
An Architecture for Anaphora Resolution

Elaine Rich
Susann LuperFoy

MCC, Advanced Computer Architecture Program
3500 West Balcones Center Drive

Austin, TX 78759

ABSTRACT

In this paper, we describe the pronominal
anaphora resolution module of Lucy, a portable
English understanding system. The design of this
mo;clule was motivated by the observation that, al-
though there exist many theories of anaphora resolu-
tion, no one of these theories is complete. Thus we
have implemented a blackboard-like architecture in
which individual partial theories can be encoded as
separate modules that can interact to propose can-
didate antecedents and to evaluate each other's
proposals.

INTRODUCTION

The Lucy system (Rich, 1987) is a prototype
of a portable English front end for knowledge-
based systems. The major components of Lucy
are a syntax-based parser (Wittenburg, 1986), a
semant=c translation system, a pronominal
anaphora resolution system (which will be
described in this paper) and a pragmatic proces-
sor. The parser p..roduces as !ts output a feature
graph that descnoes the syntacticpropenies ov

the constituents of the sen(ence. The semantic
translation system produces as its output a list of
discourse referents and a set of assertions
about them. The job of the anaphora resolution
system is to augment this assertion set with ad-
ditional assertions that describe coreference
relations between discourse referents. Figure 1
shows the results of semantic processing and
anaphora resolution for the simple discourse,
"Dave created a file. He printed it."

A D I S T R I B U T E D A R C H I T E C T U R E

Designing an anaphora resolution system is
difficult because there exists no single, coherent
theory upon which to build, even =f we restrict
our attention to pronominal anaphora (which we
will do throughout this paper). There do,
however, exist many partial theories, 1 each of
which accounts for a subset of the phenomena
that influence the use and interpretation of

pronominal anaphora. These partial theories
range from purely syntactic ones (for example
the simple rules of number and gender
agreement) to highly semantic and pragmatic
ones that account for focusing phenomena. If
there were a single, complete theory, then it
might be appropriate to implement it. If there
were no theories at all, then an ad hoc im-
p lementation might be the only alternative. But

ecause there are partial theones but not a com-
plete one, we have designed an architecture
(patterned after the idea of a blackboard system
(Erman, 1981)) that allows for a loosely coupled
set of modules, each of which handles a subset
of discourse phenomena by implementing a
specific partial theory. These modules com-
municate by proposing candidate antecedents
and by evaluating each other's proposals. An
oversight module, called the handler, mediates
these communications and resolves conflicts
among the modules.

All the modules in this system share a com-
mon representation of the current discourse.
This representation is called the core discourse
structure. It includes a list of the discourse
referents that have so far been introduced. As-
sociated with each such referent is a set of
assertions, including syntactic facts about the
use of the referent (e.g., its number and gender
and whether or not it is reflexive), semantic facts
(such as the ones shown in Figure 1), and
anaphoric usage facts such as coextension rela-
tions.

A schematic view of the architecture is
shown in Figure 2. Each of the ovals in the
figure represents an implementation of one of
the partial theories of anaphora. Each of these
implementations is cal led a constraint source
(CS), because each of them is viewed as impos-
ing a set of consiraints on the choice of an an-
tecedent for a pronominal referent.

el: (create el) e2: (pdnt e2)
(agent el xt) (agent e2 x3)
(object el x2) (object e2 x4)

xl : (= xl Dave) x3:

x2: (file x2) x4:

(a) The Result of Semantic Processing

1All existing theories are partial in the added sense of
being fallible. That is, even when restricted to a narrow
subdomaln of the facts of anaphoric behavior, no account
fully explains coreference possibilities that arise in context.

18

x3: (coextensive x3 xl) x4: (coextensive x4 x2)

(b) Assertions Added by Anaphora Resolution

Figure 1: Processing "Dave created a file. He printed it."

Cataphora

Global
Focus

Number
Agreement

Semantic -"
Consistency

Animacy Disioint
Reference

Figure 2: The Architecture of Anaphora Resolution

THE STRUCTURE OF A CONSTRAINT
SOURCE

Each constraint source in this system is
composed of a set of four f.unctions (although
any ot these functions may be a no-op in any
particular CS). These component functions are
called at different times during the process of
anaphor resolution, but they form a logical unit
since they share knowledge structures that cor-
respond to the particular partial theory that is
implemented by the CS to which they belong.
The four functions are the following:
• Modeller - This function maintains the CS's

local model of the ongoing discourse. Not all
CS's need such a model. Simple syntactic
ones like number agreement typically do not
build a local model since all the information
they need is available in the core discourse
structure and in the anaphoric referent being
resolved. But CS's that describe more global
phenomena, such as rhetorical structure may
need access to informat on that is neither lo-
cal to a particular referent nor contained in the
core discourse structure. If a local model is
built, it is built to rest top core on of the shared
discourse structure. Thecontent of the local
model is accessible to the other functions of
the same CS but not to anyone else.

