
MORPHOLOGICAL PROCESSING
IN THE NABU SYSTEM

Jonathan Slocum
Microelectronics and Computer
Technology Corporation (MCC)

3500 West Balcones Center Drive
Austin, Texas 78759

ABSTRACT

The Nabu morphological processor is
designed to perform a number of different func-
tions, of which five have so far been identified:
analysis, guessing (about unknown words), syn-
thesis, defaulting (proposing the most likely in-
flectional paradigm for a new base form), and
coding (producing all possible inflectional
paradigm variants for a new base form). Com-
plete or very substantial analyzers have been
produced for a number of diverse languages;
other functions have been implemented as well.
This paper discusses our design philosophy, as
well as our technique and its implementation.

I N T R O D U C T I O N
Nabu is a multilingual Natural Language

Processing system under development in the
Human Interface Laboratory at MCC, for
shareholder companies. Its morphological com-
ponent is designed to perform a number of dif-
ferent functions. This has been used to produce
a complete analyzer for Arabic; very substantial
analyzers for English, French, German, and
Spanish; and small collections of rules for Rus-
sian and Japanese. In addition, other functions
have been implemented for several of these lan-
guages.

In this paper we discuss our philosophy,
which constrained our design decisions; elaborate
some specific functions a morphological com-
ponent should support; survey some competing
approaches; describe our technique, which
provides the necessary functionality while meet-
ing the other design constraints; and support our
approach by characterizing our success in
developing/testing processors for various com-
binations of language and function.

D E S I G N P H I L O S O P H Y

Before we set about designing our mor-
phological processor, we elaborated our
philosophical commitments regarding an NLP
system. These include: (1) multilingual applica-
tion, (2) fault-tolerant, fail-soft behavior, (3)
rule reversibility, (4) disparate functionality, (5)
inherent parallelism, (6) grammatical clarity,

and (7) rigorous testing.

M U L T I L I N G U A L A P P L I C A T I O N

The algorithms and their software instantia-
tion must admit application to any human lan-
guage likely to confront our system; these in-
clude the languages of major demographic
and /or economic significance (and their
relatives). Our selected representatives are
English, French, German, Spanish, Russian,
Arabic, Chinese, and Japanese.

F A U L T - T O L E R A N T , F A I L - S O F T
B E H A V I O R

Real-world NLP applications, whether for
text or interactive dialog, will be confronted
with numerous errors of various types. As far as
users are concerned, guaranteed failure in the
presence of any error is intolerable: a system
must overcome simple mistakes without discern-
able problems. For example, insignificant typing
and /or spelling mistakes should be ignored, as
should minor morphological blunders. Users do
not like to be asked for corrections of
(seemingly) simple mistakes, and of course
printed texts cannot be queried in any case. In
the presence of more serious problems, perfor-
mance should degrade only gradually. This is
nothing more than a commitment to
understanding the utterance, rather than
punishing the user for errors in it. We contend
that human-like fault-tolerant, fail-soft behavior
must be incorporated in the fundamental design
of a system: it cannot be tacked-on after system
development. Creating an applied system for a
"per fec t" natural language that is hypothesized,
but never observed, is misguided, aside from be-
ing wasteful.

R U L E R E V E R S I B I L I T Y

To the extent feasible and reasonable, the
linguistic rules in an NLP system should be re-
versible -- useful for both analysis and synthesis.
But it is not enough to have one, completely re-
versible grammar performing two functions.
Indeed, reversibility may not be always
desirable: in keeping with the commitment to
fault-tolerant, fail-soft behavior, an analyzer
should over-generate (accepting some incorrect

228

forms as input), w h i l e a synthesizer should never
produce them as output . Since these two func-
tions are, therefore, ra ther different processes,
one must search for a means to distinguish the
rules (linguistic descriptions) from the strategies
(linguistic processes, called grammars) controll-
ing their application: the former can be revers-
ible, while the lat ter might not be.

