
Detecting and Correcting Morpho-syntactic Errors in Real Texts

T h e o V o s s e *
Nijmegen Institute for Cognition and Information

University of Nijmegen
and

Cognitive Technology Foundation
P.O. Box 9104

6500 HE Nijmegen, The Netherlands
e-mail: vosse@nici.kun.nl

Abstract

This paper presents a system which detects and
corrects morpho-syntactic errors in Dutch texts. It
includes a spelling corrector and a shift-reduce
parser for Augmented Context-free Grammars.
The spelling corrector is based on trigram and
triphone analysis. The parser is an extension of
the well-known Tomita algorithm (Tomita, 1986).
The parser interacts with the spelling corrector
and handles certain types of structural errors.
Both modules have been integrated with a
compound analyzer and a dictionary of 275,000
word forms into a program for stand-alone
proof-reading of Dutch texts on a large scale. The
system is in its final testing phase and will be
commercially available as from 1992.

1. Introduction

One of the most widely used applications of natural
language processing is spell, g rammar and style
checking. Although most probably semantic analysis
is required to obtain entirely satisfactory results, it is
never used - - for obvious reasons. Even worse, most
language checkers today even restrain from syntactic
analysis. This denies them the possibility to find
morpho-syntact ic errors, which form a large and fre-
quently occurring class of spelling errors. One of the
best known systems for English, which does perform
syntactic analysis, is Critique (Richardson, 1988).

In order to detect and correct morpho-syntactic
errors a system needs (I) modules for word-level
spell checking and correction, (2) a parser which
contains a comprehensive g rammar and an efficient
parsing algorithm, and (3) a mechanism to detect
and correct grammatical errors as well as to assist in
correcting spelling errors. I will first define the
domain of morpho-syntactic errors and motivate the

*The author's current address is: Experimental
Psychology Unit, Leiden University, P.O. Box 9555,
2300 RB Leiden, The Netherlands.

need for a parser. After a brief overview of the sys-
tem and a discussion of the word-level modules, I
will describe the g rammar formalism, the parser, its
mechanism for error detection, and a pre-processor
for word lattices. Finally, after looking at the integra-
tion of the modules and at some useful heuristics, I
will give a summary of the results obtained by a
non-interactive Dutch grammar-dr iven spell
checker.

2. Morpho-syntactic Errors

This paper is concerned with three types of errors:
typographical errors (typing errors or OCR scanning
errors), orthographical errors (erroneous translitera-
tions of phonemes to graphemes) and, most impor-
tantly, morpho-syntactic errors (resulting from mis-
application of morphological inflection and syntactic
rules). Simple spell checkers are only able to spot er-
rors leading to non-words; errors involving legally
spelled words go unnoticed. These morpho-syntacfic
errors occur quite frequently in Dutch texts, though,
and are considered serious because they are seen as
resulting from insufficient language competence
rather than from incidental mistakes, such as typo-
graphical errors. Therefore they constitute an inter-
esting area for g rammar checking in office and lan-
guage teaching applications. I will now present a
classification of the morpho-syntacfic errors and
some related errors in Dutch (Kempen and Vosse,
1990).

2.1. Agreement violations

Typically syntactic errors are agreement violations.
Though none of the words in the sentence She walk
home is incorrect, the sentence is ungrammatical . No
simple spelling checking mechanism can find the er-
ror, let alone correct it, since it is caused by a relation
between two words that need not be direct neigh-
hours. Detection and correction of this type of error
requires a robust parser, that can handle ungram-
matical input.

111

2.2. Homophonous words

Homophony is an important source of orthographi-
cal errors: words having the same pronunciation but
a different spelling. Dutch examples are ze/and zij,
sectie and sexy, wort and wordt and achterruit and
achteruit. Such words are easily replaced by one of its
homophonous counterparts in written text.

The problem of current spell checkers is that they
do not notice this substitution as the substitutes are
legal words themselves. In order to detect this sub-
stitution, a parser is required since often a change of
syntactic category is involved. In section 4.3.2 1 will
demonstrate that the treatment of these errors
strongly resembles the treatment of non-words 1.
Unfortunately, a parser cannot detect substitutions
by homophones which have the same syntactic
properties.

