
A PARSER FOR REAL-TIME SPEECH SYNTHESIS OF
CONVERSATIONAL TEXTS

J o a n B a c h e n k o
J e f f r e y D a u g h e r t y t
E i l een F i t z p a t r i c k

A T & T Bel l Labora to r i e s
M u r r a y Hill , NJ 07974

ABSTRACT

In this paper, we concern ourselves with an applica-
tion of text-to-speech for speech-impaired, deaf, and
hard of hearing people. The application is unusual
because it requires real-time synthesis of unedited,
spontaneously generated conversational texts
transmitted via a Telecommunications Device for the
Deaf (TDD). We describe a parser that we have
implemented as a front end for a version of the Bell
Laboratories text-to-speech synthesizer (Olive and
Liberman 1985). The parser prepares TDD texts for
synthesis by (a) performing lexical regularization of
abbreviations and some non-standard forms, and (b)
identifying prosodic phrase boundaries. Rules for
identifying phrase boundaries are derived from the
prosodic phrase grammar described in Bachenko and
Fitzpatrick (1990). Following the parent analysis,
these rules use a mix of syntactic and phonological
factors to identify phrase boundaries but, unlike the
parent system, they forgo building any hierarchical
structure in order to bypass the need for a stacking
mechanism; this permits the system to operate in
near real time. As a component of the text-to-speech
system, the parser has undergone rigorous testing
during a successful three-month field trial at an
AT&T telecommunications center in California. In
addition, laboratory evaluations indicate that the
parser's performance compares favorably with
human judgments about phrasing.

1. INTRODUCTION

Text-to-speech researchers and developers tend to assume
that applications of their technology will focus on edited
text, either "canned" material such as name and address
lists, or free text like the AP newswire. There has been
much effort aimed at preparing text-to-speech for appli-
cations such as caller identification and newsreading

services, in which texts are generally proofed and the pri-
mary challenges come from issues of name pronuncia-
tion, intonation contouring, etc. In this paper, we con-
cern ourselves with an application of text-to-speech for
speech-impaired, deaf, ~md hard of hearing people. The
application is unusual because it requires text-to-speech
synthesis of unedited, spontaneously generated conversa-
tional text. Moreover the synthesis must occur in near
real time as the user is typing.

We will describe a parser that prepares conversational
texts for synthesis by first performing lexical regulariza-
tion of nonstandard forms and then identifying prosodic
phrase boundaries. The parser is derived from the pro-
sodic phrase system presented in Bachenko and Fitzpa-
trick (1990) and has been implemented as the front end
of a version of the Bell Laboratories text-to-speech syn-
thesizer (Olive and Liberman 1985). As a component of
the text-to-speech system, the parser has undergone
rigorous testing during a successful three-month field
trial at an AT&T telecommunications center in Califor-
nia. In addition, laboratory evaluations indicate that the
parser's performance compares favorably with human
judgments about phrasing. In Section 2 of the paper we
describe the application and the texts. Section 3 provides
a technical description of the parser and Section 4
discusses evaluation of the parser's performance.

2. THE APPLICATION

Users of Telecommunications Devices for the Deaf
(TDD's) can communicate with voice telephone users via
services such as AT&T's Telecommunications Relay Ser-
vice (TRS). During a TRS call, special operators read
incoming TDD text to the voice telephone user and then
type that person's spoken responses back to the TDD
user, this makes for a three-way interaction in which the
special operator is performing both text-to-speech and
speech-to-text conversion. Text-to-speech synthesis

I. AT&T Bell Laboratories, Naperville, Illinois.

25

Expected texts
(e.g. AP newswire)

TDD texts

Spelling Punctuation Case Syntax
.

1% errors standard upper and lower st. English
case conventions dialect

5% errors little or single case only written
none language of

the deaf

Figure I: TDD vs. Expected Text Input

makes it possible to automate part of this arrangement by
reading the TDD text over the telephone to the voice
user. The synthesizer thus replaces an operator on the
TDD half of the conversation, providing increased
privacy and control to the TDD user and, presumably,
cost savings to the provider of the service.