D I S P A R A T E F U N C T I O N A L I T Y

Analysis and synthesis constitute two obvious
linguistic processes (grammars imposed upon
rule sets). There are, however, even more
processes than these of interest in a practical set-
ting: that is, there may be a number of gram-
mars built from a single set of linguistic rules, as
we demonstra te below. Thus, a processor must
admit the simultaneous instantiation of a num-
ber of g rammars in order to be called general.

I N H E R E N T P A R A L L E L I S M

Acceptable runtime performance in any sig-
nificant real-world NLP setting is now under-
stood to require implementat ion on parallel
machines. Thus, g rammars must be inherently
suited to parallel execution, and such oppor-
tunities must somehow be representable in the
formalism in which the g rammars are expressed.

G R A M M A T I C A L C L A R I T Y

In any real-world application, the number of
linguistic rules and the complexities of g rammars
imposed upon them is considerable. Successful
implementat ion and maintenance thus requires
that the g rammars be clearly and concisely
stated, however powerful they may be. Not only
must the rule formalism be relatively clean and
simple, but also a g rammar must be viewable at
various levels of detail. Variable granulari ty in
the presentation enhances the opportuni ty for
comprehensibility.

R I G O R O U S T E S T I N G

In order to become practical, a system must
a d m i t - - and have undergone -- rigorous testing.
It is not enough to develop a micro-
implementation, then claim that the system can
be scaled up to become a real application
(presumably to be tested on end-users). More
than just a philosophical commitment to the
idea of testing, this requires that the system ac-
tually be fast enough during the development
phase tha t thorough testing (of grammars , etc.)
can take place at that time. If its speed is gla-
cial during the development phase, a complex
system cannot be completed, and its practicali ty
will never be shown.

M O R P H O L O G I C A L P R O C E S S E S

We have, so far, identified five interesting
morphological processes: analysis, guessing, syn-
thesis, defaulting, and coding. The first two
concern comprehension; the other three, produc-
tion.

A N A L Y S I S

Morphological analysis is a relatively well-
understood notion -- which is not to say that
there is agreement concerning what the result
should be, or how it should be produced. But,
generally speaking, analysis is agreed to involve
the decomposition of a surface-form string
(usually in English called a word) into its con-
st i tuent base-form morphemes and their func-
tional at tachments; this may be finer-grained, as
when each morpheme is associated with lexical
or other linguistic information, and indeed the
process is usually understood to imply access to
a stored lexicon of morphemes, in order to cor-
rectly identify those contained in the string.
Analysis is assumed to perform this decomposi-
tion according to a set of language-specific
strategies (i.e., a g rammar) limiting the possible
decompositions.

G U E S S I N G

In keeping with a commitment to fault-
tolerant, fail-soft behavior, a system must, e.g.,
deal with unknown words in an ut t terance by
making plausible guesses regarding their mor-
phological, lexical, syntactic, and even semantic
properties. A morphological g u e s s i n g
g r a m m a r , presumably operat ing after the
analysis g r ammar has failed, must embody
heuristic strategies, and these may well differ
from those of the analyzer, even though the rule
stock upon which they draw might be identical.
For example, while the analyzer must, sooner or
later, entertain all possible decomposition
hypotheses, the guesser might best be con-
strained to produce only the "mos t
l ikely/plausible" hypotheses.

S Y N T H E S I S

Synthesis, like analysis, is a relatively well-
understood notion, albeit characterized by
debate concerning the details. Generally speak-
ing, synthesis is the composition of a surface-
form string encoding the information contained
in one or more base-form morphemes having
known functional a t tachments . Synthesis, like
analysis, is assumed to perform this composition
as dictated by a g rammar . Note again that, in
practice, this g r ammar cannot be the simple in-
verse of the one controlling analysis: a syn-
thesizer should be prohibited from making mis-
takes that are tolerated (if, indeed, even noticed)
by an analyzer.

229

D E F A U L T I N G

Guessing is relevant to end-users, dealing as
it does with unknown words in an input ut-
terance. Developers, on the other hand, faced
with teaching the system [how to synthesize
only] the correct surface forms of words being
defined, can make use of additional functions,
such as a d e f a u l t i n g g r a m m a r . Given a root
or stem form and par t of speech, a lexical
defaulter can propose the most likely inflectional
paradigm for a word. This is better than requir-
ing the lexicographer to type in the variants, or
manually encode the paradigm in some other
fashion: greater human reliability is experienced
when validating good guesses and correcting a
few wrong ones than when entering everything
from scratch.