2.3. Homophonous inflections

A special case of homophonous words are words
which differ only in inflection. This type of homo-
phony is very frequent in Dutch and French. French
examples are donner, donnez, donnd, donnde, donnds
and donndes or cherche, cherches and cherchent. Dutch
examples typically involve d/t-errors: -d, -t and -dt
sound identical at the end of a word but they often
signal different verb inflections. Examples are the
forms gebeurt (third person singular, present tense)
and gebeurd (past participle) of the verb gebeuren;
word (first person, singular, present tense) and wordt
(third person, singular, present tense) of the verb
worden; and besteden (infinitive and plural, present
tense),besteedden (plural, past tense), and bestede (an
adjective, derived from the past participle).

However , unlike the general case of homophon-
ous words, homophonous inflections, by their very
nature, do not alter the syntactic category of the
word but rather its (morpho-syntactic) features. So
this type of error can be regarded as a homophonous
word or a spelling error, or as an agreement
violation.

2.4. Word doubling

Notoriously difficult to spot are word doubling
errors, especially at the end of a line ("Did you
actually see the the error in this sentence?"). A
parser surely notices it, but it should not fail to
analyze the sentence because of this.

2.5. Errors in idiomatic expressions

Idiomatic expressions often cause problems for
parsers since they often do not have a regular syn-
tactic structure and some of their words may be ille-
gal outside the idiomatic context. A Dutch example
is te allen tijde (English: at all times), with the word

1I will not discuss typographical errors resulting in
legal words (such as rotsen and rosten) since their
treatment is similar.

tijde only occurring in idiomatic expressions.
Whenever it occurs in a normal sentence it must be
considered to be a spelling error. (An English exam-
ple might be in lieu of.) The problem is even more
serious in case of spelling errors. E.g. the expression
above is more often than not written as te alle tijden,
which consists of legal words and is syntactically
correct as well.

2.6. Split Compounds

Somewhat similar to idiomatic expressions is the
case of compound nouns, verbs, etc. In both Dutch
and German these must be written as single words.
However, under the ever advancing influence of
English on Dutch, many compounds, especially new
ones such as tekst verwerker (text processor) and
computer terminal are written separated by a blank,
thus usually confusing the parser.

3. S y s t e m o v e r v i e w

The system presented here consists of two main
levels: word level and sentence level. Before entering
the sentence level (i.e., parsing a sentence), a spelling
module should check on all the words in the sen-
tence. This is a rather simple task for a language
such as English, but for morphologically complex
languages such as Dutch and German, it is by no
means trivial. Because compound nouns, verbs and
adjectives are written as a single word, they cannot
always be looked up in a dictionary, but have to be
analyzed instead. There are three problems involved
in compound analysis: (1) not every sequence of dic-
tionary words forms a legal compound, (2) certain
parts of a compound cannot be found in the dic-
tionary and (3) full analysis usually comes up with
too many alternatives. My solution follows the lines
set out in (Daelemans, 1987): a deterministic word
parser, constrained by the grammar for legal com-
pounds, that comes up with the left-most longest
solution first. This solution is rather fast on legal
compounds, while it takes at most O(n 2) time for
nonexistent words and illegal compounds. The word
parser is built upon a simple morphological
analyzer, which can analyze prefixes, suffixes and
some types of inflection. Both use a dictionary,
containing 250,000 word forms 2, derived from 90,000
Dutch lemmata, which appears to be sufficient for
most purposes. There is also a possibility to add
extra dictionaries for special types of text.

2For each lemma the dictionary contains all the
inflections and derivations that were found in a large
corpus of Dutch text (the INL corpus, compiled by the
Instituut voor Nederlandse Lexicografie in Leyden). The
dictionary itself is a computerised expanded version of the
"Hedendaags Nederlands" ("Contemporary Dutch")
dictionary, published by Van Dale Lexicografie (Utrecht),
which was enriched with syntactic information from the
CELEX database (University of Nijmegen).

112

If a word does not appear in one of the dictionar-
ies and is not a legal compound either, the spell
checker can resort to a correction module. In an
interactive situation such a module might present
the user as many alternatives as it can find.
Although this 'the-more-the-better' approach is very
popular in commercially available spell checkers, it
is not a very pleasant one. It is also unworkable in a
batch oriented system, such as the one I am describ-
ing here. Ideally, a spelling corrector should come
up with one (correct!) solution, but if the corrector
finds more than one alternative, it should assign a
score or ranking order to each of the alternatives.