• Constraint poster - This function posts con-
straints that describe interactions among
anaphora within a sentence. .These con-
stra~nts are then treated in exactly the same
way as are semantic assertions about the
referents. The algorithm for resolving
anaphora (which will be described below) ap-
I~lies to a single anaphoric referent at a time.
But, in some sentences, there are interactions
among referents that make it impossible to
treat them completely separately. By posting
interaction constraints before processing in-
dividual anaphoric referents, we maintain the
ability to treat the referents separately but
also to guarantee that the complete inter-

pretation for the sentence in which they occur
will be consistent. As an example of this
~ henomenon, consider the sentence, "He saw

im." Disjoint reference could post a con-
straint that he and him cannot co-refer before
any attempt is made to find the antecedent for
either of them. Most simple constraint
sources do nothing when their constraint
posters are called.

• Proposer - This function takes as input an
anaphoric referent and returns as its output a
list of candidate antecedents, each with an
associated score (which will be described
later). For example, recency proposes all
referents in the two most recent previous sen-
tences, as well as any in the current sentence
that occur to the left of the referent that is
being resolved. Some CS's, such as number
agreement, never propose candidates.

• Evaluator - This function takes as input an
anaphor and a candidate antecedent for that
anaphor. The evaluator returns a score in-
dicating strength of support for that candidate
as antecedent to the anaphor. The returned
score is based solely on the information avail-
able to the CS that ~s doing the evaluation. It
is left to the handler, which invokes the
various CS's, to combine scores from different
evaluators and to resolve conflicts. Although
every CS must be able to respond whenever
its evaluator is called, there is a score that will
be interpreted to mean, "1 have no opinion."
(See below.)

THE ANAPHORA RESOLUTION
PROCEDURE

In the current implementation of Lucy,
anaphora resolution occurs once semantic inter-

19

pretation is complete. 2 The procedure
resolve-anaphors does the following for each
sentence that is to be understood:

1. Update the core discourse structure with
the results of syntactic and semantic
processing of the current sentence.

2. For each CS in the system, invoke the
modeller and the constraint poster.

3. For each anaphor in the sentence do:
a. Invoke the anaphora resolution hand-

ler, which w i l l in turn invoke the
PrrOposers and evaluators for all CS's.

he output of the handler is a list of
ordered pairings of possible antece-
dents with their overall scores.

b. Invoke select-best-antecedent, which
will decide whether there is enough
evidence to make a coextension
assertion and, if so, will add the asser-
tion to the core discourse structure
and to both anaphor and antecedent
referents.

The anaphora resolution handler takes two
inputs: an ordered list of available CS's and the
anaphoric referent that needs to be resolved.
The handler exploits a local data structure called
CANDIDATES, which is reinitialized for each
anaphoric referent that is processed and which
contains a list of all the antecedents that have
been proposed for that referent. This makes it
possible to avoid considering any given can-
didate more than once, no matter how often it is
proposed. The handler proceeds as follows:

1. For each CS(i) do:
a. Invoke CS(i)'s proposer, which will

return a list (possibly empty) of can-
didate antecedents, each with an as-
sociated initial score.

b. For each candidate C that is not al-
ready on CANDIDATES do:

i. Add C to CANDIDATES.
ii. While running score of C is

above threshold, for each CS(j)
where j ~ i do:

1. Pass C to the evaluator to
get a score.

2. Update running score for C.
Although these algorithms do not care, in

some sense, what list of constraint sources they
are given, their success depends on having a
set of constraint sources thatcover the range of
phenomena that occur in the discourse that
must be processed. Also, the efficiency with
which they reach a conclusion depends on the
order in which the CS's are invoked. In Lucy,
the recency constraint source is invoked first.
The correct antecedent is almost always among
the candidates recency proposes since it
proposes liberally. To aidefficiency, the recency
CS is followed immediately by the simple syn-

2In future releases, a more flexible control structure will
be exploited.

tactic filtering CS's (number, gender and
animacy agreement) wh=ch, with little effort and
high certainty, are able to eliminate most can-
didates from the list that must be evaluated by
more complex CS's.

