
R E S P O N D I N G TO S E M A N T I C A L L Y I L L - F O R M E D I N P U T

R a l p h G r i s h m a n a n d P i n g P e n g

C o m p u t e r S c i e n c e D e p a r t m e n t

N e w Y o r k U n i v e r s i t y

251 M e r c e r S t r e e t

N e w Y o r k , N Y 10012

A b s t r a c t

One cause of failure in natural language in-
terfaces is semantic overshoot; this is re-
flected in input sentences which do not cor-
respond to any semantic pattern in the sys-
tem. We describe a system which provides
helpful feedback in such cases by identifying
the "semantically closest" inputs which the
system would be able to understand.

1. I n t r o d u c t i o n

Natural language interfaces have achieved a lim-
ited success in small, well circumscribed domains,
such as query systems for simple data bases. One
task in constructing such an interface is identi-
fying the relationships which exist in a domain,
and the possible linguistic expressions of these re-
lationships. As we set our sights on more complex
domains, it will become much harder to develop
a complete or nearly complete catalog of the rele-
vant relationships and linguistic expressions; sub-
stantial gaps will be inevitable. In consequence,
many inputs will be rejected because they fail to
match the semantic/l inguistic model we have con-
structed for the domain.

We are concerned with the following question:
what response should we give a user when his in-
put cannot be analyzed for the reasons just de-
scribed? The response "please rephrase" gives the
user no clue as to how to rephrase. This leads
to the well-known "stonewalling" phenomenon,
where a user tries repeatedly, without success, to
rephrase his request in a form the system will un-
derstand. This may seem amusing to the outside
observer, but it can be terribly frustrat ing to the
user, and to the sys tem designer watching his sys-
tem being used.

We propose instead to provide the user with
sentences which are semantically close to the orig-
inal input (in a sense to be defined below) and
are acceptable inputs to the system. Such feed-

back may occasionally be confusing, but we ex-
pect that more often it will be helpful in showing
the system's capabilities and suggesting possible
rephrasings.

In the remainder of this paper we briefly
review the prior work on responding to ill-
formedness, describe our proposal and its imple-
mentat ion as part of a small question-answering
system, and relate our initial experiences with this
system.

2. B a c k g r o u n d

A . R e l a t i v e a n d A b s o l u t e I l l - f o r m -

e d n e s s

Weischedel and Sondheimer (~,Veischedel, 1983)
have distinguished two types of ill-formedness: ab-
solute ill-formedness and relative ill-formedness.
Roughly speaking, an absolutely ill-formed input
is one which does not conform to the syntactic
and semantic constraints of the natural language
or the sublanguage; a relatively ill-formed input is
one which is outside the coverage of a particular
natural language interface. Our concern is pri-
marily with relative ill-formedness. For complex
domains, we believe that it will be difficult to cre-
ate complete semantic models, and therefore that
relatively ill-formed input will be a serious prob-
lem - a problem that it will be hard for users to
remedy without suitable feedback.

B . S y n t a c t i c a n d S e m a n t i c I l l -

f o r m e d n e s s

Earlier studies have examined both syntactically
and semantically ill-formed input. Among the
work on syntactically ill-formed input has been
EPISTLE (Miller 1981), the work of Weischedel
and Sondheimer (Weischedel 1980, Kwasney 1981,
and Weischedel 1983), and Carbonell and Hayes
(Carbonell 1983). Some of this work has involved
the relaxation of syntactic constraints; other (such

65

as Carbonell and Hayes) a reliance primarily on
semantic structures when syntactic analysis fails.
Our system has been primarily motivated by our
concern about the possiblity of constructing com-
plete semantic models, so we have focussed to date
on semantic ill-formedness, but we believe that our
system will have to be extended in the future to
handle syntactic ill-formedness as well.

C . E r r o r I d e n t i f i c a t i o n a n d C o r -

r e c t i o n

For some applications, it is sufficient that the point
of ill-formedness be identified, and the constraint
be relaxed so that an analysis can be obtained.
This was the case in Wilks' early work on "Prefer-
ence Semantics"(Wilks 1975), which was used for
machine translation applications. In other appli-
cations it is necessary to obtain an analysis con-
forming to the system's semantic model in order
for further processing of the input to take place,
in effect "correcting" the user's input. This is
the case for data base query (our current appli-
cation), for command systems (such as MURPHY
(Selfridge 1986)), and for message entry systems
(such as NOMAD (Granger 1983) and VOX (Mey-
ers 1985)).