The system presented here employs a correction
mechanism based on both a variation of trigram
analysis (Angell et al., 1983) and triphone analysis
(Van Berkel and De Smedt, 1988), extended with a
scoring and ranking mechanism. The latter is also
used in pruning the search space 3. Thus the system
can handle typographical errors as well as ortho-
graphical errors, and includes a satisfactory mecha-
nism for ranking correction alternatives, which is
suitable both for interactive environments as well as
for stand-alone systems.

When all words of a text have been checked and,
if necessary, corrected, a pre-processor (to be
described in section 4.4) combines the words and
their corrections into a word lattice. The syntactic
parser then checks the grammatical relations be-
tween the elements in this lattice. If the parsing re-
sult indicates that the sentence contains errors, a
syntactic corrector inspects the parse tree and pro-
poses corrections. If there is more than one possible
correction, it ranks the correction alternatives and
executes the top-most one. Section 4 will describe the
parser and the pre-processor in some detail. Due to
space limitations, I have to refer to (Vosse, 1991) for
further information, e.g. the adaptations that need to
be made to the Tomita algorithm in order to keep
the parsing process efficient.

4. Shift-Reduce Parsing with ACFGs

4.1. Augmented Context-free Grammars

Augmented Context-Free Grammars (ACFGs for
short) form an appropriate basis for error detection
and correction. Simply put, an ACFG is a Context-
Free Grammar where each non-terminal symbol has
a (finite) sequence of attributes, each of which can
have a set of a finite number of symbols as its value.

3pruning the search space is almost obligatory, since
trigram and triphone analysis require O(n*m) space,
where n is the length of the word and m the number of
entries in the dictionary. The constant factor involved can
be very large, e.g. for words containing the substring ver,
which occurs in more than seven out of every hundred
words (13,779 triphones and 16,881 trigrams in 237,000
words).

In a rule, the value of an attribute can be represented
by a constant or by a variable.

A simple fragment of an ACFG is for example:
1 S -~ NP(Num nora) VP(Num)
2 NP(Num) -9 Det(Num) ADJs Noun(Num)
3 NP(Num Case) -4 Pro(Num Case)
4 VP(Num) -~ Verb(Num intrans)
5 VP(Num) --)Verb(Num trans) NP(acc)
6 ADJs -9
7 ADJs -9 ADJ ADJs

The derivation of a sentence might go like this:
S ~ NP(sg3 nom) VP(sg3) ~ Det (sg3) ADJs
Noun(sg3) VP(sg3) ~ Det (sg3) Noun(sg3) VP(sg3)

Det(sg3) Noun(sg3) Verb(sg3 intrans) ~ a
man eats

In the actual implementation of the parser, the
grammatical formalism is slightly more complex as
it uses strongly typed attributes and allows restric-

t ions on the values the variables can take, thereby
making grammar writing easier and parsing more
reliable. The Dutch grammar employed in the sys-
tem contains nearly 500 rules.

4.2. The parser

The construction of the parsing table is accom-
plished by means of standard LR-methods, e.g.
SLR(0) or LALR(1), using the "core" grammar (i.e.
leaving out the attributes). The parsing algorithm it-
self barely changes as compared to a standard shift-
reduce algorithm. The shift step is not changed
except for the need to copy the attributes from lexi-
cal entries when using a lexicon and a grammar with
pre-terminals. The reduction step needs to be ex-
tended with an instantiation algorithm to compute
the value of the variables and a succeed/fail result. It
should fail whenever an instantiation fails or the
value of a constant is not met.

To accomplish this, the trees stored on the stack
should include the values resulting from the evalua-
tion of the right-hand side of the reduced rule. This
makes the instantiation step fairly straightforward.
The variables can be bound while the elements are
popped from the stack. If a variable is already
bound, it must be instantiated with the correspond-
ing value on the stack. If this cannot be done or if a
constant value in a rule does not match the value on
the stack, the reduction step fails. A simple example
(not completely) following the grammar sample
above may clarify this.