C O D I N G

When the lexical defaulter guesses incor-
rectly, a c o d i n g g r a m m a r could render all
potential inflectional paradigms (as permit ted by
the language), from which the lexicographer
could select the correct one(s) for the newly-
defined word. This is desirable, because greater
human reliability is experienced in selecting from
among possible inflections than in producing all
and only the correct variants.

S U R V E Y

One of the more popular frameworks for
morphological processing is the two-level model
developed by Koskenniemi [1983], modified and
extended by Kar t tunen [1983]. Two-level models
are fully reversible, performing both analysis
and synthesis, and correspond to finite-state
machines, hence they appear to enjoy some com-
putational advantages. However, there are both
theoretical and practical problems. It appears
that the model is not sufficiently powerful to ac-
count for some human languages (e.g., Icelandic,
which exhibits recursive vowel harmony). The
model can be decidedly inelegant in some
respects (e.g., in handling alternations such as
the English nominate/nominee by positing a
"lexical en t ry" nomin). There is a very sub-
stantial t ime penalty involved in compiling two-
level grammars (it may be measured in hours),
which impedes rapid debugging and testing.
Finally, the "advantages" of reversibility are ar-
guable, for reasons discussed above and below.

Affix-stripping models are commonly
employed, especially for English [Slocum, 1981].
The IBM system [Byrd, 1983] also uses affix
rules in a strictly word-based model of morphol-
ogy, but the rules are unordered and thus only
marginally may be said to constitute a gram-
mar; certainly, morphosyntactic behavior is not
highlighted. These two systems were developed
for English analysis only; they are not reversible

in any sense, and have hot been tested on other
languages. A serendipitous situation exists, in
tha t they have a certain degree of fault-tolerance
built in, though this was not a goal of the
design/implementat ion process.

In order to elucidate morphosyntax, some ap-
proaches use a simple (e.g., two-level, or similar)
model to account for orthographic behavior, and
a "g rammar of words" to analyze morpheme se-
quences syntactically (e.g., [Bear, 1986], [Russell
et al., 1986]). It does not seem that these ap-
proaches, as described, lend themselves to any
sort of reversal, or other form of rule-sharing;
furthermore, only analysis is mentioned as an
application.

Even simpler models have employed allomor-
phic segmentation; morphosyntax may be ap-
proximated by a longest-match heuristic
[Pounder and Kommenda, 1986] or defined by a
finite-state grammar [Bennett and Slocum,
1985]. The required entry of every allomorphic
variant of every word is both a theoretical and a
practical disadvantage, but runt ime processing is
speeded up as a positive consequence due to total
neglect of spelling changes. Faul t- tolerant be-
havior is not built-in, but can be almost trivially
added (whereas, in many other models, it would
be difficult to incorporate). The systems cited
here are used for analysis only.

No previous models of morphology seem to
have been used for anything but analysis, and
occasionally synthesis; the other three functions
mentioned above, and others tha t might exist,
are neglected. Although the author has dis-
cussed other functionality in earlier work
[Slocum and Bennett , 1982], even there the mor-
phological processors used for analysis, synthesis,
and default ing/coding were distinct, being im-
plemented by entirely different software
modules, and shared only the dictionary entries.

T H E N A B U T E C H N I Q U E

In Nabu, rules are separate from the
strategies imposed upon them. Rules may be
thought of as declarative in nature; they are or-
ganized in an inheritance hierarchy. The
"grammars of words" imposed upon them,
however, may be thought of as procedures -- ac-
tually, dataflow networks.

