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A b s t r a c t  

One cause of failure in natural language in- 
terfaces is semantic overshoot; this is re- 
flected in input sentences which do not cor- 
respond to any semantic pattern in the sys- 
tem. We describe a system which provides 
helpful feedback in such cases by identifying 
the "semantically closest" inputs which the 
system would be able to understand. 

1. I n t r o d u c t i o n  

Natural  language interfaces have achieved a lim- 
ited success in small, well circumscribed domains, 
such as query systems for simple data  bases. One 
task in constructing such an interface is identi- 
fying the relationships which exist in a domain, 
and the possible linguistic expressions of these re- 
lationships. As we set our sights on more complex 
domains, it will become much harder to develop 
a complete or nearly complete catalog of the rele- 
vant relationships and linguistic expressions; sub- 
stantial  gaps will be inevitable. In consequence, 
many inputs will be rejected because they fail to 
match  the semantic/l inguistic model we have con- 
structed for the domain. 

We are concerned with the following question: 
what response should we give a user when his in- 
put cannot be analyzed for the reasons just  de- 
scribed? The response "please rephrase" gives the 
user no clue as to how to rephrase. This leads 
to the well-known "stonewalling" phenomenon, 
where a user tries repeatedly, without success, to 
rephrase his request in a form the system will un- 
derstand. This may seem amusing to the outside 
observer, but it can be terribly frustrat ing to the 
user, and to the sys tem designer watching his sys- 
tem being used. 

We propose instead to provide the user with 
sentences which are semantically close to the orig- 
inal input (in a sense to be defined below) and 
are acceptable inputs to the system. Such feed- 

back may  occasionally be confusing, but  we ex- 
pect that  more often it will be helpful in showing 
the system's  capabilities and suggesting possible 
rephrasings. 

In the remainder of this paper  we briefly 
review the prior work on responding to ill- 
formedness, describe our proposal and its imple- 
mentat ion as part  of a small question-answering 
system, and relate our initial experiences with this 
system. 

2. B a c k g r o u n d  

A .  R e l a t i v e  a n d  A b s o l u t e  I l l - f o r m -  

e d n e s s  

Weischedel and Sondheimer (~,Veischedel, 1983) 
have distinguished two types of ill-formedness: ab- 
solute ill-formedness and relative ill-formedness. 
Roughly speaking, an absolutely ill-formed input 
is one which does not conform to the syntactic 
and semantic constraints of the natural  language 
or the sublanguage; a relatively ill-formed input is 
one which is outside the coverage of a particular 
natural  language interface. Our concern is pri- 
marily with relative ill-formedness. For complex 
domains, we believe that  it will be difficult to cre- 
ate complete semantic models, and therefore that  
relatively ill-formed input will be a serious prob- 
lem - a problem that  it will be hard for users to 
remedy without suitable feedback. 

B .  S y n t a c t i c  a n d  S e m a n t i c  I l l -  

f o r m e d n e s s  

Earlier studies have examined both syntactically 
and semantically ill-formed input. Among the 
work on syntactically ill-formed input has been 
EPISTLE (Miller 1981), the work of Weischedel 
and Sondheimer (Weischedel 1980, Kwasney 1981, 
and Weischedel 1983), and Carbonell  and Hayes 
(Carbonell  1983). Some of this work has involved 
the relaxation of syntactic constraints; other (such 
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as Carbonell and Hayes) a reliance primarily on 
semantic structures when syntactic analysis fails. 
Our system has been primarily motivated by our 
concern about the possiblity of constructing com- 
plete semantic models, so we have focussed to date 
on semantic ill-formedness, but we believe that our 
system will have to be extended in the future to 
handle syntactic ill-formedness as well. 