D . S y s t e m O r g a n i z a t i o n

Error correction can be provided either by making
pervasive changes to a set of rules, or by providing
uniform correction procedures which work with a
standard (non-correcting) set of rules. In the syn-
tactic domain, EPISTLE is an example of the for-
mer, the metarule approach (Weischedel 1983) an
example of the latter. We feel that, particularly
for semantic correction, it is important to take the
"uniform procedure" approach, since a semantic
model for a large domain will be difficult enough
to build and maintain without having to take the
needs of a correction mechanism into account. It
is equally important to have a procedure which
will operate on a system with separate syntactic
and semantic components, so that we may reap
the advantages of such an organization (concise-
ness, modularity). The NOMAD system used pro-
cedures associated with individual words and so
was very hard to extend (Granger 1983, p. 195);
the VOX system remedied some of these defects
but used a "conceptual grammar" mixing syntac-
tic and semantic constraints (Meyers 1985). The
MURPHY system (Selfridge 1986) is most simi-
lar to our own work in terms of the approach to
semantic constraint relaxation and user feedback;

however, it used a syntactic representation which
would be difficult to extend, and required weights
in the semantic model for the correction proce-
dure.

The ill-formedness we are considering may
also be viewed as one type of violation of the in-
tensional constraints of the data base (constraints
in this case on the classes of objects which may
participate in particular relations). Intensional
constraints have been studied in connection with
natural language query systems by several re-
searchers, including Mays (1980) and Gal (1985).
In particular, the technique that we have adopted
is similar in general terms to that suggested by
Mays to handle non-existent relationships.

In addition to the shortcomings of some of the
systems just described, we felt it important to de-
velop and test a system in order to gain experience
in the effectiveness of these correction techniques.
Although (as just noted) many techniques have
been described, the published reports contain vir-
tually no evaluation of the different approaches.

3. S y s t e m Overv iew
Our feedback mechanism is being evaluated in the
context of a small question-answering system with
a relatively standard structure. Processing of a
question begins with two stages of syntax analysis:
parsing, using an augmented context-free gram-
mar, and syntactic regularization, which converts
the various types of clauses (active and passive;
interrogative, imperative, and declarative; rela-
tive and reduced relative; etc.) into a canonical
form. In this canonical form, each clause is rep-
resented as a list consisting of: tense, aspect, and
voice markers; the verb (root form); and a list of
operands, each marked by "subject", "object", or
the governing preposition. For example, "John re-
ceived an A in calculus." would be translated to

(past receive (subject John) (object A)
(in calculus))

Processing continues with semantic analysis,
which translates the regularized parse into an
extended-predicate-calculus formula. One aspect
of this translation is the determination of quanti-
fier scope. Another aspect is the mapping of each
verb and its operands (subject, objects, and mod-
ifiers) into a predicate-argument structure. The
predicate calculus formula is then interpreted as
a data base retrieval command. Finally, the re-
trieved data is formatted for the user.

The translation from verb plus operands to
predicate plus arguments is controlled by the

67

model for the domain. The domain vocabulary is
organized into a set of verb, noun, adjective, and
adverb semantic classes. The model is a set of
pat terns stated in terms of these semantic classes.
Each pat tern represents one combination of verb
and operands which is valid (meaningful) in this
domain. For example, the pat tern which would
match the sentence given just above is

(v-receive (subject nstudent)
(object ngrade) (in ncourse))

where v-receive is the class of verbs including re-
ceive, get, etc.; nstudent the class of students;
ngrade the class of grades; and ncourse the class
of course names. Associated with each pat tern
is a rule for creating the corresponding predicate-
argument structure.

4. The Diagnostic Process
In terms of the system just described, the analy-
sis failures we are concerned with correspond to
the presence in the input of clauses which do not
match any pa t te rn in the model. The essence of
our approach is quite simple: find the pat terns
in the model which come closest to matching the
input clause, and create sentences using these pat-
terns. Implementa t ion of this basic idea, however,
has required the development of several processing
steps, which we now describe.

Our first task is to identify the clauses to
which we should apply our diagnostic procedure.
Our first impulse might be to trigger the proce-
dure as soon as we parse a clause which doesn' t
match the model. However, the process of match-
ing clause against model serves in our system to
check selectional constraints. These constraints
are needed to filter out, f rom syntactically valid
analyses, those which are semantically ill-formed.
In a typical query we may have several seman-
tically ill-foimed analyses (along with one well-
formed one), and thus several occasions of failure
in the matching process before we obtain the cor-
rect analysis.