R U L E H I E R A R C H Y

The structure of the rule hierarchy is deter-
mined by linguists, purely for their own con-
venience, and implies no runtime behavior of
any kind. Tha t is, the rule hierarchy is purely
static and declarative in nature. The one con-
straint is that, at the top level, collections of
rules are distinguished by the language they
belong to -- i.e., the first division is by language.
Typically, though not necessarily, the second-

230

level division imposed by the lingusts is tha t of
category: the part-of-speech of the surface-forms
for which the rule subset is relevant. For lan-
guages tha t distinguish inflection from deriva-
tion, our linguists have generally found it con-
venient to divide rules at the third level in terms
of these two classes. Other than the top-level
language division, however, the structure of the
hierarchy is entirely at the discretion of the
responsible linguists. Consequently, we have ob-
served tha t different linguists - each responsible
for the morphological rules (and grammars) of
entire languages - prefer and employ different
organizational principles.

Rules may also be thought of as declarative
in nature -- though, in fact, for the purposes of
maintenance they embody certain procedural be-
haviors such as a self-test facility. A mor-
phological rule is an equation between one letter-
str ing+feature-set , which we call a g l o s s e m e ,
and another. One side of the equation describes
what might be called the "surface" side of a
glosseme, as it represents an encoding of infor-
mation nearer to (but not necessarily at!) the
surface-string level: all this really means is that
relatively more information is expressed in the
string par t than in the feature part . The other
side, in turn, describes what might be called the
"base" glosseme, as it represents an encoding of
information closer to (but not necessarily at!)
the base-form level, with relatively less infor-
mation expressed in the string par t than in the
feature part . It is impor tan t to note tha t the in-
formation content of the two sides is the same
- only the form of the information changes.
This is why we classify a rule as an e q u a t i o n ,
and this also admits rule reversibility in the im-
plementation.

As a trivial example of such an equation,
consider the English inflectional rule

["+s" 0] -~ [" + " (NOUN PL)].

The "surface" side, on the left, describes a
glosseme string whose last character is the letter
s [by means of the pat tern "-t-s"] and places no
constraints on the glosseme's feature set [by
means of the empty list 0]. The "base" side, on
the right, describes an equivalent glosseme whose
string lacks the final letter 8 [by means of the
pat tern " + "] and constrains the feature set [by
means of the two features (NOUN PL)]. Ex-
ecuted in one direction, this rule removes an 8
and adds the two features (NOUN PL); reversed,
the rule removes the two features (NOUN PL)
and adds the morpheme s. Obviously, this
English rule conveys the notion that a NOUN
may be inflected for PLural by means of the
[bound] morpheme s at its right end.

The plus sign (+) in a pa t te rn is used to in-
dicate whether prefixation or suffixation of the
glosseme string is being described, depending on
whether the pa t te rn precedes or follows it; or a
pa t tern may describe an entire glosseme string
via omission of the sign. In a pat tern, al-
phabetic case is important : a lower-case letter
signifies a constant, and must be matched by the
same letter (in any case) in the glosseme; an
upper-case letter signifies a restricted variable,
and must be matched by some letter from the
set over which it is defined. Thus, for example,
in English rules we use the letter V to stand for
Vowel; C, for Consonant; and G, for Gemmina t -
ing consonant. (Of course, the variable restric-
tions are entirely arb i t ra ry as far as Nabu is
concerned. Each linguist defines sets of vari-
ables and their match restrictions according to
taste and the language at hand.)

If the same variable appears more than once
in a pat tern, it is required to match the same
letter in the glosseme: the equation

[" + G G i n g " 01 = [" + G " (VERB PRPL)]

thus describes doubling of the last consonant
in an English verb, before suffixation of the
present participial morpheme. Another facility
is required for convenience in describing alter-
nation. In German, for example, certain mor-
phological operations involve the umlauting of
vowels; thus, an unmarked vowel on the "base"
side may require replacement by an umlauted
vowel on the "surface" side. If only one vowel
behaved this way, this would be no problem: the
corresponding letters would simply appear in
their places in the patterns. But there are three
vowels tha t behave like this in German (a, o,
and u) in the identical context. In order to
eliminate the need for tripling the size of the
rule base otherwise required to describe this
phenomenon, we provide the linguists with a
means for pairing-up variables, so tha t a charac-
ter matching one may be replaced by the cor-
responding character in the other 's set. Many
other languages exhibit this kind of alternation,
making this a useful technique.