In Figure la parsing succeeds just as it would
have done if only the context-free part of the gram-
mar had been used. The only difference is that the
symbols on the stack have attributes attached to
them. In Figure lb however, parsing fails - - not be-
cause the context-free part of the grammar does not
accept the sentence (the parse table does contain an
entry for this case) but because the instantiation of
p l and sg3 in rule 1 causes the reduction to fail.

Note that the mechanism for variable binding is
not completely equivalent to unification. It typically
differs from unification in the reduction of the fol-
lowing two rules

113

a Det(sg3)

I man Noun(sg3) [
a Det(sg3) I NP(sg3)

eats Verb(sg3)
NP(sg3)

[VP(sg3)

NP(sg3) I S

Figure la. Parsing of "a man eats".

a Det(sg3) ,I
man Noun(sg3)

a Det(sg3)

eat Verb(pl)

I NP(sg3) I NP(sg3)

VP(pl)

NP(sg3)

Figure lb. Parsing of " a man eat"

1 A --~ ... B(X, Y) ...

2 B(X, X) --~ ...

The reduction of rule 2 will leave two values on
the stack rather than an indication that the two vari-

ables are one and the same. Therefore X and Y may
differ after the reduction of rule 1.

4.3. Parsing Erroneous Input

4.3.1. Coercing syntactic agreement
Figure lb shows one type of problem I am interested
in, but clearly not the way to solve it. Though the
parser actually detects the error, it does not give
enough information on how to correct it. It does not
even stop at the right place 4, since the incongruity is
only detected once the entire sentence has been read.
Therefore the reduction step should undergo further
modification. It should not fail whenever the instan-
tiation of a variable fails or a constant in the left-
hand side of the rule being reduced does not match
the corresponding value on the stack, but mark the
incongruity and continue parsing instead. Later in
the process, when the parsing has finished, the syn-
tactic corrector checks the marks for incongruity and
coerces agreement by feature propagation.

This approach contrasts with, e.g., the approach
taken by (Schwind, 1988), who proposes to devise an
error rule (cf. section 4.3.3) for every unification
error of interest. However, this makes efficient pars-
ing with a large grammar nearly impossible since
the size of the parsing table is exponentially related
to the number of rules.

4.3.2. Syntactic filtering
Consider the error in The yelow cab stops. The English
spelling corrector on my word processor (MS-Word)
offers two alternatives: yellow and yellows. Since the

4This of course is caused by the context-free part of the
grammar. If we had created a unique non-terminal for
every non-terminal-feature combination, e.g. s ->
NP_sing3_nom VP_sing3, parsing would have stopped at
the right place (i.e. between "man" and "eat"). This
however depends mainly on the structure of the grammar.
E.g. in Dutch the direct object may precede the finite verb,
in which case agreement can only be checked after having
parsed the subject following the finite verb. Then the
parser cannot fail before the first NP following the finite
verb. This is too late in general.

string yelow is obviously incorrect, it has no syntactic
category and the sentence cannot be parsed. One
might therefore try to substitute both alternatives
and see what the parser comes up with, as in Figure
2. This example clearly shows that the only gram-
matically correct alternative is yellow. In this way a
parser can help the spelling corrector to reduce the
set of correction alternatives. Since a realistic natural
language parser is capable of parsing words with
multiple syntactic categories (e.g. stop is both a noun
and a verb), the two entries for yelow can be parsed
in a similar fashion. The grammatical alternative(s)
can be found by inspecting the resulting parse trees
afterwards.

In order to handle errors caused by homophones
as well, this mechanism needs to be extended. When
dealing with legal words it should use their syntactic
categories plus the syntactic categories of all possible
homophones, plus - - to be on the safe side - - every
alternative suggested by the spelling corrector.
Afterwards the parse trees need to be examined to
see whether the original word or one of its alterna-
tives is preferred.

4.3.3. Error rules
The third and last category of errors the system
attempts to deal with consists of the structural
errors. General techniques for parsing sentences con-
taining errors are difficult, computationaUy rather
expensive and not completely fool-proof. For these
reasons, and because only a very limited number of
structural errors occur in real texts, I have developed
a different approach. Instead of having a special
mechanism in the parser find out the proper alterna-
tive, I added error rules to the formalism. The
grammar should now contain foreseen improper
constructions. These might treat some rare con-
stituent order problems and punctuation problems.

