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ABSTRACT 

In this paper, we concern ourselves with an applica- 
tion of text-to-speech for speech-impaired, deaf, and 
hard of hearing people. The application is unusual 
because it requires real-time synthesis of unedited, 
spontaneously generated conversational texts 
transmitted via a Telecommunications Device for the 
Deaf (TDD). We describe a parser that we have 
implemented as a front end for a version of the Bell 
Laboratories text-to-speech synthesizer (Olive and 
Liberman 1985). The parser prepares TDD texts for 
synthesis by (a) performing lexical regularization of 
abbreviations and some non-standard forms, and (b) 
identifying prosodic phrase boundaries. Rules for 
identifying phrase boundaries are derived from the 
prosodic phrase grammar described in Bachenko and 
Fitzpatrick (1990). Following the parent analysis, 
these rules use a mix of syntactic and phonological 
factors to identify phrase boundaries but, unlike the 
parent system, they forgo building any hierarchical 
structure in order to bypass the need for a stacking 
mechanism; this permits the system to operate in 
near real time. As a component of the text-to-speech 
system, the parser has undergone rigorous testing 
during a successful three-month field trial at an 
AT&T telecommunications center in California. In 
addition, laboratory evaluations indicate that the 
parser's performance compares favorably with 
human judgments about phrasing. 

1. INTRODUCTION 

Text-to-speech researchers and developers tend to assume 
that applications of their technology will focus on edited 
text, either "canned" material such as name and address 
lists, or free text like the AP newswire. There has been 
much effort aimed at preparing text-to-speech for appli- 
cations such as caller identification and newsreading 

services, in which texts are generally proofed and the pri- 
mary challenges come from issues of name pronuncia- 
tion, intonation contouring, etc. In this paper, we con- 
cern ourselves with an application of text-to-speech for 
speech-impaired, deaf, ~md hard of hearing people. The 
application is unusual because it requires text-to-speech 
synthesis of unedited, spontaneously generated conversa- 
tional text. Moreover the synthesis must occur in near 
real time as the user is typing. 

We will describe a parser that prepares conversational 
texts for synthesis by first performing lexical regulariza- 
tion of nonstandard forms and then identifying prosodic 
phrase boundaries. The parser is derived from the pro- 
sodic phrase system presented in Bachenko and Fitzpa- 
trick (1990) and has been implemented as the front end 
of a version of the Bell Laboratories text-to-speech syn- 
thesizer (Olive and Liberman 1985). As a component of 
the text-to-speech system, the parser has undergone 
rigorous testing during a successful three-month field 
trial at an AT&T telecommunications center in Califor- 
nia. In addition, laboratory evaluations indicate that the 
parser's performance compares favorably with human 
judgments about phrasing. In Section 2 of the paper we 
describe the application and the texts. Section 3 provides 
a technical description of the parser and Section 4 
discusses evaluation of the parser's performance. 

2. THE APPLICATION 

Users of Telecommunications Devices for the Deaf 
(TDD's) can communicate with voice telephone users via 
services such as AT&T's Telecommunications Relay Ser- 
vice (TRS). During a TRS call, special operators read 
incoming TDD text to the voice telephone user and then 
type that person's spoken responses back to the TDD 
user, this makes for a three-way interaction in which the 
special operator is performing both text-to-speech and 
speech-to-text conversion. Text-to-speech synthesis 

I. AT&T Bell Laboratories, Naperville, Illinois. 
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Expected texts 
(e.g. AP newswire) 

TDD texts 

Spelling Punctuation Case Syntax 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1% errors standard upper and lower st. English 
case conventions dialect 

5% errors little or single case only written 
none language of 

the deaf 

Figure I: TDD vs. Expected Text Input 

makes it possible to automate part of this arrangement by 
reading the TDD text over the telephone to the voice 
user. The synthesizer thus replaces an operator on the 
TDD half of the conversation, providing increased 
privacy and control to the TDD user and, presumably, 
cost savings to the provider of the service. 