A character in a pa t te rn string matches one
and only one character in a glosseme string.
Generally speaking, the characters appearing in
a pat tern string are those of the language being
described, as one would expect. Some languages,
however, lack a case distinction -- Arabic, for ex-
ample -- rendering the variable notation prob-
lematic. In this situation, upper-case letters
from the Roman alphabet are used to represent
variables in rules.

Given this f ramework, creating a bidirec-
tional rule interpreter is relatively straightfor-

231

ward. Rule execution is a mat ter of matching
according to one side of the equation and (if that
is successful) transforming according to the other
side. So long as every rule is truly an equation
(and only a human linguist can decide this, ex-
cept in trivial cases) then every rule is reversible
-- that is, can be used for comprehension as well
as production, because thc interpreter can trans-
form a rule's output back into the original in-
put. In Nabu, as noted curler, there are cur-
rently two comprehension processes (analysis and
guessing) and three production processes
(synthesis, defaulting, and coding). But neither
collections of rules nor their hierarchical struc-
ture describes such functionality.

CONTROL GRAPHS

A morphological grammar is an execution
strategy imposed upon a bocly of morphological
rules. Bearing in mind that morphological rules
can apply to the outputs of other rules (consider
the derivational process in English, as for ex-
ample when the word derivational is constructed
from derive + ation + al), and that such com-
pounding is not free, but linguistically con-
strained, it is obvious that the compounding
constraints -- as well as the individual rules
themselves -- must be accounted for. In Nabu,
an execution strategy is represented as a
dataflow network, which we loosely term a
control graph.

A control graph is a collection of nodes con-
nected by directed arcs. Each node is composed
of a bundle of morphological rules, which may
be applied when input reaches that node, and
whose output may be passed across arcs to other
nodes. There will be one or more designated
start n o d e s , where input appears and process-
ing begins (conceptually, in parallel, if there are
multiple s tar t nodes). From each star t node,
there will be a path to one or more designated
t e r m i n a l nodes , where processing ends and the
graph's output is emitted. The path may be of
arbi t rary length; s tar t nodes may themselves be
terminal nodes. In analysis, encountering a ter-
minal node entails dictionary look-up; in syn-
thesis, output of a surface-form.

There are two types of arcs, Success and
F a i l u r e ; the former are arcs across which
successfully-applied rules will pass their output,
and the latter are arcs across which the original
input to a node is passed, should no rule inside
it be successful. A successful rule is one whose
input side ("surface" or "base," depending on
whether the graph is engaged in comprehension
or production) matches the input glosseme, and
whose output side represents the same infor-
mation as was present in the input, only refor-
mulated.

Conceptually, the rule~ inside a node may be

executed in se r ies or in pa ra l l e l . The linguist
controls this by setting a flag in each node; thus,
some nodes may fire rules in parallel, while
others fire their rules serially. (In serial nodes,
rule execution terminates as soon as one rule
succeeds; there is no backup.) In either case, all
success arcs are traversed in parallel, or else all
failure arcs are traversed in parallel, depending
on whether any rule(s) succeeded -- meaning all
possible morphological analyses are produced for
later consideration.

To take a simple example, consider the word
derivations, and assume that neither it nor the
singular form derivation is in the dictionary.
An English analyzer graph might have multiple
s tar t nodes, one of which is intended (by the
linguist) for inflected nouns. The input glosseme

["derivat ions" O]

is thus passed to the node PLURAL-NOUN,
which contains, among others, the rule

["+s" 0l = [" + " (NOUN PL)].

The suffix pat tern " + s " matches the glos-
seme string, and no features are required to be
present in the glosseme, thus this rule succeeds
and produces the output glosseme

["der ivat ion" (NOUN PL)[.

If PLURAL-NOUN has been marked as a ter-
minal node (in addition to being a s tar t node),
then dictionary look-up will take place. If so, by
our assumption above it fails. Our hypothetical
graph contains a Success arc from PLURAL-
NOUN to DEVERBAL-NOUN, which contains,
among others, the rule

["+ation" (NOUN)I = ("+e" (VERB
(DERIVE NOUN +ION))).