The select-best-antecedent procedure ap-
plies to the final list of candidate antecedents. It
must decide whether there is sufficient infor-
mation on which to base a coreference asser-
tion. If there is exactly one candidate with the
highest rating and if the difference between that
ratingand the second highest rating exceeds the
threshold 5 (a system parameter currently set at
0.5), then a coreference assertion can be
made. 3 If one candidate is not cleady best,
however, two actions are possible. One ~s to do
nothing (i.e., post no coreference constraint) and
thus essentially to produce a partial interpreta-
tion of the input sentence. This may be accept-
able, depending on the use to which the
sentence's interpretation is to be put. For ex-
ample, it may be possible to wait until sub-
sequent sentences are processed to see if they
yield the disambiguating information. If waiting
~s unacceptable, however, the other available
action is to query the user who input the sen-
tence. This option is available since Lucy is
being designed to serve as an interactive
Enghsh front end system; if this same approach
were to be used during text comprehension,
some alternative, such as choose a candidate
and be prepared to back up if necessary, would
be requ=red instead.

THE CANDIDATE S C O R I N G
PROCEDURE

As we just saw, the final selection of an an-
tecedent from among the set of candidate
referents depends on the combined score that is
attached to each candidate as a result of the
examination of the candidate by the entire set of
constraint sources. Thus the design of the scor-
ing procedure has an important effect on the
outcome of the resolution process. Our first im-
plementation of this procedure exploited a single
score, a number in the range -5 to +5. Each CS
gave each candidate a score and the handler
averaged the individual scores to form a com-
posite score. The major drawback of this simple
scheme is that there is no way for a CS to say, "1
have no opinion," since any score it gives neces-
sarily changes the composite score. There is
also no way to say, "1 have an opinion and here
it is, (and I'm very)/(but rm not at all) confident
of it." As a result, the system was highly un-
stable. It could be tuned to perform fa=rly well,

3In the current implementation, the value of 8 does not
matter very much, since the available CS's provide only very
weak preferences or absolute filtering. Future CS's will
exploit more domain knowledge to provide more accurate
preferences.

2,0

but whenever a new CS was added or if a CS
was changed even slightly, the whole system
had to be retuned.

To remedy these problems, we now use a
scoring procedure in which each CS provides
both a score and a confidence measure. The
score is a number in the range -5 to +5, the
confidence a number in the range 0 to 1. The
function that combines a set of n
(score, confidence) pairs is

It

~ , score(Oxconfidence(O
i=1

running score =
II

confidence(t)
i=1

This function computes an average that is
weighted not by the number of distinct scores
but by the total confidence expressed for the
scores. Any CS that wishes to assert no opinion
can now do so by giving a confidence of 0 to its
opinion, which wi l l then have no effect on a
candidate's running score.

Although, in principle, a constraint source
may function both as a proposer and as an
evaluator and it may assign any
(score, confidence) value it likes to a candidate,
it turns out that the CS's that have been imple-
mented so far are much more limited in their
behavior. Most CS's either propose or evaluate,
but not both. And there are patterns of
(score, confidence) values that appear to be par-
ticularly useful. Each CS that has been imple-
mented so far falls into one of the following four
classes:
• Finite set generators (such as disjoint refer-

ence when applied to a reflexive pronoun) are
constraint sources that propose a fixed set of
candidates. They assign all such candidates
the same score and that score is a function of
the number of competing candidates:
of candidates (score, confidence) contribution
to propose of this CS

1 (5.1) = 5
2 (4, 1) = 4
3 (3, 1) = 3

These CS's never evaluate (i.e., when asked
to do so, they return a confidence of 0.)

• Fading infinite set generators (such as
recency) are constraint sources that could
keep proposing, perhaps indefinitely, but with
lower and lower scores. Recency, for ex-
ample, uses the following scoring:
Sentence (score, confidence) contribution

of this CS
n (current) (1, 0.5) = 2
n-1 (2, 0.5) = 1
n-2 (0, 0.5) = 0

These CS's never evaluate.
• Filters (such as number and gender

agreement) are constraint sources that never
propose candidates. They serve only to filter
out candidates that fail to meet specific re-

f q u i r e m e n t s (usually syntactic). Filters use the
otlowing t w o assignments when they

evaluate candidates:
(score, confidence) contribution

of this CS
pass (0 4, 0) = 0
fail (-5, 0.9) = -5

These scores have the following effects:
• pass - Since the confidence level is 0, the

score does not matter and no change will
be made to the composite score as a result
of the evaluator being called. Thus a
candidate's score is insensitive to the num-
ber of filter CS's that it passes.