TDD texts present unusual challenges for text-to- 
speech. Except in laboratory experiments, large scale 
applications of text-to-speech have tended to focus on 
name pronunciation and "canned text" such as catalogue 
orders. To the best of our knowledge, the TRS text-to- 
speech field trial in California represents the first large 
scale attempt to use speech synthesis on spontaneously 
generated conversational texts, and also the first to use 
this technology on texts that are orthographically and 
linguistically non-standard. Unlike the written material 
that most text-to-speech systems are tested on, e.g. the 
AP newswire, TDD texts observe few of the writing con- 
ventions of English. All text is in upper case, and punc- 
tuation, even at major sentence boundaries, rarely occurs; 
spelling and typographical errors complicate the picture 
even further (Tsao 1990; Kukich, 1992). In addition, 
nearly all texts employ special abbreviations and lingo, 
e.g., CU stands for see you, GA is the message termina- 
tor go ahead. The following example illustrates a typical 
TDD text: 

OH SURE PLS CAIJ. ME ANYTI/V[E AFTER SAT 
MORNING AND I WILL GIVE U THE NAMES 
AND PHONE NOS OK QGA 
(Oh sure, please call me anytime after Saturday 
morning and I will give you the names and phone 
numbers. OK? Go ahead.) 

Finally, many texts are written in a variety of English 
that departs from expected lexical and syntactic patterns 
of the standard dialect (Charrow 1974). For example, 
WHEN DO I WIIJ.  CAIJ. BACK U Q GA is a short 
TDD text that we believe most native speakers of 
English would recognize as When should I call you 
back? Go ahead. The (attested) example below is less 
clear, but interpretable: 

I WISH THAT DAY I COULD LIKE TO 

MEETING DIFFERENT PEOPLE WHO DOES 
THIS JOB AND THE WAY I WANT TO SEE 
HOW THEY DO IT LIKE THAT BUT THIS 
PLACES WAS FROM SAN FRANCISCO I GUESS 

Syntactic variation in such texts is systematic and con- 
sistent (Bacbenko 1989, Charrow 1974). Although a 
complete account has yet to be formulated, Suri (1991) 
reports that aspects of the variation may be explained by 
the influence of a native language--ASL--on a second 
language--English. 

Figure 1 above summarizes the points about TDD 
texts. Spelling error estimates come from Kukich (1992) 
and Tsao (1990). 

Timing creates an additional obstacle since we expect 
TRS text-to-speech to synthesize the text while it is 
being typed, much as an operator would read it at the 
TRS center. How to chunk the incoming text now 
becomes a critical question. Word by word synthesis, 
where the listener hears a pause after each word, is the 
easiest approach but one that many people find nerve- 
wracking. N-word synthesis, where the listener hears a 
pause after some arbitrary number of words, is nearly as 
simple but runs the risk of creating unacceptably high 
levels of ambiguity and, for long texts, may be as irritat- 
ing as single-word synthesis. Our solution was to build a 
TDD parser that uses linguistic roles to break up the 
speech into short, natural-sounding phrases. With partial 
buffering of incoming text, the parser is able to work in 
near real time as well as to perform lexical regularization 
of abbreviations and a small number of non-standard 
forms. 

3. A TEXT-TO-SPEECH PARSER 

3.1. PARSER STRUCTURE AND RULES 

In constructing the parser, our goal was to come up with 
a system that (a) substitutes non-standard and abbreviated 
items with standard, pronounceable words, and (b) pro- 
duces the most plausible phrasing with the simplest pos- 
sible mechanism. Extensive data collection has been the 
key to success in regularizing lexical material, e.g. the 
conversion of fwy (pronounced "f-wee") to freeway. 
Phrasing is accomplished by a collection of rules derived 
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from the prosodic phrase grammar of Bacbenko and 
Fitzpatrick (1990), with some important modifications. 
The most radical of these is that the TDD phrasing rules 
build no hierarchical structure. Instead they rely on 
string adjacency, part of speech, word subclass and 
length to make inferences about possible syntactic consti- 
tuency and to create enough prosodic cohesion to deter- 
mine the location of phrase boundaries. 

The parser works deterministicaUy (Marcus 1980, 
Hindle 1983). It uses a small three element buffer that 
can contain either words or structures; once a lexical or 
prosodic structure is built it cannot be undone. As TDD 
text is typed, incoming words are collected in the buffer 
where they are formed into structures by rules described 
below. Phrasing rules then scan buffer structures. If a 
phrasing rule applies, all text up to the element that trig- 
gered the rule is sent to the synthesizer while, during 
synthesis, the buffer is reset and the roles restart anew. 
Once a structure has moved out of the buffer it cannot be 
recovered for exatnination by later phrasing rules. 