C .  E r r o r  I d e n t i f i c a t i o n  a n d  C o r -  

r e c t i o n  

For some applications, it is sufficient that  the point 
of ill-formedness be identified, and the constraint 
be relaxed so that  an analysis can be obtained. 
This was the case in Wilks' early work on "Prefer- 
ence Semantics"(Wilks 1975), which was used for 
machine translation applications. In other appli- 
cations it is necessary to obtain an analysis con- 
forming to the system's semantic model in order 
for further processing of the input to take place, 
in effect "correcting" the user's input. This is 
the case for data base query (our current appli- 
cation), for command systems (such as MURPHY 
(Selfridge 1986)), and for message entry systems 
(such as NOMAD (Granger 1983) and VOX (Mey- 
ers 1985)). 

D .  S y s t e m  O r g a n i z a t i o n  

Error correction can be provided either by making 
pervasive changes to a set of rules, or by providing 
uniform correction procedures which work with a 
standard (non-correcting) set of rules. In the syn- 
tactic domain, EPISTLE is an example of the for- 
mer, the metarule approach (Weischedel 1983) an 
example of the latter. We feel that, particularly 
for semantic correction, it is important  to take the 
"uniform procedure" approach, since a semantic 
model for a large domain will be difficult enough 
to build and maintain without having to take the 
needs of a correction mechanism into account. It 
is equally important  to have a procedure which 
will operate on a system with separate syntactic 
and semantic components, so that we may reap 
the advantages of such an organization (concise- 
ness, modularity). The NOMAD system used pro- 
cedures associated with individual words and so 
was very hard to extend (Granger 1983, p. 195); 
the VOX system remedied some of these defects 
but used a "conceptual grammar" mixing syntac- 
tic and semantic constraints (Meyers 1985). The 
MURPHY system (Selfridge 1986) is most simi- 
lar to our own work in terms of the approach to 
semantic constraint relaxation and user feedback; 

however, it used a syntactic representation which 
would be difficult to extend, and required weights 
in the semantic model for the correction proce- 
dure. 

The ill-formedness we are considering may 
also be viewed as one type of violation of the in- 
tensional constraints of the data  base (constraints 
in this case on the classes of objects which may 
participate in particular relations). Intensional 
constraints have been studied in connection with 
natural language query systems by several re- 
searchers, including Mays (1980) and Gal (1985). 
In particular, the technique that  we have adopted 
is similar in general terms to that  suggested by 
Mays to handle non-existent relationships. 

In addition to the shortcomings of some of the 
systems just described, we felt it important  to de- 
velop and test a system in order to gain experience 
in the effectiveness of these correction techniques. 
Although (as just noted) many techniques have 
been described, the published reports contain vir- 
tually no evaluation of the different approaches. 

3. S y s t e m  Overv iew 
Our feedback mechanism is being evaluated in the 
context of a small question-answering system with 
a relatively standard structure. Processing of a 
question begins with two stages of syntax analysis: 
parsing, using an augmented context-free gram- 
mar, and syntactic regularization, which converts 
the various types of clauses (active and passive; 
interrogative, imperative, and declarative; rela- 
tive and reduced relative; etc.) into a canonical 
form. In this canonical form, each clause is rep- 
resented as a list consisting of: tense, aspect, and 
voice markers; the verb (root form); and a list of 
operands, each marked by "subject", "object", or 
the governing preposition. For example, "John re- 
ceived an A in calculus." would be translated to 

(past receive (subject John) (object A) 
(in calculus)) 

Processing continues with semantic analysis, 
which translates the regularized parse into an 
extended-predicate-calculus formula. One aspect 
of this translation is the determination of quanti- 
fier scope. Another aspect is the mapping of each 
verb and its operands (subject, objects, and mod- 
ifiers) into a predicate-argument structure. The 
predicate calculus formula is then interpreted as 
a data base retrieval command. Finally, the re- 
trieved data is formatted for the user. 