4.3.4. Parsing weights
Natural language sentences are highly syntactically
ambiguous, and allowing errors makes things con-
siderably worse. Even the simple toy grammar
above yields a great number of useless parses on the
sentence They think. The word think may have differ.
ent entries for 1st and 2nd person singular, 1st, 2nd
and 3rd person plural and for the infinitive. This

114

the yellow cab stops

0
1 Det 0

13 yellow 1 Det 0
ii ADJ 1 Det 0
20 ADJs ii ADJ 1 Det
12 ADJs 1 Det 0
21 Noun 12 ADJs 1 Det
2 NP 0

15 Verb 2 NP 0
14 VP 2 NP 0
4 S 0

Accept

the yellows cab stops

0
1 Det 0

12 ADJs 1 Det 0
25 Noun 12 ADJs 1 Det

Fails

Figure 2. The parsing of the two alternatives for "the yelow cab stops".

would result in one parse tree without an error mes-
sage and five parse trees indicating that the number
of they does not agree with the number of think. By
using sets of values instead of single values this
number can be reduced, but in general the number
of parses will be very large. Especially with larger
grammars and longer sentences there will be large
amounts of parses with all sorts of error messages.

A simple method to differentiate between these
parses is to simply count the number of errors,
agreement violations, structural errors and spelling
errors in each parse, and to order the parses accord-
ingly. Then one only has to look at the parse(s) with
the smallest number of errors. However, this concept
of weight needs to be extended since not all errors
are equally probable. Some types of agreement viola-
tion simply never occur whereas others are often
found in written texts. Orthographical and typo-
graphical errors and homophone substitution are
frequent phenomena while structural errors are rela-
tively rare. Suppose the parser encounters a sentence
like Word je broer geopereerd? (Eng.: Are your brother
(being) operated?). In Dutch this is a frequent error
(see section 2.3), since the finite verb should indeed
be word if je instead of je broer were the subject.
(Translating word-by-word into English, the correc-
tion is either/s your brother (being) operated? or Are
you brother (being) operated? Je is either you or your.)
The most likely correction is the first one. How can a
syntactic parser distinguish between these two
alternatives? My solution involves adding error
weights to grammar rules. These cause a parse in
which verb transitivity is violated to receive a heav-
ier penalty than one with incorrect subject verb
agreement. Thus, parse trees can be ordered accord-
ing to the sum of the error weight of each of their
nodes.

4.4. Word Lattices

As noted in section 2.5, idiomatic expressions cause
parsers a lot of trouble. I therefore propose that the
parser should not operate directly on a linear sen-
tence, but on a word lattice that has been prepared
by a pre-processor. For a sentence like Hij kan te allen
tijde komen logeren (he can come to stay at all tim~)

such a structure might look like Figure 3. Instead of
parsing each word of the expression te allen tijde sep-
arately, the parser can take it as a single word span-
n ing three word positions at once or as three sepa-
rate words. Should one of the words in the expres-
sion have been misspelled, the pre-processor builds
a similar structure, but labels it with an error mes-
sage containing the correct spelling obtained from
the spelling corrector. Word lattices can of course
become much more complex than this example.

Since there is a pre-processor that is able to com-
bine multiple words into a single item, it might as
well be used to aid the parser in detecting two fur-
ther types of errors as well. The first one is the Dutch
split compound. By simply joining all the adjacent
nouns (under some restrictions) the grammar and
the parser can proceed as if split compounds do not
occur. The second error type is word doubling. The
pre-processor can join every subsequent repetition of
a word with the previous occurrence so that they
will be seen both as two distinct words and as one
single word (since not every occurrence of word
repetition is wrong). Another possibility is to con-
catenate adjacent words when the concatenated form
occurs as one entry in the dictionary. E.g. many
people do not know whether to write er op toe zien,
erop toezien, erop toezien or any other combination
(though a parser might not always have the right
answer either).