We must therefore wait until syntax analy-
sis is complete and see if there is any syntactic
analysis satisfying all selectional constraints. If
there is no such analysis, we look for an analysis
in which all but one clause satisfies the selectional
constraints; if there is such an analysis, we mark
the offending clause as our candidate for diagnos-
tic processing.

Next we look for pat terns in the model which
"roughly match" this clause. As we explained
above, the regularized clause contains a verb and

a set of syntactic cases with case labels and fillers;
each model pa t tern specifies a verb class and a
set of cases, with each case slot specifying a la-
bel and the semantic class of its filler. We define
a distance measure between a clause and a pat-
tern by assigning a score to each type of mismatch
(clause and pat tern have the same syntactic case
with different semantic classes; clause and pat tern
include the same semantic class but in different
cases; clause has case not present in pattern; etc.)
and adding the scores. We then select the pat-
tern or pat terns which, according to this distance
measure, are closest to the offending clause.

We now must take each of these pat terns and
build from it a sentence or phrase the user can un-
derstand. Each pa t te rn is in effect a syntactic case
frame, with slots whose values have to be filled
in. If the case corresponds to one present in the
clause, we copy the value from the clause; if the
case is optional, we delete it. Othewise we create
a slot filler consisting of an indefinite article and a
noun describing the semantic class allowed in that
slot (for example, if the pat tern allows members of
the class of students in a slot, we would generate
the filler "a s tudent") . When all the slots have
been filled, we have a structure comparable to the
regularized clause s t ructure produced by syntactic
analysis.

Finally each filled-in pat tern must be trans-
formed to a syntactic form parallel to that of the
original offending clause. (If we don ' t do this -
if, for example, the input is a yes-no question and
the feedback is a declarative sentence - the system
output can be quite confusing.) We isolate the
tense, voice, aspect, and other syntactic features
of the original clause (this is part of the syntactic
regularization process) and transfer these features
to the generated structure. If the offending clause
is an embedded clause in the original sentence, we
save the context of the offending clause (the matr ix
sentence) and insert the "corrected" clause into
this context. We take the resulting structure and
apply a sentence generation procedure. The gen-
eration procedure, guided by the syntactic feature
markers, applies "forward" transformations which
eventually generate a sentence string. These sen-
tences are presented as the sys tem's suggestions
to the user.

5. Examples

The system has been implemented as described
above, and has been tested as part of a question-
answering system for a small "student transcript"

58

data base. The syntactic model currently has pat-
terns for 30 combinations of verbs and arguments.
While the model has been gradually growing, it
still has sufficient "gaps" to give adequate oppor-
tunity for applying the diagnostics.

A few examples will serve to clarify the oper-
ation of the system. The system has models

(take (subject student) (object course))

and

(offer (subject school) (object course))

but no model of the form

(offer (subject student) (object course))

Accordingly, if a user types

Did any students offer V l l ?

(where V l l is the name of a course), the system
will respond

Sorry, I don't understand the pattern
(students offer courses)

and will offer the "suggestions"

Did any students take V l l ?

and

Did some school offer V l l ?

Prepositional phrase modifiers are analyzed
by inserting a "be" and treating the result as a
relative clause. For example, "students in V l l "
would be expanded to "students [such that] [stu-
dents] be in V l l " . If the resulting clause is not
in the semantic model, the usual correction proce-
dures are applied. As part of our policy of limiting
the model for testing purposes, we did not include
a pattern of the form

(be (subject student) (in course))

but there is a pattern of the form

(enroll (subject student) (in course))

(for sentences such as "Tom enrolled in Vl l . ") .
Therefore if the user types

List the students in Vl l .

the system will generate the suggestions

List the students who enroll in Vl l .

and

List the students.

(the second suggestion arising by deleting the
modifier).

6. C u r r e n t S t a t u s

The system has been operational since the summer
of 1986. Since that time we have been regularly
testing the system on various volunteers and revis-
ing the system to improve its design and feedback.
We instructed the volunteers to try to use the sys-
tem to get various pieces of information, rather
than setting them a fixed task, so the queries tried
have varied widely among users.