TDD texts present unusual challenges for text-to-
speech. Except in laboratory experiments, large scale
applications of text-to-speech have tended to focus on
name pronunciation and "canned text" such as catalogue
orders. To the best of our knowledge, the TRS text-to-
speech field trial in California represents the first large
scale attempt to use speech synthesis on spontaneously
generated conversational texts, and also the first to use
this technology on texts that are orthographically and
linguistically non-standard. Unlike the written material
that most text-to-speech systems are tested on, e.g. the
AP newswire, TDD texts observe few of the writing con-
ventions of English. All text is in upper case, and punc-
tuation, even at major sentence boundaries, rarely occurs;
spelling and typographical errors complicate the picture
even further (Tsao 1990; Kukich, 1992). In addition,
nearly all texts employ special abbreviations and lingo,
e.g., CU stands for see you, GA is the message termina-
tor go ahead. The following example illustrates a typical
TDD text:

OH SURE PLS CAIJ. ME ANYTI/V[E AFTER SAT
MORNING AND I WILL GIVE U THE NAMES
AND PHONE NOS OK QGA
(Oh sure, please call me anytime after Saturday
morning and I will give you the names and phone
numbers. OK? Go ahead.)

Finally, many texts are written in a variety of English
that departs from expected lexical and syntactic patterns
of the standard dialect (Charrow 1974). For example,
WHEN DO I WIIJ. CAIJ. BACK U Q GA is a short
TDD text that we believe most native speakers of
English would recognize as When should I call you
back? Go ahead. The (attested) example below is less
clear, but interpretable:

I WISH THAT DAY I COULD LIKE TO

MEETING DIFFERENT PEOPLE WHO DOES
THIS JOB AND THE WAY I WANT TO SEE
HOW THEY DO IT LIKE THAT BUT THIS
PLACES WAS FROM SAN FRANCISCO I GUESS

Syntactic variation in such texts is systematic and con-
sistent (Bacbenko 1989, Charrow 1974). Although a
complete account has yet to be formulated, Suri (1991)
reports that aspects of the variation may be explained by
the influence of a native language--ASL--on a second
language--English.

Figure 1 above summarizes the points about TDD
texts. Spelling error estimates come from Kukich (1992)
and Tsao (1990).

Timing creates an additional obstacle since we expect
TRS text-to-speech to synthesize the text while it is
being typed, much as an operator would read it at the
TRS center. How to chunk the incoming text now
becomes a critical question. Word by word synthesis,
where the listener hears a pause after each word, is the
easiest approach but one that many people find nerve-
wracking. N-word synthesis, where the listener hears a
pause after some arbitrary number of words, is nearly as
simple but runs the risk of creating unacceptably high
levels of ambiguity and, for long texts, may be as irritat-
ing as single-word synthesis. Our solution was to build a
TDD parser that uses linguistic roles to break up the
speech into short, natural-sounding phrases. With partial
buffering of incoming text, the parser is able to work in
near real time as well as to perform lexical regularization
of abbreviations and a small number of non-standard
forms.

3. A TEXT-TO-SPEECH PARSER

3.1. PARSER STRUCTURE AND RULES

In constructing the parser, our goal was to come up with
a system that (a) substitutes non-standard and abbreviated
items with standard, pronounceable words, and (b) pro-
duces the most plausible phrasing with the simplest pos-
sible mechanism. Extensive data collection has been the
key to success in regularizing lexical material, e.g. the
conversion of fwy (pronounced "f-wee") to freeway.
Phrasing is accomplished by a collection of rules derived

26

from the prosodic phrase grammar of Bacbenko and
Fitzpatrick (1990), with some important modifications.
The most radical of these is that the TDD phrasing rules
build no hierarchical structure. Instead they rely on
string adjacency, part of speech, word subclass and
length to make inferences about possible syntactic consti-
tuency and to create enough prosodic cohesion to deter-
mine the location of phrase boundaries.

The parser works deterministicaUy (Marcus 1980,
Hindle 1983). It uses a small three element buffer that
can contain either words or structures; once a lexical or
prosodic structure is built it cannot be undone. As TDD
text is typed, incoming words are collected in the buffer
where they are formed into structures by rules described
below. Phrasing rules then scan buffer structures. If a
phrasing rule applies, all text up to the element that trig-
gered the rule is sent to the synthesizer while, during
synthesis, the buffer is reset and the roles restart anew.
Once a structure has moved out of the buffer it cannot be
recovered for exatnination by later phrasing rules.