When (and if) this rule fires, it would match
the suffix (ation) in the glosseme string
derivation, and the feature (NOUN), and there-
fore transform that glosseme into

pL)f'. 'derive" (VERB (DERIVE NOUN +ION)

Note the e restoration: rules can in principle
remove and add any letter sequence, hence affix
alternation is handled in a straightforward man-

232

ner. If DEVERBAL-NOUN has been marked as
a terminal node, then dictionary look-up will
take place: the VERB entry derive is retrieved.
The glosseme feature li~t, in addition to indicat-
ing the main-entry ("derive") and lexical catego-
ry (VERB) to look for in the dictionary, contains
sufficient information to allow transformation of
the stored entry for derive into a representation
of its surface-form realization (derivations), in
terms of syntactic category (NOUN), sub-
categorization features (PL), and semantics (the
meaning of derive, t ransformed by +ION).

There remains only one problem to account
for: that of compositional vs. non-compositional
readings. Words with strictly non-compositional
readings (e.g., fruitful, which is not computable
from fruit and ful) simply must be stored in the
dictionary; this is not a contentious claim.
Words with strictly compositional readings (e.g.,
derivation, which is computable from derive and
ation) may or may not be stored in the diction-
ary: this is an efficiency consideration, based on
the usual time vs. space trade-off, and is also not
subject to significant debate -- at least, not with
respect to theoretical implications.

The problem arises for cases where both com-
positional and non-compositional readings exist
for the same word (e.g., largely). In such situa-
tions, the non-compositional reading must of
course be stored, but it would be nice if this did
not require storage of the compositional reading
as well. In Nabu, we solve this by means of a
DECOMPOSABLE flag that must appear within
the non-compositional definition of a word, in
case that word also has a compositional reading
which is to be computed. During the course of
morphological analysis, performing successful
dictionary look-up (at a " te rmina l" node) will
affect subsequent processing: if the DECOM-
POSABLE flag is noted, then the glosseme just
submitted to dictionary .look-up will also be
passed across any success arcs leaving that node,
for further analysis. In the absence of a
DECOMPOSABLE flag, successful dictionary
look-up marks a truly terminal case, and the
results are returned (possibly along with read-
ings from other paths in the graph) forthwith.

The operations of other types of control
graphs are analogous to those of the analyzer.
The principles are the same, with small excep-
tions (some noted above), and so are not ex-
emplified here.

P R O C E S S O R S I M P L E M E N T E D

In addition to the rule and graph interpreters
per se, delivered to MCC shareholders in
mid-1985, Nabu includes a variety of tools sup-
porting the development, testing, maintenance,
and multilingual documentation of morphologi-
cal rule hierarchies and grammars. These tools

(not described in this paper, for reasons of space)
have been used to create a great many rules and
several morphological processors. Non-terminals
included, the English morph-rule hierarchy num-
bers 626 nodes; French, 434; German, 493;
Spanish, 1395; and Arabic, 882. In addition to
these mature rule hierarchies, some preliminary
work has been done on the Russian and Japanese
rule hierarchies.

ANALYZERS

The English analyzer is complete with
respect to inflection; it has been successfully
tested on, among other things, the entire collec-
tion of inflectional variants presented in
Webster's Seventh New Collegiate Dictionary
(ca. 42,500 nouns, 8,750 verbs, and 13,250
adjectives). It also accounts for the great bulk
of English derivation, as determined by various
word frequency lists, and is undergoing gradual,
evolutionary extension to the missing (low-
frequency) affixes and their combinations. A
first version of this grammar was delivered to
MCC shareholders in mid-1985, followed by
upgrades in 1986 and 1987. The current
analyzer numbers 20 nodes and 60 arcs.

As mentioned earlier, a complete Arabic mor-
phological analyzer exists; so far as we are
aware, it accounts for all morphological
phenomena in the language -- no mean feat, for
a language in which a single root form could in
theory be realized as over 200,000 surface forms,
and in which morphemes are frequently discon-
tinuous (i.e., cannot be described by simple af-
fixation models) [Aristar, 1987]. This 371-node,
l133-arc analyzer was delivered to MCC
shareholders in mid-1986, and may represent the
first complete analyzer ever produced for Arabic.