5. Integration and Heuristics

The combination of the modules described above
- - a spell checker with compound analysis, a
spelling corrector, a robust parser and a syntactic
corrector - - does not lead by itself to a batch-
oriented proof-reading system. Most texts do not
only contain sentences, but also rifles and chapter
headings, captions, jargon, proper names, neolo-
gisms, interjections, dialogues ("yes", she sa/d, "yes,
that is true, but..."), quotations in other languages,
literature references, et cetera, not to mention mark-
up and typesetting codes. The system therefore has
a mechanism for dealing with the layout aspects of

115

° o

logeren I
Figure 3. A word lattice.

texts and some heuristics for dealing with proper
names, jargon and neologisms. The layout aspects
include mark-up codes and graphics, title markers
and a mechanism for representing diacritics, such as
the diaeresis, which is frequent in Dutch.

Dictionaries seldom contain all words found in a
text. In Dutch, part of the problem can be solved by
using compound analysis. However, a misspelled
word can sometimes be interpreted as a compound,
or as two words accidentally written together. I par-
tially solved this problem by having the compound
analyzer repeat the analysis without the word gram-
mar if it fails with the word grammar, and by defin-
ing a criterion which marks certain compounds as
"suspicious "s. If the analyzer marks the compound
as either suspicious or ungrammatical, the spelling
corrector is invoked to see if a good alternative (i.e.
closely resembling and frequent word) can be found
instead, or, else, if the compound was ungrammati-
cal, whether it can be split into separate words. This
process is further improved by adding the correct
compounds in the text to the internal word list of the
spelling corrector.

Other words that do not appear in a dictionary
are proper names, jargon and neologisms. Therefore
the system first scans the entire text for all word
types while counting the tokens before it starts pars-
ing. My rule of thumb is to treat words, that appear
mainly capitalized in the text as proper names.
Frequently occurring words, that do not have a good
correction, are supposed to be neologisms. Both
proper nouns and neologisms are added to the in-
ternal word list of the spelling corrector. The main
disadvantage of this approach is that it misses con-
sistently misspelled words. At the end of the run
therefore, the system provides a list of all the words
it tacitly assumed to be correct, which must then be
checked manually.

Another feature of the system is that it coerces
variant spelling into preferred spelling. This feature
also takes compounds which have is no official pre-
ferred spelling into consideration, thus preventing
compound to be written in different ways. E.g. both

5Misspelled word can often be analyzed as sequences
of very small words. E.g. the misspelled
kwaliteitesverbetering (which should be kwaliteitsverbetering,
Eng.: quality improvement) can be divided into
kwaliteit +es+verbetering, which could mean quality ash
improvement. The amount of overgeneration correlates
strongly with the size of the dictionary.

spellingcorrectie and spellingscorrectie (Eng.: spelling
correction) are correct in Dutch. My system only
allows one to occur in a text and coerces the least
frequently occurring variants into the most frequent
one.

The last but not least important tricks help to re-
duce parsing time. Since the system cannot detect all
types of errors with equal reliability (cf. section 6), I
added a d/t-mode in which only sentences that might
contain a d/t-error (cf. section 2.2) are parsed. In this
mode a pre-processor first checks whether the sen-
tence contains such a "d/t-risk" word. If this is the
case the parser is invoked, but the error messages
not pertaining to this class of errors are suppressed.
As d/t-risks show up in less than a quarter of all sen-
tences, parsing time is cut by a factor of four at least.
Although this solution can hardly be called elegant,
it gives the user a faster and more reliable system.

There also is an upper bound on the number of
allowed parses. Because analyzing a parse tree takes
some time, this speeds up the process. The disadvan-
tage is that the system may choose an unlikely cor-
rection more often as it cannot compare all parse
trees. Large sentences with multiple errors may pro-
duce thousands of parse trees, each of which has to
be scored for comparison. As the allowed number of
parses becomes less than the potential number of
parses, the probability that the system overlooks a
likely correction grows. But since it produces an
error message anyway, albeit an unlikely one, the
advantage outweighs the disadvantage.

6. Results and Evaluation

The system described in this paper has been built as
a practical writing aid that operates non-inter-
actively, because the first phase (determining word
types, compound analysis, initial spelling correction,
and cross-checking corrections for the entire text)
takes too long. Nevertheless, it can easily process
more than 25 words per second 6 for a large text,
which may easily take up half an hour or more.

As an example of the performance in the word
level checking phase, I presented the system with a

6I have written the system in the programming
language C. The results reported below were obtained
with the program running on a DECstation 3100. Part of
the speed derives from the frequent repetition of many
words in large texts.

