not selected is Robins and sparrows, for 
example, are highly effective against cabbageworms, 
tomato worms, and leaf beetles. The parser was able 
to produce a correct parse for 58 of the 91 relevant 
sentences (64%), even in cases where the sentence 
contained unknown words. Among the sentences 
successfully parsed, the parser encountered some 40 
unknown words of which approximately 70% were 
names of birds, such as "grosbeaks", "flycatchers", 
"ti tmice", "thrashers," etc., and 30% were common 
words. Of those 58 parsed sentences, 32 (55%) were 
interpreted correctly. The output  for these 32 sen- 
tences was then passed to the formation, recogni- 
tion, and integration phases to be inserted into LTM. 
Interpretation failures can be at tr ibuted to missing 
VM rules, comparatives, and problems of anaphoric 
reference. 

Later, in April of 1994, three more texts were ran- 
domly chosen for testing. A summary of the results 
for those three tests is also given in Table 1. In 

Table 1: Statistics for the Sentences of the Bird, Bat, 
Monkey, and Mouse Texts 

Sel  R e l  I r re l  Miss  Parse Interp Concepts T i m e *  Date 

B i r d  145 91 5 4  23  6 4 %  5 5 %  3 2 5  441  s e e s  12 /93  

Bat 27  2 6  1 9 9 3 %  6 0 %  118  7 9  s e e s  4 / 9 4  

Monkey 2 2  8 14 4 7 3 %  V5q~ 7 2  7 9  sees  4 / 9 4  

M o u s e  2 9  21 8 3 7 9 %  5 0 %  123 93  s e e s  4 / 9 4  

* t h i s  t i m e  i n c l u d e s  s k i m m i n g ,  p a r s i n g ,  i n t e r p r e t i n g ,  forming,  and integrating 
on a S P A R C  Classic  machine ( m i c r o S P A R C  5 0 M H z  C P U ) .  

B i r d  B a t  M o n k e y  Mouse Combined  
S e l e c t e d  S e n t e n c e s  145  27  2 2  2 9  2 2 3  

Average Words/Sentence 17.1 11 .6  16.8 1 3 , 7  16 .0  

Longest  Sentence 35  21 2 7  2 6  35  

this test, the parser ran with a lexicon consisting of 
about 35,000 words. The improvement of the inter- 
preter was mainly due to new interpretation rules, 
additions to the hierarchy of verbal concepts, and 
to the hierarchy of concepts that  organize the infer- 
ences about the topic. 

All of the tests were run on a SPAP~C Classic Ma- 
chine executing Allegro Common Lisp. The average 
time to completely process a selected sentence on 
this platform was 3.1 seconds. This is a conserva- 
tive figure because it includes the processing t ime of 
the skimmer, i.e., some amount  of overhead is nec- 
essary for file handling and for determining when a 
sentence is irrelevant. Therefore, the average time 
for processing a sentence is actually less than -3.'1 
seconds. 

The following is a list of natural  language ques- 
tions posed to the system after reading the bird, 
bat, and monkey articles and the contents of the 
system-generated answers. Note that  the system 
output  has been Mtered and condensed for the sake 
of brevity. In answering the questions, the sys- 
tem uses classification-based reasoning, not theorem 
proving. Many complex chains of inferences can be 
obtained by keeping memory organized in a princi- 
pled manner. In those cases in which a question asks 
about a concept that  does not exist in LTM, the clas- 
sifier is activated to place that  concept in LTM and 
obtain an answer. See (Gomez and Segami, 1991) 
for a detailed discussion of all these issues and the 
theorems proving the soundness of the inference al- 
gorithms. 
What do birds eat? sapsucker ingest tree-sap; hum- 
mingbird ingest nectar; duck ingest plant-matter ,  
grass, seaweed; louisiana-water-thrush ingest water- 
insect; young-bird ingest earthworm, insect, small 
animal; ........ 
Which birds eat nectar? hummingbird ingest nectar 
What kinds of insect eaters are there? chickadee, 
creeper, flycatcher, kinglet, swallow, swift, thrasher, 
titmice, vireo, warbler, woodpecker, owl 
What is gravel? I don' t  know, but  I know that:  bird 
ingest gravel < related-to > bird *assist* grinding- 
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process 
Do most cactus dwellers eat insects? yes 
What kills birds? eagle is-a bird, and hunters and 
trappers kill eagles; osprey is-a bird, and hunters 
and trappers kill osprey 
When do most birds search for food? at-time day 
Do birds help people? yes, bird help farmer 
How do birds help farmers? bird ingest <insect 
which ingest crop>; bird ingest weed-seed 
Do bats eat blood? yes, some bat eat blood because 
vampire-bat is-a bat and vampire-bat ingest blood 
How much blood do vampire bats eat? vampire-bat 
ingest blood quanti ty 1 tablespoon *frequency* day 
Do vampire bats attack human beings? yes, vampire 
bat harm human *frequency* sometimes 
Do monkeys have enemies? yes, some monkey has- 
enemy cheetah hyena jackal leopard lion because 
<monkeys inhabit at-loc ground> has-enemy chee- 
tah hyena jackal leopard lion 