Our approach differs from other recent efforts to
build small parsers for text-to-speech, e.g.
O'Shaughnessy (1988) and Emorine and Martin (1988),
where savings are sought in the lexicon rather than in
processing. O'Shaughnessy (1988) (henceforth O.)
describes a non-deterministic parser that builds sentence-
level structure using a dictionary of 300 entries and a
medium sized grammar, which we guess to be slightly
under 100 rules. The lexicon is augmented by a morpho-
logical component of 60 word suffixes used principally
to derive part of speech; for example, .ship and -hess are
considered good indicators that a word of two or more
syllables has the category 'noun'. O. gives a thorough
account o f his parser. Much of his exposition focusses
on technical details of the syntactic analysis, and support-
ing linguistic data are plentiful. However, evaluation of
O.'s proposals for speech synthesis is difficult since he
gives us only a vague indication of how the parsed sen-
tences would be prosodically phrased in a text-to-speech
system. Without an explicit description of the
syntax/prosody relation, we cannot be sure how to assess
the suitability of O.'s analysis for speech applications.

The system described by Emorine and Martin (1988)
(henceforth E&M) incorporates a 300-entry dictionary
and approximately 50 rules for identifying syntactic con-
stituents and marking prosodic phrase boundaries. The
rules in this system build sentence-level structures that
are syntactically simpler than those given in O. but more
geared to the requirements of phrasing in that prosodic
events (e.g. pause) are explicitly mentioned in the rules.
Unfortunately, E&M share few technical details about
their system and, like O., provide no examples of the
prosodic phrasing produced by their system, making
evaluation an elusive task.

Applications such as TRS, which requires near real
time processing, make systems based on sentence-level
analyses infeasible. In our parser, decisions about phras-
ing are necessarily local--they depend on lexical informa-
tion and word adjacency but not upon relations among
non-contiguous elements. This combined with the need
for lexical regularization in TDD texts motivates a much
stronger lexicon than that of O. or E&M. In addition,
our parser incorporates a small number of part-of-speech
disambiguation rules to make additional lexical informa-
tion available to the phrasing rules. Let us briefly
describe each of the three components that make up the
grammar: lexicon, disambiguation rules, and phrasing
rules.

3.1.1. The lexicon contains 1029 entries consisting of
words, abbreviations, and two- to three-word phrases.
Each entry has four fields: the input word (e.g. u), the
output orthography (you), lexical category (Noun), and a
list of word subclasses (destress_pronoun short_subject).
Word subclasses reflect co-occurrence patterns and may
or may not have any relationship to lexical categories.
For example, Inter ject ionl includes the phrase byebye
for now, the adverb however, the noun phrase my good-
ness, and the verb smile, as in I APPRECIATE THE
I-lFff.p SMILE THANK YOU SO MUCH. Both the lexi-
cal category and subclass fields are optional--either may
be marked as NIL. Abbreviations and acronyms are usu-
ally nouns and make up 20% of the lexical entries.
Nouns and verbs together make up about 50%. We
expect that additions to the lexicon will consist mostly of
new abbreviations and short phrases.

3.1.2. Lexical disambiguation rules identify part-of-
speech and expand ambiguous abbreviations. Currently,
part-of-speech disambiguation is performed by ten rules.
Most apply to words lexically marked for both noun and
verb, e.g. act, call, need, assigning a single category,
either noun or verb, when a rule's contextual tests are
satisfied. For example, if the third term of the buffer
contains a word that is lexically marked as 'noun+verb',
the word will be assigned the category 'verb' when the
second buffer element is the word to and the first buffer
element is either a verb or adverb. When applied to the
word string expect to call, tiffs rule correctly analyzes
call as a verb. Other part-of-speech rules distinguish the
preposition to from the use of to as an infinitive marker,
and distinguish the preposition vs. verb uses of like.

Ambiguous abbreviations are items such as no, which
may signify either number or the negative particle. Since
TDD texts lack punctuation, the only clue to usage in
such cases is local context, e.g. the presence of the words
the or phone before no are used as disambiguating con-
text to identify no as number.