Our approach differs from other recent efforts to 
build small parsers for text-to-speech, e.g. 
O'Shaughnessy (1988) and Emorine and Martin (1988), 
where savings are sought in the lexicon rather than in 
processing. O'Shaughnessy (1988) (henceforth O.) 
describes a non-deterministic parser that builds sentence- 
level structure using a dictionary of 300 entries and a 
medium sized grammar, which we guess to be slightly 
under 100 rules. The lexicon is augmented by a morpho- 
logical component of 60 word suffixes used principally 
to derive part of speech; for example, .ship and -hess are 
considered good indicators that a word of two or more 
syllables has the category 'noun'. O. gives a thorough 
account o f  his parser. Much of his exposition focusses 
on technical details of the syntactic analysis, and support- 
ing linguistic data are plentiful. However, evaluation of 
O.'s proposals for speech synthesis is difficult since he 
gives us only a vague indication of how the parsed sen- 
tences would be prosodically phrased in a text-to-speech 
system. Without an explicit description of the 
syntax/prosody relation, we cannot be sure how to assess 
the suitability of O.'s analysis for speech applications. 

The system described by Emorine and Martin (1988) 
(henceforth E&M) incorporates a 300-entry dictionary 
and approximately 50 rules for identifying syntactic con- 
stituents and marking prosodic phrase boundaries. The 
rules in this system build sentence-level structures that 
are syntactically simpler than those given in O. but more 
geared to the requirements of phrasing in that prosodic 
events (e.g. pause) are explicitly mentioned in the rules. 
Unfortunately, E&M share few technical details about 
their system and, like O., provide no examples of the 
prosodic phrasing produced by their system, making 
evaluation an elusive task. 

Applications such as TRS, which requires near real 
time processing, make systems based on sentence-level 
analyses infeasible. In our parser, decisions about phras- 
ing are necessarily local--they depend on lexical informa- 
tion and word adjacency but not upon relations among 
non-contiguous elements. This combined with the need 
for lexical regularization in TDD texts motivates a much 
stronger lexicon than that of  O. or E&M. In addition, 
our parser incorporates a small number of part-of-speech 
disambiguation rules to make additional lexical informa- 
tion available to the phrasing rules. Let us briefly 
describe each of the three components that make up the 
grammar: lexicon, disambiguation rules, and phrasing 
rules. 

3.1.1. The lexicon contains 1029 entries consisting of 
words, abbreviations, and two- to three-word phrases. 
Each entry has four fields: the input word (e.g. u), the 
output orthography (you), lexical category (Noun), and a 
list of word subclasses (destress_pronoun short_subject). 
Word subclasses reflect co-occurrence patterns and may 
or may not have any relationship to lexical categories. 
For example, Inter ject ionl  includes the phrase byebye 
for now, the adverb however, the noun phrase my good- 
ness, and the verb smile, as in I APPRECIATE THE 
I-lFff.p SMILE THANK YOU SO MUCH. Both the lexi- 
cal category and subclass fields are optional--either may 
be marked as NIL. Abbreviations and acronyms are usu- 
ally nouns and make up 20% of the lexical entries. 
Nouns and verbs together make up about 50%. We 
expect that additions to the lexicon will consist mostly of 
new abbreviations and short phrases. 

3.1.2. Lexical disambiguation rules identify part-of- 
speech and expand ambiguous abbreviations. Currently, 
part-of-speech disambiguation is performed by ten rules. 
Most apply to words lexically marked for both noun and 
verb, e.g. act, call, need, assigning a single category, 
either noun or verb, when a rule's contextual tests are 
satisfied. For example, if  the third term of the buffer 
contains a word that is lexically marked as 'noun+verb', 
the word will be assigned the category 'verb' when the 
second buffer element is the word to and the first buffer 
element is either a verb or adverb. When applied to the 
word string expect to call, tiffs rule correctly analyzes 
call as a verb. Other part-of-speech rules distinguish the 
preposition to from the use of to as an infinitive marker, 
and distinguish the preposition vs. verb uses of like. 

Ambiguous abbreviations are items such as no, which 
may signify either number or the negative particle. Since 
TDD texts lack punctuation, the only clue to usage in 
such cases is local context, e.g. the presence of the words 
the or phone before no are used as disambiguating con- 
text to identify no as number. 