116

random sample of 1000 lines from two large texts 7.
The sample contained nearly 6000 words, with 30
true spelling errors. Of these, 14 were corrected
appropriately, and 14 were found but substituted by
an incorrect alternative or not corrected at all. Of the
14 appropriately corrected errors, 9 were errors in
diacritics only. The system only missed 2 errors,
which it assumed to be proper names (both reported
at the end of the file (cf. section 5)). It also produced
18 false alarms, 11 of which were caused by very in-
frequent jargon or inflected word forms missing
from the dictionary.

Comparison with other spell checkers is hardly
possible. For Dutch, only elementary spell checkers
based on simple word lookup are available. If this
method is applied to the sample text with the same
dictionary as used in the full system, the result is en-
tirely different. Such a simple spell checker marks
217 words as misspelled. Among these are not only
the 21 true errors and the 9 errors wrongly placed
diacritics, but also 37 abbreviations and proper
names, and 150 compounds. This amounts to a total
of 187 false alarms!

The sentence level requires considerably more
time. Error-free short sentences can be parsed at a
speed of four or more words per second, but long
sentences containing one or more errors may require
several seconds per word (including correction,
which is also rather time consuming). For the texts
mentioned in footnote 7 (110,000 words in total), the
CPU time required for parsing was approximately 7
hours.

But what counts is not only speed; quality is at
least equally important. Preliminary tests have
shown satisfactory results. A 150 sentence spelling
test for secretaries and typists, with an average sen-
tence length between six and seven, was performed
within nine minutes (elapsed time) leaving only
three errors undetected, correcting the other 72
errors appropriately and producing no false alarms.
(Human subjects passed the test if they could com-
plete it within ten minutes making at most ten mis-
takes.) The three undetected errors involved seman-
tic factors, and were therefore beyond the scope of
the system. The rightly corrected errors were typo-
graphical and (mainly) orthographical errors,
agreement errors and errors in idiomatic expres-
sions.

7These manuscripts are representative for texts
submit ted to the system by a publisher who has access to
it. A typical example is a text concerning employment
legislation and collective wage legislation of over 660,000
characters (a total of 92,000 words) of plain text with
mark-up instructions. Checking the words and correcting
misspelled words took 16 CPU minutes, which results in a
speed of nearly 100 words per CPU second. A smaller text
in the same content domain (150,000 characters in 27,500
words) was checked and corrected at word level in 4.5
minutes of CPU time, which is over 100 words per CPU
second.

Other spelling exercises also showed good results
(most errors detected and most corrected properly,
very few false alarms, if any). A typical text was cho-
sen from a text book with correction exercises for
pupils. In contrast with the spelling test described in
the previous paragraph, most sentences in this test
contained more than one spelling error. The errors
varied from superfluous or missing diaeresis to split
compounds and d/t-errors. On a total of 30 sentences,
the system discovered 75 errors, of which 62 were
corrected properly, 12 miscorrected and one was
given no correction at all; it missed 7 errors, while
producing one false alarm. Although the total num-
ber of words was only half the number of words in
the previous test (457 to be precise), the system took
almost three times as much time to process it. This
was partly due to the greater average sentence
length (over 15 words per sentence) and the occur-
rence of more than one error per sentence (up to four
per sentence). The number of errors that could not
have been detected without a parser was 18. Of
these, 10 were corrected and 1 was detected but
substituted by a wrong alternative, while the parser
missed the 7 errors mentioned earlier.

On large real texts, i.e. not constructed for the
purpose of testing one's knowledge of spelling, the
system performed less well due to parsing problems.
As an example of a well written text, I took the first
1000 lines of a text mentioned in footnote 7. This
sample consisted of 7443 words in 468 sentences (an
average of nearly 16 words per sentence). At word
level it performed quite satisfactorily. It caused 12
false alarms 8, while detecting 11 true errors, of
which only 4 were properly corrected. The com-
pound analysis functioned almost flawlessly.
However, it caused 6 of the 12 false alarms, because
one single word, which was not in the dictionary,
appeared in 4 different compounds. The heuristics
for suspicious words cooperated very well with the
spelling correcter (6 correct guesses, 2 wrong).