3.1.3. Phrasing rules consider part-of-speech, word
subclass and length (as measured by word count) to

27

TDD ~ Modem
User

TDDParser :>

Figure 2: Block Diagram of TDD/TTS System

T/'S
Voice

User

identify phrase boundary locations. These rules are
strictly ordered. In general, they instruct the synthesizer
to set off interjections (e.g. wow, oh ok, etc.), and to
insert a phrase boundary before non-lexical coordinate
conjunctions (e.g. and in I don't recall that and am not
sure, see Bachenko and Fitzpatrick (1990:163)), before
sentences, and before subordinate conjunctions (after,
during, etc.). Boundaries are also inserted at noun-verb
junctures unless the noun is short, and at prepositional
phrase boundaries unless the prepositional phrase is
short. A short noun is a single word noun phrase such
as a pronoun or demonstrative (this, that); a short prepo-
sitional phrase is one with a pronominal object (with me,
about it, etc.). Hence the noun-verb rule will produce
the phrasings below, where double bars mark phrase
boundaries (this and the prepositional phrase rule are
adaptations of the verb and length rules, respectively,
given in Bachenko and Fitzpatrick (1990)).

MY CAR [[IS HAVING A TRANSMISSION
PROBLEM

IT IS HAVING I[A TRANSMISSION PROBLEM

Our formulation of the phrasing rules assumes that, in
the absence of syntactic structure, the subclass member-
ship, part-of-speech and string position can provide
sufficient information to infer structure in many cases.
For example, we are assuming that the subclass
'nominative_pronoun', which includes he, she, we, etc.,
acts consistently as the leading edge of a sentence, so
that the parser can compensate somewhat for the lack of
punctuation by identifying and setting off some top-level
sentential constituents. Similarly, prepositions are
assumed to act consistently as the leading edge of a
prepositional phrase; the parser guesses about preposi-
tional phrase length by checking the word class of the
element following the preposition to see if the object is
pronominal.

The phrase rules thus attempt to seek out major syn-
tactic constituents. If there is evidence of constituency,
the parser may look for a short constituent or it will sim-
ply insert a prosodic boundary at a presumed syntactic
boundary (e.g. a verb phrase, sentence or subordinate
conjunction).

3.2. PARSER I M P L E M E N T A T I O N

3.2.1. SYSTEM ARCHITECTURE

The quickest way to incorporate a TDD parser into a ser
vice using text-to-speech (TrS) synthesis is to implemen
the parser in a separate front-end module to the text-to
speech system. The parser filters the input stream from
TDD modem and sends the processed text to the text-to
speech system where it is synthesized for the voice tele
phone user, as shown in the block diagram in figure 2
This architecture minimizes the need to modify an~
existing equipment or system. Also, it allows us u
maintain and change the parser module without introduc
ing substantial, or unpredictable, changes elsewhere ii
the system.

3.2.2. I M P L E M E N T A T I O N

Integrating the TDD parser into a near real time systen
architecture is a difficult task. To achieve it, the parse
must (a) filter the TDD input stream in real-time in orde
to identify tokens, i.e. words, abbreviations, and expres
sions, that are suitable for processing by parser rules, an~
(b) group these tokens into natural sounding phrases tha
can be sent to the text-to-speech system as soon as the,.
are formed.

In an ideal situation, it is desirable to parse the entir
TDD input before sending the processed text to the text
to-speech synthesizer. But the practical situatio~
demands that the voice user hear TDD text synthesizeq
as soon as it is reasonably possible so that long period
of silence can be prevented. Figure 3 below shows th,
basic architecture chosen to implement the parse
described in this paper.

3.2.2.1. The canonical input filter process has to de.~
with the TDD input characters as they are being typed
The output of the canonical filters consists of TDD wor,
tokens i.e. groups of characters separated by whit
spaces. Input characters arrive at irregular speeds wit
nondeterministic periods of pauses due to uneven typin
by the TDD user. Also incidences of spelling erro~
typographical mistakes, and attempts to amend previousl
typed text occur at very irregular rates. Even the TDI
modem can contribute text to the input stream that i

28

seen by the canonical input filter. For instance, the TDD
modem might periodically insert a carriage-return charac-
ter to prevent text wraparounds on tim special operator's
terminal. Unfommately, these carriage-return characters
could split words typed by tim TDD user into incoherent
parts, e.g., advantage might become adva<CR>ntage.

Since the voice telephone user needs to hear TDD
text synthesized after some, hopefully short, interval of
time, the input filter cannot wait indefinitely for TDD
characters that are delayed in arriving, as might occur
when the TDD user pauses to consider what to type next.
Hence, the filter includes an input character timeout
mechanism. The timeout interval is set to an appropri-
ately short duration to ensure the timely synthesis of
available TDD text, but still long enough to prevent the
exclusion of forthcoming input characters.