The French and German analyzers are com-
plete with respect to inflection (highly irregular
forms, like sein in German, naturally excepted).
The former numbers 71 nodes and 121 arcs; the
latter, 54 nodes and 79 arcs. The 19-node, 17-
arc Spanish analyzer is nearly complete with
respect to inflection; adjectives remain a tem-
porary exception. With respect to verbs, for ex-
ample, it has been tested on an extensive list of
conjugated verbs [Noble and Lacasa, 1980], com-
prising over 6,000 surface forms, and in the first
such test it was 970"/0 accurate.

GUESSERS

A 76-node, 116-arc German guessing graph
has been implemented and tested. It is still ex-
perimental, and incomplete, but it does go
beyond inflection to account for some deriva-
tional processes. Our Arabic guesser is actually
the Arabic analyzer graph: such strategy sharing
is not always appropriate, as discussed above,
but it would seem to be so for languages that,

233

like Arabic, are morphologically very rich, ad-
mitting as a consequence very strong predictions.

D E F A U L T E R

A 21-node, 23-arc English defaulting graph
exists. It seems to be complete (insofar as such a
processor might be), in that it constitutes a
seemingly adequate component of a dictionary
entry coding tool.

C O N C L U S I O N S
Morphological grammars in Nabu are able to

account for all compositional readings of
arbitrarily-complex surface-forms in a wide
range of languages. Furthermot'e, the formalism
and development environment are reasonably
comfortable. These claims are supported by our
implementation and large-scale testing of several
diverse grammars.

For philosophical reasons, we are opposed to
the idea that grammars (as opposed to in-
dividual rules) must be reversible: even if it were
not for the need of five-fold rather than merely
dual functionality, the need for fault-tolerance in
a practical system, without consequent fault-
exhibition, argues for separate analysis and syn-
thesis grammars. We also point out that, in our
implementations, the [non-reversible] control
graphs tend to be much smaller in size than the
hierarchies of [reversible] rules, hence the storage
penalty for "redundancy" is inconsequential.

R E F E R E N C E S
Aristar, A., "Unification and the Computa-

tional Analysis of Arabic," Computers and
Translation 2, 2, (April-June) 1987, pp. 67-75.

Bear, J., "A Morphological Recognizer with
Syntactic and Phonological Rules," Proceedings
of COLING86, Bonn, 1986, pp. 272-276.

Bennett, W.S., and J. Sloeum, "The LRC
Machine Translation System," Computational
Linguistics 11 (2-3), 1985, pp. 111-121.

Byrd, R.J., "Word Formation in Natural
Language Processing Systems," Proceedings of
the 8th IJCAI, Karlsruhe, 1983, pp. 704-706.

Karttunen, L., "Kimmo - A General Mor-
phological Processor," Texas Linguistic Forum
22, 1983, pp. 165-186.

Koskenniemi, K., "Two-level Model for Mor-
phological Analysis," Proceedings of the 8th IJ-
CAI, Karlsruhe, 1983, pp. 683-685.

Noble, J., and J. Lacasa. Handbook of
Spanish Verbs. Iowa State University Press,
Ames, Iowa, 1980.

Pounder, A., and M. Kommenda,
"Morphological Analysis for a German Text-to-
Speech System," Proceedings of COLING86,
Bonn, 1986, pp. 263-268.

Russell, G.J., S.G. Pulman, G.D. Ritchie,
and A.W. Black, "A Dictionary and Morphologi-
cal Analyser for English," Proceedings of
COLING86, Bonn, 1986, pp. 277-279.

Slocum, J., "An English Affix Analyzer with
Intermediate Dictionary Look-up," Working
Paper LRC-81-1, Linguistics Research Center,
University of Texas, February 1981.

Slocum, J., and W.S. Bennett, "The LRC
Machine Translation System: An Application of
State-of-the-Art Text and Natural Language
Processing Techniques to the Translation of
Technical Manuals," Working Paper LRC-82-1,
Linguistics Research Center, University of Texas,
July 1982.

234