The translation from verb plus operands to 
predicate plus arguments is controlled by the 
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model for the domain. The domain vocabulary is 
organized into a set of verb, noun, adjective, and 
adverb semantic classes. The model is a set of 
pat terns  stated in terms of these semantic classes. 
Each pat tern  represents one combination of verb 
and operands which is valid (meaningful) in this 
domain. For example, the pat tern  which would 
match  the sentence given just  above is 

(v-receive (subject  nstudent) 
(object ngrade) (in ncourse)) 

where v-receive is the class of verbs including re- 
ceive, get, etc.; nstudent the class of students; 
ngrade the class of grades; and ncourse the class 
of course names. Associated with each pat tern  
is a rule for creating the corresponding predicate- 
argument  structure. 

4. The Diagnostic Process 
In terms of the system just  described, the analy- 
sis failures we are concerned with correspond to 
the presence in the input of clauses which do not 
match  any pa t te rn  in the model. The essence of 
our approach is quite simple: find the pat terns  
in the model which come closest to matching the 
input clause, and create sentences using these pat-  
terns. Implementa t ion of this basic idea, however, 
has required the development of several processing 
steps, which we now describe. 

Our first task is to identify the clauses to 
which we should apply our diagnostic procedure. 
Our first impulse might be to trigger the proce- 
dure as soon as we parse a clause which doesn' t  
match the model. However, the process of match-  
ing clause against model serves in our system to 
check selectional constraints. These constraints 
are needed to filter out, f rom syntactically valid 
analyses, those which are semantically ill-formed. 
In a typical query we may  have several seman- 
tically ill-foimed analyses (along with one well- 
formed one), and thus several occasions of failure 
in the matching process before we obtain the cor- 
rect analysis. 

We must  therefore wait until syntax analy- 
sis is complete and see if there is any syntactic 
analysis satisfying all selectional constraints. If  
there is no such analysis, we look for an analysis 
in which all but  one clause satisfies the selectional 
constraints; if there is such an analysis, we mark  
the offending clause as our candidate for diagnos- 
tic processing. 

Next we look for pat terns  in the model which 
"roughly match"  this clause. As we explained 
above, the regularized clause contains a verb and 

a set of syntactic cases with case labels and fillers; 
each model pa t tern  specifies a verb class and a 
set of cases, with each case slot specifying a la- 
bel and the semantic class of its filler. We define 
a distance measure between a clause and a pat- 
tern by assigning a score to each type of mismatch 
(clause and pat tern  have the same syntactic case 
with different semantic classes; clause and pat tern 
include the same semantic class but  in different 
cases; clause has case not present in pattern;  etc.) 
and adding the scores. We then select the pat- 
tern or pat terns  which, according to this distance 
measure, are closest to the offending clause. 

We now must  take each of these pat terns  and 
build from it a sentence or phrase the user can un- 
derstand. Each pa t te rn  is in effect a syntactic case 
frame, with slots whose values have to be filled 
in. If  the case corresponds to one present in the 
clause, we copy the value from the clause; if the 
case is optional, we delete it. Othewise we create 
a slot filler consisting of an indefinite article and a 
noun describing the semantic class allowed in that  
slot (for example, if the pat tern  allows members  of 
the class of students in a slot, we would generate 
the filler "a s tudent") .  When all the slots have 
been filled, we have a structure comparable to the 
regularized clause s t ructure  produced by syntactic 
analysis. 

Finally each filled-in pat tern  must  be trans- 
formed to a syntactic form parallel to that  of the 
original offending clause. (If  we don ' t  do this - 
if, for example, the input is a yes-no question and 
the feedback is a declarative sentence - the system 
output  can be quite confusing.) We isolate the 
tense, voice, aspect,  and other syntactic features 
of the original clause (this is part  of the syntactic 
regularization process) and transfer these features 
to the generated structure.  If  the offending clause 
is an embedded clause in the original sentence, we 
save the context of the offending clause (the matr ix  
sentence) and insert the "corrected" clause into 
this context. We take the resulting structure and 
apply a sentence generation procedure. The gen- 
eration procedure, guided by the syntactic feature 
markers, applies "forward" transformations which 
eventually generate a sentence string. These sen- 
tences are presented as the sys tem's  suggestions 
to the user. 