3.22.2. Lexigraphical analysis examines the TDD
word tokens to identify contiguous words that should be
grouped together as individual units. The multi-word
expressions include contractions (e.g. "it s" which
becomes "it's'3 and commonly used short phrases that
can be viewed as sIngle lexical units (e.g."ray goodness",
"as long as", and "mother in law"). A simple stacking
mechanism is used to save tokens that are identified as
potential elements of multi-word expressions. The
tokens are stacked until the longest potential multi-word
expression has been identified, with three words being
the maximum. After which the stack is popped and the
corresponding structures (described below) are con-
structed.

3.223. The lexical lookup process builds a tdd-
term structure (record) from these tokenized words and
multi-word expressions in preparation for invoking the
phrasal segmentation rules. Fields in the structure
include the tokenized input text (the original orthographic
representation), the output orthography, lexical category
(Noun, Verb, Adverb, NIL, etc.), word subclass, and
other fields used internally by the phrasal segmentation
process. At this point in the processing only the input
text field has any non-nnll information. The output
orthography, lexical category, and word subclass fields
are filled via lexical lookup.

The lexicon is organized into the four fields men-
tioned above. The tdd-term input text field is compared
with the corresponding fieM in the lexicon until a match
is found and the three remaining fields in the matched
entry am then copied into the tdd-term structure. If no
match is found, then the input text field is copied into the
output text field and the other two lexicon fields are set
to NIL.

As an illustration, ff the single letter u is identified as
our TDD token, the lexical lookup process might return
with a tdd-term stmcnne that looks like:

input text: "u"
output text: "you"
lexical category: NOUN
subclasses: (DESTRESS_PRONOUN

SHORT_SUBJECT)
other fields: NIL.

For tim input text oic, the structure might look like:

input text: "oic"
output text: "oh, I see"
lexical category: INTJ
subclasses: INTERJECTION 1
other fields: NIL.

32.2.4. The phrasal segmentation process applies a
modest set of disambiguation and phrasing roles to a
sliding window containing three contiguous tdd-term
structures. In the start condition the sliding window wiLl
not have any tdd-term structures within it. Each new
tdd-term structure generated by lexical lookup enters the
first term position in tim window, bumping existing terms
forward one position with the last (third term) discarded
after its output orthography is copied into a text buffer
awaiting transmission to the text-to-speech synthesizer.
The various rules described in Section 3.1 above are then
applied to the available tdd-term structures. After a pro-
nounceable phrase is identified, the output orthography of
all active tdd-terms is then copied to the TTS text buffer
which is subsequently sent to the synthesizer for play-
back to the voice telephone user. Also, the invocation of
a timeout alarm due to tardy TDD input text causes
flushing of the sliding window and text buffer into tim
synthesizer. The sliding window and T r s text buffer axe
cleared and the roles restarted anew.

TDD Text Input

Canonical Input Filter

Lexigraphical Analysis

Lexica! Lookup

Phrasal Segmentation

Figure 3: TDD Parser Architecture

29

Listed below are a few examples of TDD text pro-
cessed by the parser.

TDD: I DONT THINK SO I WILL THINK
ABOUT IT GA

T/S:
I don't think so
I will think about it.
Go ahead.

TDD: HELLO HOW ARE U Q GA
TTS:

hello
how are you?
Go ahead.

TDD: OK YES I AM WILLING TO GIVE
INFO GA

TTS:
okay
yes
I am willing
to give information.
Go ahead.

TDD: MY GOODNESS UR MOTHER IN
LAW IS HERE GA

ITS:
my goodness
your mother in law
is here.
Go ahead.

4. EVALUATION OF PERFORMANCE

Evaluation of the parser has involved two quite different
forms of testing: a field trial and laboratory evaluation.
First, the parser was implemented as a component in a
version of the Bell Labs text-to-speech synthesizer (Olive
and Liberman 1985). The synthesizer forms the core of
a telecommunications system that ran for three months as
a feature of TRS in California. Several thousand TDD
texts were processed by the system. Although restric-
tions on confidentiality prevented us from collecting
actual TDD text data, results of the field trial far sur-
passed expectations: disconnect rates for text-to-speech
calls averaged less than 20% and follow-up surveys indi-
cated a high degree of interest in and acceptance of the
technology.

A second type of testing that has enabled us to focus
on the parser involves the collection of data from a ques-
tionnaire given to TDD users. Phrasing for these data
was assigned manually by a linguist unfamiliar with the
rules of the parser to allow for comparison with the
parser's output.