• fail - The low score with high confidence
forces the composite score to drop below
the minimum threshold eliminating this can-
didate from future consideration.

• Preferences (such as semantic content
consistency) are constraint sources that im-
pose preferences, rather than absolute
opinions, on a set of candidates ra t ingeach
member relative to others in the set. T h e s e
constraint sources may use the full range of
(score, confidence) values.

Although the scoring scheme we have just
described exploits more knowledge about a
CS's opinion than did our first, simpler one, it is
not perfect. It can suffer from the usual
problems that arise when numbers are used to
represent uncertainty. Future implementations
of this system may move more in the direction ot
symbolic justifications (as used, for example, in
(Cohen, 1985)) if they appear to be necessary.

C O N S T R A I N T S O U R C E E X A M P L E S

In this section, we describe the constraint
sources that have been implemented in Lucy as
well as some (preceded by an asterisk) that are
envisioned but not yet implemented.

Recency, whose function is to propose
referents that have occurred in the recently
preceding discourse. Recency has no opinion to
offer on anyone else's proposals.

Number Agreement , which knows that sin-
gular pronouns must refer to singular things and
plural pronouns must refer to plural things.
Number Agreement does not propose antece-
dents; instead it serves only as a filter on can-
didates that are proposed by other CS's.

Gender Agreement , which knows that any
pronoun that is marked for gender can refer only
to something of the same gender as itself.
Gender serves only as a filter =n the current im-
plementation.

Animaoy, which knows that neuter pronouns
refer to inanimate things, while masculine and

4When the confidence rating is 0, the score is arbitrary
given the equation for running score values.

21

feminine pronouns must refer to animate things,
usually people. Animacy functions only as a fil-
ter.

Disjoint Reference, which knows about
structure-based coreference restrictions that
apply to reflexive and to nonreflexive pronouns
(as described in theories such as (Reinhart,
1983)). Disjoint Reference proposes antece-
dents for reflexive pronouns (as, for example, in
a sentence like, "John saw himself.") For non-
reflexive pronouns, it serves as a filter, eliminat-
ing, for example, John as the antecedent of him
in the sentence, "John saw him."

Semantic Type Consistency, which func-
tions as a filter and constrains antecedents to
only those referents that satisfy the type con-
straints imposed by the semantic interpretation
of the rest of the sentence. For example, con-
sider the discourse, "The system created an er-
ror log. It printed it." Assume that the semantic
interpretation of print imposes the following type
constraints on its arguments:

agent: human v computer
object : information-structure

Then this CS will reject an error log as the an-
tecedent of the first occurrence of it, assuming
that the type hierarchy does not include log as a
subclass of either human or computer. Further,
this CS will reject the system as the antecedent
of the second occurrence of it, assuming that the
type hierarchy does not include system as a
subclass of information-structure.

Global Focus, which knows about objects
that are globally salient throughout a discourse.
In the current implementation, global Focus acts
only when the anaphor being considered is it. In
that case, it proposes as antecedents all
referents that are in global focus. (Empirical
evidence in support of this strategy is presented
in (Guindon, 1986).) In the current implemen-
tation, the target system to which the English
front end is attached is assumed always to be in
global focus.

Cataphora, which knows about a class of
syntactic constructions in which a pronoun can
preceed the full lexical NP with which it corefers.
This CS will propose John as a candidate an-
tecedent for he in the sentence When he is
happy, John sings. Cataphora acts as a gener-
ator and will never reject the proposal of another
CS.

*Logical accessibil ity, which knows about
the constraints that are imposed on the acces-
sibility of referents as a function of their embed-
ding within logical structures such as quantifiers
and negation (Kamp, 1981). Logical accessibilty
functions only as a filter. It rules out, for ex-
ample, a donkey as the antecedent for it in the
sentence, "If a farmer doesn't own a donkey, he
beats it," unless a donkey is interpreted as
having wide scope over the sentence (i.e., "If
there is a donkey such that the farmer doesn't
own it then he beats it.")