3.1.3. Phrasing rules consider part-of-speech, word 
subclass and length (as measured by word count) to 
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TDD ~ Modem 
User 

TDDParser :>  

Figure 2: Block Diagram of TDD/TTS System 

T/'S 
Voice 

User 

identify phrase boundary locations. These rules are 
strictly ordered. In general, they instruct the synthesizer 
to set off interjections (e.g. wow, oh ok, etc.), and to 
insert a phrase boundary before non-lexical coordinate 
conjunctions (e.g. and in I don't  recall that and am not 
sure, see Bachenko and Fitzpatrick (1990:163)), before 
sentences, and before subordinate conjunctions (after, 
during, etc.). Boundaries are also inserted at noun-verb 
junctures unless the noun is short, and at prepositional 
phrase boundaries unless the prepositional phrase is 
short. A short noun is a single word noun phrase such 
as a pronoun or demonstrative (this, that); a short prepo- 
sitional phrase is one with a pronominal object (with me, 
about it, etc.). Hence the noun-verb rule will produce 
the phrasings below, where double bars mark phrase 
boundaries (this and the prepositional phrase rule are 
adaptations of the verb and length rules, respectively, 
given in Bachenko and Fitzpatrick (1990)). 

MY CAR [[ IS HAVING A TRANSMISSION 
PROBLEM 

IT IS HAVING I[ A TRANSMISSION PROBLEM 

Our formulation of the phrasing rules assumes that, in 
the absence of syntactic structure, the subclass member- 
ship, part-of-speech and string position can provide 
sufficient information to infer structure in many cases. 
For example, we are assuming that the subclass 
'nominative_pronoun', which includes he, she, we, etc., 
acts consistently as the leading edge of a sentence, so 
that the parser can compensate somewhat for the lack of 
punctuation by identifying and setting off some top-level 
sentential constituents. Similarly, prepositions are 
assumed to act consistently as the leading edge of a 
prepositional phrase; the parser guesses about preposi- 
tional phrase length by checking the word class of the 
element following the preposition to see if the object is 
pronominal. 

The phrase rules thus attempt to seek out major syn- 
tactic constituents. If there is evidence of constituency, 
the parser may look for a short constituent or it will sim- 
ply insert a prosodic boundary at a presumed syntactic 
boundary (e.g. a verb phrase, sentence or subordinate 
conjunction). 

3.2. PARSER I M P L E M E N T A T I O N  

3.2.1. SYSTEM ARCHITECTURE 

The quickest way to incorporate a TDD parser into a ser 
vice using text-to-speech (TrS)  synthesis is to implemen 
the parser in a separate front-end module to the text-to 
speech system. The parser filters the input stream from 
TDD modem and sends the processed text to the text-to 
speech system where it is synthesized for the voice tele 
phone user, as shown in the block diagram in figure 2 
This architecture minimizes the need to modify an~ 
existing equipment or system. Also, it allows us u 
maintain and change the parser module without introduc 
ing substantial, or unpredictable, changes elsewhere ii 
the system. 

3.2.2. I M P L E M E N T A T I O N  

Integrating the TDD parser into a near real time systen 
architecture is a difficult task. To achieve it, the parse 
must (a) filter the TDD input stream in real-time in orde 
to identify tokens, i.e. words, abbreviations, and expres 
sions, that are suitable for processing by parser rules, an~ 
(b) group these tokens into natural sounding phrases tha 
can be sent to the text-to-speech system as soon as the,. 
are formed. 

In an ideal situation, it is desirable to parse the entir 
TDD input before sending the processed text to the text 
to-speech synthesizer. But the practical situatio~ 
demands that the voice user hear TDD text synthesizeq 
as soon as it is reasonably possible so that long period 
of silence can be prevented. Figure 3 below shows th, 
basic architecture chosen to implement the parse 
described in this paper. 

3.2.2.1. The canonical input filter process has to de.~ 
with the TDD input characters as they are being typed 
The output of the canonical filters consists of TDD wor, 
tokens i.e. groups of characters separated by whit 
spaces. Input characters arrive at irregular speeds wit 
nondeterministic periods of pauses due to uneven typin 
by the TDD user. Also incidences of spelling erro~ 
typographical mistakes, and attempts to amend previousl 
typed text occur at very irregular rates. Even the TDI 
modem can contribute text to the input stream that i 
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seen by the canonical input filter. For instance, the TDD 
modem might periodically insert a carriage-return charac- 
ter to prevent text wraparounds on tim special operator's 
terminal. Unfommately, these carriage-return characters 
could split words typed by tim TDD user into incoherent 
parts, e.g., advantage might become adva<CR>ntage. 