Several issues arise in the comparison of human
judgements of phrasing with those of a phrase parser's
output. One of the more ubiquitous is that of phrasal

balancing. Apparently acting under rhythmic coastraint.~
speakers tend to aim for equivalent numbers of stresse~
syllables on either side of a break. However, the incot
potation of rhythm into phrasing varies from speaker t,
speaker, as well as being partially dependent on semanti
intent. For example, the sentence so I feel there shoul,
be a better system to say bye, taken from our data, coul,
be phrased either as (a), (b), or (c):

(a) so I feel there should be [I a better system to
say bye

(b) so I feel I] there should be II a better system to
say bye

(c) so I feel II there should be a better system I I to
say bye

If the parser assigns, for example, the phrasing in (~
while the human judge assigns (b) it must be counted a
qualitatively different from the parser's assignment of
misleading boundary, where the bearer's understandin
of the import of the utterance is altered because of th
erroneous boundary placement. An example of mislead
ing boundary placement as assigned by the parser i
given below, where the bearer is incorrectly led to intel
pret well as a modification of see, rather than as
discourse comment.

oh i see well I [so i call my boss

In a similar vein, giving equal weight in an evalu~
tion to the locations where pauses do and do not occur i
misleading. The absence of a phrasal boundary betwee
two words is much more common than the presence of
boundary, so that predicting the absence of a boundary i
always safer and leads to inflated evaluation scores th~
make comparison of systems difficult. For example, i
the (a) sentence above there are 12 potential prosodi
events, one after each word. If a given system assigr
no breaks in this sentence, and if non-events are give
equal weight with events, then the system will get
score for this sentence of 91.6 percent since it gets l 1 c
the 12 judgments right. Also, if a system assigns o~
break in this utterance, but puts it in a clearly inappropr
ate place, say before the word bye, it will get a score c
83 percent since it gets 10 of the 12 judgements righ
While 83 percent sounds like a decent score for a systex
that must capture some subjective performance, tit
method of evaluation has completely failed to capture tt
fact that assigning an inappropriate prosodic break in th
instance has completely misled the listener. Therefor
we need to evaluate a phrasing system on the basis c
positive occurrences of phrase boundaries only.

Assigning phrases to TDD output is not a clear-c1
task. The output is not intended to be spoken anq
because of the device, it has telegraphic characteristic
In addition, many TDD users do not have standard sp,
ken English at their command. Nevertheless, an effort

30

CATEGORY ERROR EXAMPLE

Adverbial modification 75 why not * surely 11 i think need interview

Ambiguous pronoun 59 who i long] I to talk to * it will be great

Ambiguous Interjection
(sorry, no) 53 no * other than that I [

Verbal Complement 44 let me * I I hear II

Relative Clause 43 give your calling number * and number * [I you want

Non-Standard Syntax 39 there a pause

Conjunction 36 that's all * and just once [I did we get

Copular verb i 'm * I I a nice person

Subordinate clause

31

20 as i said before * l feel that way 11 because

Idioms 19 i think the survey interview I I is all * I I right with me

Nominal modification 18 i f i u s e I I pay * II phone

Appositive NP 13 i think *[l they *11 the crs 11

Figure 4: Distribution of TDD Production Errors

was made to approximate the performance of TRS opera-
tors who speak the TDD output to voice users. Care was
also taken to mark as parser errors those prosodic events
that would mislead the listener. This is a task that, in
itself, is problematic because of the human error involved
in the judgments. We regard the field trial as the
appropriate method of evaluation here, and we use the
results of the laboratory test to help us characterize the
parser's failures rather than to evaluate the parser.

After the phrasing was assigned manually, the TDD
data were run through the parser, and the parser's phras-
ing was compared with the human judgments. Approxi-
mately 20% of the corpus had been used to extrapolate
rules for the parser, while the remainder of the corpus
was saved for testing only; there was no appreciable per-
formance difference between the two data subsets. The
corpus contained 8788 words and, according to the
human judgement, 2922 phrases. Since punctuation in
these data is sparse, very few of the actual phrase boun-
daries come "for free." Even so, the parser performed
well: in the 2922 phrases it produced 573 misleading
errors, rendering 80.4% of the phrases acceptably.
(There were 896 sites where the parser produced a phras-
ing different from that of the human judge, but which we
judged to be not misleading.)