The experimental results indicate both the
strength and weakness of the technique we have
described. On the one hand, semantic pattern
mismatch is not the primary cause of failure; vo-
cabulary overshoot (using words not in the dictio-
nary) is much more common. In a series of tests
involving 375 queries (by 8 users), 199 (53%) were
successful, 95 (25%) failed due to missing vocabu-
lary, 22 (6%) failed due to semantic pattern mis-
match, and 59 (16%) failed for other reasons. On
the other hand, in cases of semantic pattern mis-
match, the suggestions made by the system usu-
ally include an appropriate rephrasing of the query
(as well as some extraneous suggestions). Of the
22 failures due to semantic pattern mismatch (in
both series of tests), we judge that in 14 cases the
suggestions included an appropriate rephrasing.

7. A s s e s s m e n t
These results, while not definitive, suggest that
the technique described above /s a useful one,
but will have to be combined with other tech-
niques to forge a general strategy for dealing with
problems encountered in interpreting the input.
Extending the syntactic coverage of our system,
which at present is quite limited, should reduce
the frequency of some types of failure. To ob-
tain further improvement, we will have to extend
our technique to deal with input containing un-
known words. It should be possible to do this
in a straightforward way by adding dictionary en-
tries for the closed syntactic classes, guessing from
morphological clues the syntactic class(es) of new
words not in the dictionary, obtaining a parse, and
then applying the techniques just described (with
a new word treated as a semantic unknown, not
belonging to any class).

Our system only offers suggestions; it does
not aspire to correct the user's input. That would
be an unreasonable expectation for our simple sys-
tem, which does not maintain any user or dis-
course model. Our current system typically gen-
erates several equally-rated suggestions for an ill-
formed input. For a more sophisticated system

69

which does maintain a richer model, correction
may be a feasible goal. Specifically, we might gen-
erate the suggested questions as we do now and
then see if any question corresponds to a plausible
goal.

8. A c k n o w l e d g e m e n t s
This report is based upon work supported by
the National Science Foundation under Grant No.
DCR-8501843 and the Defense Advanced Research
Projects Agency under Contract N00014-85-K-
0163 from the Office of Naval Research.

References
[1] J. G. Carbonell and P. J. Hayes, 1983, Re-

covery Strategies for Parsing Extragrammati-
cal Language. Am. J. Computational Linguis-
tics 9(3-4), pp. 123-146.

[2] A. Gal and J. Minker, 1985, A Natural Lan-
guage Data Base Interface that Provides Coop-
erative Answers. Proc. Second Conf. Artificial
Intelligence Applications, IEEE Computer So-
ciety, pp. 352-357.

[3] R. H. Granger 1983 The NOMAD System:
Expectation-Based Detection and Correction of
Errors during Understanding of Syntactically
and Semantically Ill-Formed Text. Am. J. Com-
"putational Linguistics, 9(3-4), pp. 188-196.

[4] S. C. Kwasney and N. K. Sondheimer, 1981,
Relaxation Techniques for Parsing Ill-Formed
Input. Am. J. Computational Linguistics, 7, pp.
99-108.

[5] E. Mays, 1980, Failures in Natural Language
Systems: Applications to Data Base Query Sys-
tems. Proc. First Nat'l Conf. Artificial Intelli-
gence (AAAI-80), pp. 327-330.

[6] A. Meyers, 1985, VOX - An Extensible Nat-
ural Language Processor. Proc. IJCAI-85, Los
Angeles, CA, pp. 821-825.

[7] L. A. Miller, G. E. Heidorn, and K. Jensen,
1981, Text-critiquing with the EPISTLE Sys-
tem: An Author's Aid to Better Syntax. In
Proc. Nat'l Comp. Conf., AFIPS Press, Arling-
ton, VA, pp. 649-655.

[8] M. Selfridge, 1986, Integrated Processing Pro-
duees Robust Understanding, Computational
Linguistics, 12(2), pp. 89-106.

[9] R. M. Weischedel and J. E. Black, 1980, Re-
sponding Intelligently to Unparsable Inputs.
Am. J. Computational Linguistics, 6(2), pp. 97-
109.

[10] R. M. Weischedel and N. K. Sondheimer,
1983, Meta-rules as a Basis for Processing Ill-
Formed Input. Am. J. Computational Linguis-
tics, 9(3-4), pp. 161-177.

[11] Y. Wilks, 1975, An Intelligent Analyser and
Understander of English. Comm. ACM 18, pp.
264-274.

70