Since the voice telephone user needs to hear TDD 
text synthesized after some, hopefully short, interval of 
time, the input filter cannot wait indefinitely for TDD 
characters that are delayed in arriving, as might occur 
when the TDD user pauses to consider what to type next. 
Hence, the filter includes an input character timeout 
mechanism. The timeout interval is set to an appropri- 
ately short duration to ensure the timely synthesis of 
available TDD text, but still long enough to prevent the 
exclusion of forthcoming input characters. 

3.22.2. Lexigraphical analysis examines the TDD 
word tokens to identify contiguous words that should be 
grouped together as individual units. The multi-word 
expressions include contractions (e.g. "it . . . .  s" which 
becomes "it's'3 and commonly used short phrases that 
can be viewed as sIngle lexical units (e.g."ray goodness", 
"as long as", and "mother in law"). A simple stacking 
mechanism is used to save tokens that are identified as 
potential elements of multi-word expressions. The 
tokens are stacked until the longest potential multi-word 
expression has been identified, with three words being 
the maximum. After which the stack is popped and the 
corresponding structures (described below) are con- 
structed. 

3.223. The lexical lookup process builds a tdd- 
term structure (record) from these tokenized words and 
multi-word expressions in preparation for invoking the 
phrasal segmentation rules. Fields in the structure 
include the tokenized input text (the original orthographic 
representation), the output orthography, lexical category 
(Noun, Verb, Adverb, NIL, etc.), word subclass, and 
other fields used internally by the phrasal segmentation 
process. At this point in the processing only the input 
text field has any non-nnll information. The output 
orthography, lexical category, and word subclass fields 
are filled via lexical lookup. 

The lexicon is organized into the four fields men- 
tioned above. The tdd-term input text field is compared 
with the corresponding fieM in the lexicon until a match 
is found and the three remaining fields in the matched 
entry am then copied into the tdd-term structure. If no 
match is found, then the input text field is copied into the 
output text field and the other two lexicon fields are set 
to NIL. 

As an illustration, ff the single letter u is identified as 
our TDD token, the lexical lookup process might return 
with a tdd-term stmcnne that looks like: 

input text: "u" 
output text: "you" 
lexical category: NOUN 
subclasses: (DESTRESS_PRONOUN 

SHORT_SUBJECT) 
other fields: NIL. 

For tim input text oic, the structure might look like: 

input text: "oic" 
output text: "oh, I see" 
lexical category: INTJ 
subclasses: INTERJECTION 1 
other fields: NIL. 

32.2.4. The phrasal segmentation process applies a 
modest set of disambiguation and phrasing roles to a 
sliding window containing three contiguous tdd-term 
structures. In the start condition the sliding window wiLl 
not have any tdd-term structures within it. Each new 
tdd-term structure generated by lexical lookup enters the 
first term position in tim window, bumping existing terms 
forward one position with the last (third term) discarded 
after its output orthography is copied into a text buffer 
awaiting transmission to the text-to-speech synthesizer. 
The various rules described in Section 3.1 above are then 
applied to the available tdd-term structures. After a pro- 
nounceable phrase is identified, the output orthography of 
all active tdd-terms is then copied to the TTS text buffer 
which is subsequently sent to the synthesizer for play- 
back to the voice telephone user. Also, the invocation of 
a timeout alarm due to tardy TDD input text causes 
flushing of the sliding window and text buffer into tim 
synthesizer. The sliding window and T r s  text buffer axe 
cleared and the roles restarted anew. 

TDD Text Input 

Canonical Input Filter 

Lexigraphical Analysis 

Lexica! Lookup 

Phrasal Segmentation 

Figure 3: TDD Parser Architecture 
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Listed below are a few examples of TDD text pro- 
cessed by the parser. 

TDD: I DONT THINK SO I WILL THINK 
ABOUT IT GA 

T/S: 
I don't think so 
I will think about it. 
Go ahead. 

TDD: HELLO HOW ARE U Q GA 
TTS: 

hello 
how are you? 
Go ahead. 

TDD: OK YES I AM WILLING TO GIVE 
INFO GA 

TTS: 
okay 
yes 
I am willing 
to give information. 
Go ahead. 