*Semantic content consistency, which ex-

ploits semantic knowledge about context de-
pendent phenomena as opposed to simply ap-
plying static type constraints. The boundary be-
tween this CS and semantic type consistency is
clearly fuzzy in general and depends in any par-
ticular case on the structure of the type hierar-
chy that is being used. The key difference be-
tween the CS's, though, is that accessing a type
hierarchy is fast, whereas there are cases in
which th~s CS will have to do arbitrary reasoning.

*Local Focus, which tracks objects that are
locally in focus in the discourse. This is the
phenomenon that is addressed by theories such
as focus spaces (Grosz, 1977) and centering
(Grosz, 1986, Brennan, 1987).

*Rhetorical Structure, which segments and
organizes the discourse as a set of plans for
fulfilling conversational goals. This is the
phenomenon that is addressed by theories such
as (Hobbs, 1985).

*Set generation, which creates set-level
referents that can serve as antecedents for
plural pronouns. For example, this CS could
propose Mary and Sue as the antedecent for
they in the discourse, "Mary picked up Sue.
They went to the movies."

*Generic They, which knows about salient
individuals and groups, and proposes them as
antecedents for occurrences of the pronoun they
in sentences such as, "Why don't they ever fix
the roads?"

This list is intended to provide an example of
the range of phenomena that can be combined
us!ng .the.architecture we have .described.. It is
not m~enaed to oe a aefinidve ~is[oT constraint
sources. In fact, the architecture allows for more
than one implementation (i.e., CS) of a given
theory or more than one theory (and associated
implementations) of a given phenomenon. This
redundancy can be useful, for example, as way
of comparing the effectiveness of competing
constraint sources within a complete anaphora
resolution system.

D E B U G G I N G W I T H I N
A R C H I T E C T U R E

NOW that the above architecture has been
implemented, further development of the system
consists primarily of additions to the set oT con-
straint sources and adjustments to score and
confidence assignments. During a test run the
developer needs to know which referents are
being recognized as anaphors, which CS's get
consulted and in what order and, most impor-
tantly, what effect each CS has on the overall
rating received by each proposed antecedent.
Our tracing tools will display this information for
each anaphor processed by the handler in the
following form. First the name of each proposer
as it is called and the list of candidates and
ratings it returns are displayed in the tracing win-
dow. Then for each of these candidates in turn,
the name of every evaluator appears as it is

2,2,

SAMPLE DISCOURSE:
Sen:ence z : Jon created a fi le for h i m s e l f .

U-I xl el x2 x3

TRA CE OUTPUT:
InvokJ'ng anaphor handler wi~ anaphor: #<X-6>

Invok ing p ropose r for RECENCY
Possible antecedents proposed:

(X-3:1) (X-2:1) (E-1:1)
cx-,

(Xl (u-1 :1)

Composite ratings for candidate X-3
After polling evaluator of TYPE rating is 1.0
After polling evaluator of IDENTITY ralmg is 1.0
After polling evaluator of GLOBAL-FOCUS rating is 1.0
After polling evaluator of ANIMACY rating is -2.857143

Composite
After potling
After polling
After polling
After polling
After polling
After polling
After polling
.After polling

ratinga for candidate X-2
evaluator of TYPE rating is 1.0
evaluator of IDENTITY rating is 1,0
evaluator of GLOBAL-FOCUS rating is 1.0
evaluator of ANIMACY rating is 1.0
evaluator of DISJOINT-REFERENCE radng is 1.0
evaiuator of GENDER rating is 1.0
evaluator of NUMBER rating is 1.0
evaluator of CATAPHORA ra~ng is 1.0

Composite ratings for candidate E-1
After polling evaluator of TYPE rating is -2.857143

Invok ing p roposer for GENDER
Possible antecedents proposed: none

Invok ing p roposer for NUMBER
Possible antecedents proposed: none

Invok ing p roposer for C A T A P H O R A
Possible antecedents proposed: none

Final candidate ratings:
X-3 -2.857143
X-2 1.0
E-1 -2.857143
X-1 -2.8571 43
U-1 -2.857143
E-5 -2.5
X-4 -2.5
X-9 -2.5