The parser's performance however degraded
considerably. One reason was the great length of
many sentences (up to 86 words). This sometimes
caused the parser to exceed its built-in time limit, so
that it could not give a correct error message 9. Long
sentences are also highly ambiguous. This increases
the probability of finding a very awkward but error-
free parse, thereby overlooking real errors. Another
reason for the performance degradation was the
abundant use of interjections, names (between
quotes, dashes or parentheses) and colloquial
(ungrammatical) expressions. Although the parser
has some provisions for simply skipping such con-

8In 4 cases, the false alarm was caused by word
contraction. E.g. the word echtgeno(o)t(e), which is
supposed to mean echtgenoot of echtgenote (husband or wife),
was marked incorrect and substituted by echtgenoot.

9Unfortunately, the program does not keep track of
this, so no data can be specified.

117

structions, they more often than not interfere with
error detection. Fortunately, subject-verb agreement
errors indicating d/t-errors were spotted quite reli-
ably, although their number (two in this sample,
which were both corrected) is too small to draw any
firm conclusion. The detection of punctuation errors
and split compounds still needs improvement.
Whether the results justify the 30 minutes CPU time
it took to parse the 468 sentences remains to be seen.

7. Conclusions

I have shown the feasibility of building a practical
grammar-based spell checker that detects and cor-
rects the important class of morpho-syntactic errors
in normal texts (i.e., texts that have not been spe-
dally prepared before processing). The system de-
scribed in this paper is the first example of such a
spell checker for Dutch. It is currently being tested at
a large publishing company.

I have demonstrated what can be expected of the
approach I have taken. Depending on the complexity
of the sentences, the combination of a word-level
spell checker plus a syntactic parser performs from
nearly perfect to satisfactory in regard to morpho-
syntactic errors. Other types of errors cannot be
handled reliably with the current framework, partly
due to the permissive nature of both grammar and
dictionary. However, enrichment of grammar and
lexicon is only possible on an ad hoc basis. It will not
lead to a systematic improvement of the correction
process. Moreover, it is likely to interfere with the
other components. Although many details still have
to be worked out, the limits of this approach become
visible. The next major improvement must come
from analysis beyond syntax.

Acknowledgements

The author would like to thank (in random order):
Edwin Bos for commenting on earlier versions of
this paper; Alice Dijkstra, for her work on this pro-
ject and for proof-reading and commenting on this
paper; and Gerard Kempen, project leader, for dis-
cussions and comments.

References

Angell, R.C., G.E. Freund, P. Willet. 1983. Automatic
spelling correction using a trigram similarity
measure. Information Processing and Management (19),
pp. 255-261.

Berkel, Brigitte van, and Koenraad de Smedt. 1988.
Triphone analysis: a combined method for the
correction of orthographical and typographical
errors. In: Proc. 2nd Conference on applied natural
language processing. Association for Computational
Linguistics, pp. 77-83.

Daelemans, W. 1987. Studies in language technology:
an object-oriented model of morpho-phonological aspects
of Dutch. Ph.D. dissertation, University of Leuven.

Kempen, Gerard, and Theo Vosse. 1990. A language
sensitive editor for Dutch. In: Proc. Computer &
Writing III Conference, Edinburgh.

Nakazawa, Tsuneko. 1991. An extended LR parsing
algorithm for grammars using feature-based
syntactic categories. In: Proc. 5th Conference of the
European chapter of the ACL, Berlin. pp. 69-74.

Richardson, S.D. 1988. The experience of developing
a large-scale natural language text processing
system: CRITIQUE. In: Proc. 2nd Conference on
Applied Natural Language Processing. Association for
Computational Linguistics.

Schwind, Camilla. 1988. Sensitive parsing: error
analysis and explanation in an intelligent language
tutoring system. In: Proc. COLING "88, Budapest, pp.
608-613.

Tomita, Masaru. 1986. Efficient parsing for natural
language: a fast algorithm for practical systems.
Dordrecht, Kluwer.

Vosse, Theo. 1991. Detection and correction of
morpho-syntactic errors in shift-reduce parsing. In:
Tomita' s Algorithm: Extensions and Applications. R.
Heemels, A. Nijholt, K. Sikkel (Eds.). Memoranda
Informatica 91-68, Univ. of Twente, 1991, pp. 69-78.

118