5. Examples  

The system has been implemented as described 
above, and has been tested as part  of a question- 
answering system for a small "student transcript" 
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data  base. The syntactic model currently has pat- 
terns for 30 combinations of verbs and arguments. 
While the model has been gradually growing, it 
still has sufficient "gaps" to give adequate oppor- 
tunity for applying the diagnostics. 

A few examples will serve to clarify the oper- 
ation of the system. The system has models 

(take (subject student) (object course)) 

and 

(offer (subject school) (object course)) 

but no model of the form 

(offer (subject student) (object course)) 

Accordingly, if a user types 

Did any students offer V l l ?  

(where V l l  is the name of a course), the system 
will respond 

Sorry, I don't  understand the pattern 
(students offer courses) 

and will offer the "suggestions" 

Did any students take V l l ?  

and 

Did some school offer V l l ?  

Prepositional phrase modifiers are analyzed 
by inserting a "be" and treating the result as a 
relative clause. For example, "students in V l l "  
would be expanded to "students [such that] [stu- 
dents] be in V l l " .  If the resulting clause is not 
in the semantic model, the usual correction proce- 
dures are applied. As part of our policy of limiting 
the model for testing purposes, we did not include 
a pattern of the form 

(be (subject student) (in course)) 

but there is a pattern of the form 

(enroll (subject student) (in course)) 

(for sentences such as "Tom enrolled in Vl l . " ) .  
Therefore if the user types 

List the students in Vl l .  

the system will generate the suggestions 

List the students who enroll in Vl l .  

and 

List the students. 

(the second suggestion arising by deleting the 
modifier). 

6. C u r r e n t  S t a t u s  

The system has been operational since the summer 
of 1986. Since that time we have been regularly 
testing the system on various volunteers and revis- 
ing the system to improve its design and feedback. 
We instructed the volunteers to try to use the sys- 
tem to get various pieces of information, rather 
than setting them a fixed task, so the queries tried 
have varied widely among users. 

The experimental results indicate both the 
strength and weakness of the technique we have 
described. On the one hand, semantic pattern 
mismatch is not the primary cause of failure; vo- 
cabulary overshoot (using words not in the dictio- 
nary) is much more common. In a series of tests 
involving 375 queries (by 8 users), 199 (53%) were 
successful, 95 (25%) failed due to missing vocabu- 
lary, 22 (6%) failed due to semantic pattern mis- 
match, and 59 (16%) failed for other reasons. On 
the other hand, in cases of semantic pattern mis- 
match, the suggestions made by the system usu- 
ally include an appropriate rephrasing of the query 
(as well as some extraneous suggestions). Of the 
22 failures due to semantic pattern mismatch (in 
both series of tests), we judge that in 14 cases the 
suggestions included an appropriate rephrasing. 

7. A s s e s s m e n t  
These results, while not definitive, suggest that 
the technique described above /s a useful one, 
but will have to be combined with other tech- 
niques to forge a general strategy for dealing with 
problems encountered in interpreting the input. 
Extending the syntactic coverage of our system, 
which at present is quite limited, should reduce 
the frequency of some types of failure. To ob- 
tain further improvement, we will have to extend 
our technique to deal with input containing un- 
known words. It should be possible to do this 
in a straightforward way by adding dictionary en- 
tries for the closed syntactic classes, guessing from 
morphological clues the syntactic class(es) of new 
words not in the dictionary, obtaining a parse, and 
then applying the techniques just described (with 
a new word treated as a semantic unknown, not 
belonging to any class). 

Our system only offers suggestions; it does 
not aspire to correct  the user's input. That  would 
be an unreasonable expectation for our simple sys- 
tem, which does not maintain any user or dis- 
course model. Our current system typically gen- 
erates several equally-rated suggestions for an ill- 
formed input. For a more sophisticated system 
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which does maintain a richer model, correction 
may be a feasible goal. Specifically, we might gen- 
erate the suggested questions as we do now and 
then see if any question corresponds to a plausible 
goal. 
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