The parser's error rate reflects the constraints of its
construction as a real-time system, in particular, its three
term buffer size, its lack of hierarchical structure building
rules and its pared down lexicon. Figure 4 gives a char-
acterization of the most frequently encountered parsing
errors, along with their frequency of occurrence, and an
example for each characterization. In the examples, ' [l '
represents a prosodic pause and "*' indicates that the
parser performed incorrectly at this site.

Most of the parsing errors given in Figure 4 would
be resolvable if the parser were to incorporate non-local
structural information. For example, the pronouns it and

you function as both subject and object. In a three ele-
ment buffer, then, the status of it in to it wi l l is undecid-
able, since it can be the object of to or the subject of
will. In the context of the sentence i have f r i ends who i
long to talk to it wi l l be great , where an element
corresponding to who functions as the object of to, the

function of it as subject of wil l be great , and the con-
comitant prosodic break before it, are apparent, but only
when the structure of the w h o relative clause is available.

The errors involving non-standard syntax would
require sublanguage roles that indicate the possibility of
non-overt subjects (oh i see understand) and copulas
(there a pause) among other things, but again, given the
limitation to local information and the lack of punctua-
tion, this is not straightforward. For example, oh i see

unders tand could continue as that i don ' t speak well.

A smaller set of errors is undecidable even given
non-local structural information, and require further prag-
matic knowledge of the discourse. For example, the
decision as to which clause the adverb occasional ly
modifies in other than that the serv ices is great occa-
s ional ly some operators are pre t t y s low depends on
knowing that one does not give expansive praise to
something that happens only occasionally.

In general, it appears that the parser's accuracy in
phrasing the incoming messages cannot he improved
without a severe loss in real time efficiency that the
storage of hierarchical structure would involve. Given
this situation, it is worthwhile to consider that. despite
what is probably about a 20% error rate in the system,

31

consumers used it successfully and willingly. It may be
that the system did no worse than the trs operators who,
unlike our laboratory linguist, do not have the luxury of
stopping to consider the felicity of a particular phrasing.
This may be compounded with the possibility that users
may be able to compensate more easily for machine
degradation of an utterance than for an operator's error,
since their expectations of the latter's performance are
greater.

5. CONCLUSION

We have described a text-to-speech parser for conver-
sational texts generated by users of TDD's. The parser's
main ta-ck.~ are to provide some regularization of non-
standard items and to determine prosodic phrasing of the
text. Phrasing allows processing to take place in near
real time because the synthesizer can generate speech
while the TDD message is being typed instead of waiting
for the finished text. FinaUy, although incorporating a
relatively small vocabulary and rule set, the parser has
proven unexpectedly successful in both laboratory and
field tests,

REFERENCES

Bachenko, J. A Taxonomy of Syntactic Variation in
Written Language of the Deaf. Unpublished data, 1990.

Bacheako, J. and E. Fitzpatrick. A Computational Gram-
mar of Discourse-Neutral Prosodic Phrasing in English
Computational Linguistics, 16:155-17, 1990.

Charrow, V. Deaf English. Technical Report 236, Insti-
tute for Mathematical Studies in the Social Sciences,
Stanford University, 1974.

Emorine, O. M. and P. M. Martin. The Multivoc Text-
to-Speech System. Proceedings of the Second Confer-
ence on Applied Natural Language Processing (ACL):
115-120, 1988.

Hindle, D. User Manual for Fidditch, a Deterministic
Parser. NRL Technical Memorandum#7590-142. 1983.

Kukich, K. Spelling Correction for the Telecommunica-
tions Network for the Deaf. Communications of the
ACM, 1992.

Marcus, M. A Theory of Syntactic Recognition for
Natural Language. Cambridge, MA: MIT Press, 1980.

Olive, J. P. and Liberman, M. Y. Text-to-Speech--An
Overview. Journal of the Acoustic Society of America,
Supplement 1:78, $6, 1985.

O'Shaughnessy, D. D. Parsing with a Small Dictionary
for Applications such as Text-to-Speech Computational
Linguistics, 15:97-108, 1988.

Suri, L. Language Transfer: A Foundation for Correcting
the Written English of ASL Signers. University of

Delaware Technical Report #91-19, 1991.

Tsao, Y.-C. A Lexical Study of Sentences Typed by
Hearing-Impaired TDD Users. Proceedings of 13th
International Symposium, Human Factors in Telecom-
munications, Torino, Italy, 19%201, 1990.

32