Sentence 2: He sent it to Carl and Dave.
U-2 x4 e5 x6 x7 x8

I I
x9

ANNOTATIONS:
begin resolving anaphor "it"

list of candidates and their initial scores

evaluate first candidate, "himself"

animate candidate cannot corefer with "it"

next candidate to be evaluated is "file"

no CS evaluator wants to reject or suppor~

this candidate
"file" survives with orignal score of !.0

next candidate is the event "create"

event referent filtered out due to type mismatch

(Recency's remaining candidates get filtered)

begin calling other proposers and evaluate any

new referents they introduce as candidates

filtering CS's have nothing Co pIopose

Cataphora and Disjoint Reference propose nothing

new for this anaphor in this discourse

unordered list of all candidates ever proposed

all candidates except "file" have been rejected

minimum score threshold currently set at -2.50

difference between "file" x-2 and first runner-up

(4.5) exceeds delta currently set at 0.5

Figure 3: Tracing the Anaphora Resolut ion Process

Z3

called followed by the effect of that evaluator's
response on the running score for the candidate
referent. At the end of processing for each
anaphor the list of all candidates ever proposed
and their composite ratings is displayed. Figure
3 shows an example of the use of the tracing
tools.

C O N C L U S I O N

In this paper, we have described an architec-
ture for pronominal anaphora resolution that al-
lows implementations of partial theories of
anaphora to be combined into a complete sys-
tem, and we have illustrated an implementabon
of such a system. This architecture makes no
commitment on the question of what theories
should be used or how conflicts among the
theories should be resolved. In this respect, it
differs from other proposals (such as (Hobbs,
1978)) in which a specific strategy for applying
knowledge is encoded into the control structure
of the system. As a result of its loose structure,
this architecture supports the empirical inves-
tigation of the effectiveness o f competing
theories and their implementations within a com-
plete anaphora resolution system.

One interesting comment that can be made
about this architecture is its similarity to architec-
tures that have been used to perform other parts
of the natural language understanding task. For
example, TEAM (-Grosz, 1987) uses a similar ar-
chitecture and a set of critics to .perform.quan-
drier scope assignment. The criucs Tuncfion in
much the same way CS's do. And, like CS's,
there are classes of critics. For example, some
are pure filters. Others impose preferences on
the set of candidate interpretations.

ACKNOWLEDG EMENTS

We would like to thank Nicholas Asher, Kent
Wittenburg, Dave Wroblewski, Jim Barnett, Jon
Schlossberg, and Carl Weir for many discus-
sions about this architecture. We wouldalso like
to thank Carl Weir for his contribution to the im-
plementation of this system.

REFERENCES

Brennan, S. E., M. W. Friedman, & C. J. Pollard.
(1987). A Centering Approach to Pronouns.
Proceedings ACL. .

Cohen, R. R. (1985). Heuristic Reasoning about
Uncertainty: An Artificia/ Intelligence
Approach. Boston: Pitman Advanced
Publishing Program.

Erman, L. D., P. E. London, & S. F. Fickas.

(1981). The Design and an Example Use of
Hearsay II1. Proc. IJCAI 7 . .

Grosz, B. J. (1977). The Representation and
Use of Focus in a System for Understanding
Dialogs. IJCAI 5 . .

Grosz, B. J., A. K. Joshi, & S. Weinstein.
(1986). Towards a Computational Theory of
Discourse Interpretation.

Grosz, B. J., D. E. Appelt, P. A. Martin, &
F. C. N. Pereira. (May 1987). TEAM: An
Experiment in the Design of Transportable
Natural-Language Interfaces. Artificial
Intelligence, 32(2), 173-243.

Guindon, R., P. Sladky, H. Brunner & J. Conner.
(1986). The Structure of User-Advisor
Dialogues: Is there Method in their Mad-
ness? Proceedings of the 24th Meeting of
the Association for Computational
Linguistics..

Hobbs,J. R. (1978). Resolving Pronoun
References. Lingua, 44, 311-338.

Hobbs, J. R. (1985). On the Coherence and
Structure of Discourse (Tech. Rep.).
CSLI-85-37,

Kamp, H. (1981). A Theory of Truth and
Semantic Representation. In J. Froenendijk,
T. Janssen, & M. Stokhof (Eds.), Formal
Methods in the Study of Language, Part I.
Amsterdam, The Netherlands: Mathematisch
Centrum.

Reinhart, T. (1983). Anaphora and Semantic
Interpretation. Chicago, Ill.: University of
Chicago Press.

Rich, E. A., J. Barnett, K. Wittenburg &
D. Wroblewski. (1987). Ambiguity Procras-
tination. Proceedings AAA187. .

Wittenburg, K. (1986). A Parser for Portable NL
Interfaces Using Graph-Unification-Based
Grammars. Proceedings AAA186. .

2,4