TDD: MY GOODNESS UR MOTHER IN 
LAW IS HERE GA 

ITS: 
my goodness 
your mother in law 
is here. 
Go ahead. 

4. EVALUATION OF PERFORMANCE 

Evaluation of the parser has involved two quite different 
forms of testing: a field trial and laboratory evaluation. 
First, the parser was implemented as a component in a 
version of the Bell Labs text-to-speech synthesizer (Olive 
and Liberman 1985). The synthesizer forms the core of 
a telecommunications system that ran for three months as 
a feature of TRS in California. Several thousand TDD 
texts were processed by the system. Although restric- 
tions on confidentiality prevented us from collecting 
actual TDD text data, results of the field trial far sur- 
passed expectations: disconnect rates for text-to-speech 
calls averaged less than 20% and follow-up surveys indi- 
cated a high degree of interest in and acceptance of the 
technology. 

A second type of testing that has enabled us to focus 
on the parser involves the collection of data from a ques- 
tionnaire given to TDD users. Phrasing for these data 
was assigned manually by a linguist unfamiliar with the 
rules of the parser to allow for comparison with the 
parser's output. 

Several issues arise in the comparison of human 
judgements of phrasing with those of a phrase parser's 
output. One of the more ubiquitous is that of phrasal 

balancing. Apparently acting under rhythmic coastraint.~ 
speakers tend to aim for equivalent numbers of stresse~ 
syllables on either side of a break. However, the incot 
potation of rhythm into phrasing varies from speaker t, 
speaker, as well as being partially dependent on semanti 
intent. For example, the sentence so I feel there shoul, 
be a better system to say bye, taken from our data, coul, 
be phrased either as (a), (b), or (c): 

(a) so I feel there should be [I a better system to 
say bye 

(b) so I feel I] there should be II a better system to 
say bye 

(c) so I feel II there should be a better system I I to 
say bye 

If  the parser assigns, for example, the phrasing in (~ 
while the human judge assigns (b) it must be counted a 
qualitatively different from the parser's assignment of 
misleading boundary, where the bearer's understandin 
of the import of the utterance is altered because of th 
erroneous boundary placement. An example of mislead 
ing boundary placement as assigned by the parser i 
given below, where the bearer is incorrectly led to intel 
pret well as a modification of see, rather than as 
discourse comment. 

oh i see well I [ so i call my boss 

In a similar vein, giving equal weight in an evalu~ 
tion to the locations where pauses do and do not occur i 
misleading. The absence of a phrasal boundary betwee 
two words is much more common than the presence of 
boundary, so that predicting the absence of a boundary i 
always safer and leads to inflated evaluation scores th~ 
make comparison of systems difficult. For example, i 
the (a) sentence above there are 12 potential prosodi 
events, one after each word. If  a given system assigr 
no breaks in this sentence, and if non-events are give 
equal weight with events, then the system will get 
score for this sentence of 91.6 percent since it gets l 1 c 
the 12 judgments right. Also, if a system assigns o~ 
break in this utterance, but puts it in a clearly inappropr 
ate place, say before the word bye, it will get a score c 
83 percent since it gets 10 of the 12 judgements righ 
While 83 percent sounds like a decent score for a systex 
that must capture some subjective performance, tit 
method of evaluation has completely failed to capture tt 
fact that assigning an inappropriate prosodic break in th 
instance has completely misled the listener. Therefor 
we need to evaluate a phrasing system on the basis c 
positive occurrences of phrase boundaries only. 

Assigning phrases to TDD output is not a clear-c1 
task. The output is not intended to be spoken anq 
because of the device, it has telegraphic characteristic 
In addition, many TDD users do not have standard sp, 
ken English at their command. Nevertheless, an effort 
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CATEGORY ERROR EXAMPLE 