7 R e l a t e d  W o r k  

In (Sondheimer et al., 1984), frame-like structures, 
KL-ONE structures in fact, are also used to guide 
semantic interpretation in an application domain. 
However, the overall approach to the interpreta- 
tion task presented here differs from that  work. In 
approaching the problem of unrestricted texts, we 
agree with those researchers (Hobbs, 1991; Grish- 
man et al., 1991) who think that  it is possible to 
build correct parses and interpretations for real- 
world texts. In fact, it is hard for us to see how 
statistical methods (de Marcken, 1990; Church et 
al., 1991) could be used for building knowledge-bases 
with sufficient expressive power to correctly answer 
questions posed by expert systems or human users. 
We think that  the same critique applies to skim- 
mers (Lehnert et al., 1991), but for very different 
reasons. In order to guarantee the correctness of 
the knowledge-base built, every element in the sen- 
tence needs to be interpreted. For instance, if the 
adverb "mostly" is not interpreted in the sentence 
These owls eat mostly rodents, the integrity of the 
knowledge-base built is not going to suffer greatly. 
But, if we are talking about the adverb "rarely" in 
the sentence These owls rarely eat rodents, the situ- 
ation becomes much more serious, as we found out. 

This work has advanced a new approach to se- 
mantic interpretation that  occupies a middle ground 
between those approaches that  rely heavily on the 
parser for building structures and attaching PPs, 
subordinate clauses, etc. (Grishman et al., 1991; 
Hobbs, 1978; Tomita,  1985) and semantic-centered 
approaches (Riesbeck and Martin, 1986; Cardie and 
Lehnert, 1991; Slator and Wilks, 1991). Our parser 
delegates all the burden of dealing with structural 
ambiguity (at tachment  of PPs, relative clauses, sub- 
ordinate clauses, etc.) to the interpreter. Tha t  is one 
of the reasons why it is so fast. The interpreter has a 

very sophisticated algorithm that  uses the informa- 
tion built in the verbal concepts in order to at tach 
PPs. Yet, if the parser does not build a parse, albeit 
a shallow one, the interpreter will not know what 
to do. Moreover, the interpreter does not question 
the parser when it says this constituent is an obj, or 
subj, or a time-np, etc. This is a situation that  we 
are not happy about, because the parser identifies 
some constituents incorrectly, especially the time- 
np. We are studying mechanisms under which the 
interpreter will override the parser and will get it 
out of trouble in processing very complex sentences 
(Krupka et al., 1991; Jacobs et al., 1991). 

8 C o n c l u s i o n s  

We have presented a method for the acquisition of 
knowledge from encyclopedic texts. The method de- 
pends on understanding what is being read, which 
in turn depends on: (1) providing a successful parse 
and interpretation for a sentence, (2) building final 
knowledge representation structures from the log- 
ical form of the sentence, which involves creating 
new concepts and relations as the system is reading, 
and (3) integrating in LTM those concepts and rela- 
tions that  the recognizer algorithm fails to recognize, 
which in many cases involves the reorganization of 
concepts in LTM. 

The results that  are reported in this paper are very 
encouraging, because a high percentage of the fail- 
ures are due to some incomplete implementations of 
some aspects of the system. For instance, in dealing 
with anaphora we have incorporated in our system 
some of the ideas reported in (Grosz, 1983; Hobbs, 
1978), but our work is clearly insufficient in that  
regard. A major hole in the interpreter, as of this 
writing, is that  it does not interpret comparatives, 
except very simple ones like quantifiers, e.g., "more 
than 2." The interpreter needs to have mechanisms 
in place to recover the elliptical elements in compara- 
tives, which in many cases require solving extrasen- 
tential reference, e.g., The golden eagle defends a 
territory of about 20 to 60 square miles. The bald 
eagle holds a smaller territory. The skimmer uses 
very rudimentary techniques, and there is a lot of 
room for improvement here. In any case, this has 
not been a major  concern of this research. Moreover, 
because the system is so incredibly fast, if the skim- 
mer overgenerates, it is not much of a problem. An 
aspect related to the skimmer that  we have no space 
to discussis that  it became necessary to build an 
algorithm to recognize subclasses of the class of ani- 
mals being searched for every question. For instance, 
if the question is Do sharks eat plankton, this algo- 
r i thm analyzes every sentence in the encyclopedic ar- 
ticle, before being passed to the skimmer, searching 
for NPs denoting subclasses of sharks. This is neces- 
sary because the author may introduce the concept 
"Mako sharks" in a context unrelated to the relation 
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ingest, and consequently, the skimmer is not going 
to select this sentence. Then, if the author later 
on says Makos feed on other fish, including herring, 
mackerel, and swordfish, the system has no way to 
relate "Mako" to sharks, missing the fact that sharks 
feed on herring, mackerel, and swordfish. In June, 
we tested the parser on 2900 sentences from 25 ar- 
ticles, including non-animal articles such as black- 
holes, cancer, computer chips, napoleon, greenhouse 
effect, etc., and the rate of success was 76.8%. How- 
ever, some sentences are still not parsed because 
some subcategorizations of verbs are wrong or in- 
complete, or the phrasal lexicon is incomplete. We 
are confident that the parser may reach a plateau at 
85% or 90% for this Encyclopedia. The remaining 
10% or 15% may require considerable help from the 
interpreter to be parsed. 
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