Adverbial modification 75 why not  * surely  11 i think need interview 

Ambiguous pronoun 59 who i long ] I to talk to * it will be great 

Ambiguous Interjection 
(sorry, no) 53 no * other than that I [ 

Verbal Complement 44 let me * I I hear II 

Relative Clause 43 give your calling number * and number * [ I you want 

Non-Standard Syntax 39 there a pause 

Conjunction 36 that's all * and just  once [ I did we get 

Copular verb i 'm * I I a nice person 

Subordinate clause 

31 

20 as i said before * l feel  that way 11 because 

Idioms 19 i think the survey interview I I is all * I I right with me 

Nominal modification 18 i f  i u s e  I I pay * II phone 

Appositive NP 13 i think *[ l they *11 the crs 11 

Figure 4: Distribution of TDD Production Errors 

was made to approximate the performance of TRS opera- 
tors who speak the TDD output to voice users. Care was 
also taken to mark as parser errors those prosodic events 
that would mislead the listener. This is a task that, in 
itself, is problematic because of the human error involved 
in the judgments. We regard the field trial as the 
appropriate method of evaluation here, and we use the 
results of the laboratory test to help us characterize the 
parser's failures rather than to evaluate the parser. 

After the phrasing was assigned manually, the TDD 
data were run through the parser, and the parser's phras- 
ing was compared with the human judgments. Approxi- 
mately 20% of the corpus had been used to extrapolate 
rules for the parser, while the remainder of the corpus 
was saved for testing only; there was no appreciable per- 
formance difference between the two data subsets. The 
corpus contained 8788 words and, according to the 
human judgement, 2922 phrases. Since punctuation in 
these data is sparse, very few of the actual phrase boun- 
daries come "for free." Even so, the parser performed 
well: in the 2922 phrases it produced 573 misleading 
errors, rendering 80.4% of the phrases acceptably. 
(There were 896 sites where the parser produced a phras- 
ing different from that of the human judge, but which we 
judged to be not misleading.) 

The parser's error rate reflects the constraints of its 
construction as a real-time system, in particular, its three 
term buffer size, its lack of hierarchical structure building 
rules and its pared down lexicon. Figure 4 gives a char- 
acterization of the most frequently encountered parsing 
errors, along with their frequency of occurrence, and an 
example for each characterization. In the examples, ' [ l '  
represents a prosodic pause and "*' indicates that the 
parser performed incorrectly at this site. 

Most of the parsing errors given in Figure 4 would 
be resolvable if the parser were to incorporate non-local 
structural information. For example, the pronouns it  and 

you  function as both subject and object. In a three ele- 
ment buffer, then, the status of it  in to it  wi l l  is undecid- 
able, since it can be the object of to or the subject of 
will.  In  the context of the sentence i have  f r i ends  who  i 
long to talk  to it  wi l l  be great ,  where an element 
corresponding to who  functions as the object of to, the 

function of it  as subject of wil l  be great ,  and the con- 
comitant prosodic break before it, are apparent, but only 
when the structure of the w h o  relative clause is available. 

The errors involving non-standard syntax would 
require sublanguage roles that indicate the possibility of 
non-overt subjects (oh i see  understand)  and copulas 
( there  a pause )  among other things, but again, given the 
limitation to local information and the lack of punctua- 
tion, this is not straightforward. For example, oh i see  

unders tand  could continue as that  i don ' t  speak  well. 

A smaller set of errors is undecidable even given 
non-local structural information, and require further prag- 
matic knowledge of the discourse. For example, the 
decision as to which clause the adverb occasional ly  
modifies in other  than that  the serv ices  is great  occa-  
s ional ly  some  operators  are  pre t t y  s low depends on 
knowing that one does not give expansive praise to 
something that happens only occasionally. 

In general, it appears that the parser's accuracy in 
phrasing the incoming messages cannot he improved 
without a severe loss in real time efficiency that the 
storage of hierarchical structure would involve. Given 
this situation, it is worthwhile to consider that. despite 
what is probably about a 20% error rate in the system, 
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consumers used it successfully and willingly. It may be 
that the system did no worse than the trs operators who, 
unlike our laboratory linguist, do not have the luxury of 
stopping to consider the felicity of a particular phrasing. 
This may be compounded with the possibility that users 
may be able to compensate more easily for machine 
degradation of an utterance than for an operator's error, 
since their expectations of the latter's performance are 
greater. 

5. CONCLUSION 

We have described a text-to-speech parser for conver- 
sational texts generated by users of TDD's. The parser's 
main ta-ck.~ are to provide some regularization of non- 
standard items and to determine prosodic phrasing of the 
text. Phrasing allows processing to take place in near 
real time because the synthesizer can generate speech 
while the TDD message is being typed instead of waiting 
for the finished text. FinaUy, although incorporating a 
relatively small vocabulary and rule set, the parser has 
proven unexpectedly successful in both laboratory and 
field tests, 
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